Search results for: intercultural competence training
1551 Teaching Attentive Literature Reading in Higher Education French as a Foreign Language: A Pilot Study of a Flipped Classroom Teaching Model
Authors: Malin Isaksson
Abstract:
Teaching French as a foreign language usually implies teaching French literature, especially in higher education. Training university students in literary reading in a foreign language requires addressing several aspects at the same time: the (foreign) language, the poetic language, the aesthetic aspects of the studied works, and various interpretations of them. A pilot study sought to test a teaching model that would support students in learning to perform competent readings and short analyses of French literary works, in a rather independent manner. This shared practice paper describes the use of a flipped classroom method in two French literature courses, a campus course and an online course, and suggests that the teaching model may provide efficient tools for teaching literary reading and analysis in a foreign language. The teaching model builds on a high level of student activity and focuses on attentive reading, meta-perspectives such as theoretical concepts, individual analyses by students where said concepts are applied, and group discussions of the studied texts and of possible interpretations.Keywords: attentive reading, flipped classroom, literature in foreign language studies, teaching literature analysis
Procedia PDF Downloads 1271550 Neural Machine Translation for Low-Resource African Languages: Benchmarking State-of-the-Art Transformer for Wolof
Authors: Cheikh Bamba Dione, Alla Lo, Elhadji Mamadou Nguer, Siley O. Ba
Abstract:
In this paper, we propose two neural machine translation (NMT) systems (French-to-Wolof and Wolof-to-French) based on sequence-to-sequence with attention and transformer architectures. We trained our models on a parallel French-Wolof corpus of about 83k sentence pairs. Because of the low-resource setting, we experimented with advanced methods for handling data sparsity, including subword segmentation, back translation, and the copied corpus method. We evaluate the models using the BLEU score and find that transformer outperforms the classic seq2seq model in all settings, in addition to being less sensitive to noise. In general, the best scores are achieved when training the models on word-level-based units. For subword-level models, using back translation proves to be slightly beneficial in low-resource (WO) to high-resource (FR) language translation for the transformer (but not for the seq2seq) models. A slight improvement can also be observed when injecting copied monolingual text in the target language. Moreover, combining the copied method data with back translation leads to a substantial improvement of the translation quality.Keywords: backtranslation, low-resource language, neural machine translation, sequence-to-sequence, transformer, Wolof
Procedia PDF Downloads 1471549 Development of a Small-Group Teaching Method for Enhancing the Learning of Basic Acupuncture Manipulation Optimized with the Theory of Motor Learning
Authors: Wen-Chao Tang, Tang-Yi Liu, Ming Gao, Gang Xu, Hua-Yuan Yang
Abstract:
This study developed a method for teaching acupuncture manipulation in small groups optimized with the theory of motor learning. Sixty acupuncture students and their teacher participated in our research. Motion videos were recorded of their manipulations using the lifting-thrusting method. These videos were analyzed using Simi Motion software to acquire the movement parameters of the thumb tip. The parameter velocity curves along Y axis was used to generate small teaching groups clustered by a self-organized map (SOM) and K-means. Ten groups were generated. All the targeted instruction based on the comparative results groups as well as the videos of teacher and student was provided to the members of each group respectively. According to the theory and research of motor learning, the factors or technologies such as video instruction, observational learning, external focus and summary feedback were integrated into this teaching method. Such efforts were desired to improve and enhance the effectiveness of current acupuncture teaching methods in limited classroom teaching time and extracurricular training.Keywords: acupuncture, group teaching, video instruction, observational learning, external focus, summary feedback
Procedia PDF Downloads 1791548 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control
Authors: Ming-Yen Chang, Sheng-Hung Ke
Abstract:
This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride
Procedia PDF Downloads 661547 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery
Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao
Abstract:
Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset
Procedia PDF Downloads 1201546 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals
Authors: Naser Safdarian, Nader Jafarnia Dabanloo
Abstract:
In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition
Procedia PDF Downloads 4561545 Basic Research on Applying Temporary Work Engineering at the Design Phase
Authors: Jin Woong Lee, Kyuman Cho, Taehoon Kim
Abstract:
The application of constructability is increasingly required not only in the construction phase but also in the whole project stage. In particular, the proper application of construction experience and knowledge during the design phase enables the minimization of inefficiencies such as design changes and improvements in constructability during the construction phase. In order to apply knowledge effectively, engineering technology efforts should be implemented with design progress. Among many engineering technologies, engineering for temporary works, including facilities, equipment, and other related construction methods, is important to improve constructability. Therefore, as basic research, this study investigates the applicability of temporary work engineering during the design phase in the building construction industry. As a result, application of temporary work engineering has a greater impact on construction cost reduction and constructability improvement. In contrast to the existing design-bid-build method, the turn-key and CM (construct management) procurement methods currently being implemented in Korea are expected to have a significant impact on the direction of temporary work engineering. To introduce temporary work engineering, expert/professional organization training is first required, and a lack of client awareness should be preferentially improved. The results of this study are expected to be useful as reference material for the development of more effective temporary work engineering tasks and work processes in the future.Keywords: Temporary Work Engineering, Design Phase, Constructability, Building Construction
Procedia PDF Downloads 3871544 A Comprehensive Review of Yoga and Core Strength: Strengthening Core Muscles as Important Method for Injury Prevention (Lower Back Pain) and Performance Enhancement in Sports
Authors: Pintu Modak
Abstract:
The core strength is essential not only for athletes but also for everyone to perform everyday's household chores with ease and efficiency. Core strength means to strengthen the muscles deep within the abdomen which connect to the spine and pelvis which control the position and movement of the central portion of the body. Strengthening of core muscles is important for injury prevention (lower back pain) and performance enhancement in sports. The purpose of the study was to review the literature and findings on the effects of Yoga exercise as a part of sports training method and fitness programs. Fifteen papers were found to be relevant for this review. There are five simple yoga poses: Ardha Phalakasana (Low plank), Vasisthasana (side plank), Purvottanasana (inclined plane), Sarvangasana (shoulder stand), and Virabhadrasana (Warrior) are found to be very effective for strengthening core muscles. They are the most effective poses to build core strength and flexibility to the core muscles. The study suggests that sports and fitness trainers should include these yoga exercises in their programs to strengthen core muscles.Keywords: core strength, yoga, injuries, lower back
Procedia PDF Downloads 2761543 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 751542 The Perception of Stallholders About the Early Childhood Education Male Teachers: A Systematic Review
Authors: Endale Fantahun Tadesse, Sabika Khalid
Abstract:
The global call for increased male representation in early childhood education (ECE) has garnered significant attention. Emerging studies have indicated that involving men in ECE can yield positive outcomes for children's physical and psychological development. Challenging the prevailing misconception and stereotype that women dominate the ECE sector is crucial. In light of this, the present study undertakes a systematic review of nine studies on males working in ECE, revealing a dearth of male presence in the field in China as well. To address this issue, substantial structural changes must be implemented to enhance the inadequate pay and working conditions that dissuade both men and women from pursuing a sustainable career in ECE. It is recommended that school leadership raise awareness among female teachers and parents, encouraging them to support and uphold virtuous values for male teachers. Additionally, governing bodies should provide explicit guidelines during training programs to address concerns regarding potential abuse and gender biases. The findings of this review underscore the need for future studies to examine the self-identities of male teachers from various stakeholders' perspectives and explore the consequences of being in the profession through rigorous and robust methodologies that can inform policymakers.Keywords: male teachers, Early Childhood Education (ECE), self-identity, perception of stakeholders
Procedia PDF Downloads 381541 The Impact of Democratic Leadership on Job Satisfaction Among Teachers in South Hebron Directorate Schools
Authors: Mohammad Mahmoud Rjoob
Abstract:
This study aimed to explore the impact of democratic leadership on job satisfaction among teachers in the South Hebron Directorate schools. The study was applied to a random sample representing the study population of teachers in the South Hebron Directorate of Education, with a sample size of 301 teachers from 12 schools. The researcher adopted the descriptive approach as it is the most suitable for the nature of this study, and a questionnaire was used as a tool for data collection and measuring various variables. The study recommended the importance of enhancing the concept of democratic leadership in schools to boost teachers' morale and improve the quality of the educational process. It also encouraged the adoption of democratic leadership styles by administrations, educational areas, and new principals due to their positive and effective impact on job performance. Additionally, the study suggested providing training courses for school principals and new teachers on how to apply the principles of democratic leadership that contribute to creating a positive educational environment and enhance the spirit of cooperation to achieve the school's goals. Finally, the study called for granting school principals more authority and powers to increase their ability to effectively deal with challenges and problems, which contributes to improving the educational process and enhances teachers' job satisfaction.Keywords: democratic leadership, job satisfaction, teachers, South Hebron Directorate Schools
Procedia PDF Downloads 91540 Culturally Relevant Education Challenges and Threats in the US Secondary Classroom
Authors: Owen Cegielski, Kristi Maida, Danny Morales, Sylvia L. Mendez
Abstract:
This study explores the challenges and threats US secondary educators experience in incorporating culturally relevant education (CRE) practices in their classrooms. CRE is a social justice pedagogical practice used to connect student’s cultural references to academic skills and content, to promote critical reflection, to facilitate cultural competence, and to critique discourses of power and oppression. Empirical evidence on CRE demonstrates positive student educational outcomes in terms of achievement, engagement, and motivation. Additionally, due to the direct focus on uplifting diverse cultures through the curriculum, students experience greater feelings of belonging, increased interest in the subject matter, and stronger racial/ethnic identities. When these teaching practices are in place, educators develop deeper relationships with their students and appreciate the multitude of gifts they (and their families) bring to the classroom environment. Yet, educators regularly report being unprepared to incorporate CRE in their daily teaching practice and identify substantive gaps in their knowledge and skills in this area. Often, they were not exposed to CRE in their educator preparation program, nor do they receive adequate support through school- or district-wide professional development programming. Through a descriptive phenomenological research design, 20 interviews were conducted with a diverse set of secondary school educators to explore the challenges and threats they experience in incorporating CRE practices in their classrooms. The guiding research question for this study is: What are the challenges and threats US secondary educators face when seeking to incorporate CRE practices in their classrooms? Interviews were grounded by the theory of challenge and threat states, which highlights the ways in which challenges and threats are appraised and how resources factor into emotional valence and perception, as well as the potential to meet the task at hand. Descriptive phenomenological data analysis strategies were utilized to develop an essential structure of the educators’ views of challenges and threats in regard to incorporating CRE practices in their secondary classrooms. The attitude of the phenomenological reduction method was adopted, and the data were analyzed through five steps: sense of the whole, meaning units, transformation, structure, and essential structure. The essential structure that emerged was while secondary educators display genuine interest in learning how to successfully incorporate CRE practices, they perceive it to be a challenge (and not a threat) due to lack of exposure which diminishes educator capacity, comfort, and confidence in employing CRE practices. These findings reveal the value of attending to emotional valence and perception of CRE in promoting this social justice pedagogical practice. Findings also reveal the importance of appropriately resourcing educators with CRE support to ensure they develop and utilize this practice.Keywords: culturally relevant education, descriptive phenomenology, social justice practice, US secondary education
Procedia PDF Downloads 1861539 Identification System for Grading Banana in Food Processing Industry
Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan
Abstract:
In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.Keywords: banana, food processing, identification system, neural network
Procedia PDF Downloads 4701538 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset
Procedia PDF Downloads 3531537 Design and Characterization of a Smart Composite Fabric for Knee Brace
Authors: Rohith J. K., Amir Nazemi, Abbas S. Milani
Abstract:
In Paralympic sports, athletes often depend on some form of equipment to enable competitive sporting, where most of this equipment would only allow passive physiological supports and discrete physiological measurements. Active feedback physiological support and continuous detection of performance indicators, without time or space constraints, would be beneficial in more effective training and performance measures of Paralympic athletes. Moreover, occasionally the athletes suffer from fatigue and muscular stains due to improper monitoring systems. The latter challenges can be overcome by using Smart Composites technology when manufacturing, e.g., knee brace and other sports wearables utilities, where the sensors can be fused together into the fabric and an assisted system actively support the athlete. This paper shows how different sensing functionality may be created by intrinsic and extrinsic modifications onto different types of composite fabrics, depending on the level of integration and the employed functional elements. Results demonstrate that fabric sensors can be well-tailored to measure muscular strain and be used in the fabrication of a smart knee brace as a sample potential application. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with such smart fabric technologies prove to be customizable and versatile.Keywords: smart composites, sensors, smart fabrics, knee brace
Procedia PDF Downloads 1781536 Using Satellite Images Datasets for Road Intersection Detection in Route Planning
Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever
Abstract:
Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles
Procedia PDF Downloads 1441535 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations
Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu
Abstract:
Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10
Procedia PDF Downloads 1111534 Electroencephalogram Based Approach for Mental Stress Detection during Gameplay with Level Prediction
Authors: Priyadarsini Samal, Rajesh Singla
Abstract:
Many mobile games come with the benefits of entertainment by introducing stress to the human brain. In recognizing this mental stress, the brain-computer interface (BCI) plays an important role. It has various neuroimaging approaches which help in analyzing the brain signals. Electroencephalogram (EEG) is the most commonly used method among them as it is non-invasive, portable, and economical. Here, this paper investigates the pattern in brain signals when introduced with mental stress. Two healthy volunteers played a game whose aim was to search hidden words from the grid, and the levels were chosen randomly. The EEG signals during gameplay were recorded to investigate the impacts of stress with the changing levels from easy to medium to hard. A total of 16 features of EEG were analyzed for this experiment which includes power band features with relative powers, event-related desynchronization, along statistical features. Support vector machine was used as the classifier, which resulted in an accuracy of 93.9% for three-level stress analysis; for two levels, the accuracy of 92% and 98% are achieved. In addition to that, another game that was similar in nature was played by the volunteers. A suitable regression model was designed for prediction where the feature sets of the first and second game were used for testing and training purposes, respectively, and an accuracy of 73% was found.Keywords: brain computer interface, electroencephalogram, regression model, stress, word search
Procedia PDF Downloads 1871533 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition
Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang
Abstract:
Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor
Procedia PDF Downloads 1501532 Web Quest as the Tool for Business Writing Skills Enhancement at Technical University EFL Classes
Authors: Nadezda Kobzeva
Abstract:
Under the current trend of globalization, economic and technological dynamics information and the means by which it is delivered and renewed becomes out-of-date rapidly. Thus, educational systems as well as higher education are being seriously tested. New strategies’ developing that is supported by Information and Communication Technology is urgently required. The essential educators’ mission is to meet the demands of the future by preparing our young learners with proper knowledge, skills and innovation capabilities necessary to advance our competitiveness globally. In response to the modern society and future demands, the oldest Siberian Tomsk Polytechnic University has wisely proposed several initiatives to promote the integration of Information and Communication Technology (ICT) in education, and increase the competitiveness of graduates by emphasizing inquiry-based learning, higher order thinking and problem solving. This paper gives a brief overview of how Web Quest as ICT device is being used for language teaching and describes its use advantages for teaching English as a Foreign Language (EFL), in particular business writing skills. This study proposes to use Web Quest to promote higher order thinking and ICT integration in the process of engineers training in Tomsk Polytechnic University, Russia.Keywords: web quest, web quest in pedagogy, resume (CVs) and cover letter writing skills, ICT integration
Procedia PDF Downloads 3791531 Dental Students’ Self-Assessment of Their Performance in a Preclinical Endodontic Practice
Authors: Minseock Seo
Abstract:
Dental education consists of both theoretical and practical learning for students. When dental students encounter practical courses as a new educational experience, they must also learn to evaluate themselves. The aim of this study was to investigate the self-assessment scores of third-year dental students and compare with the scores graded by the faculty in preclinical endodontic practice in a dental school in Korea. Faculty- and student-assigned scores were calculated from preclinical endodontic practice performed on phantom patients. The students were formally instructed on grading procedures for endodontic treatment. After each step, each item was assessed by the student. The students’ self-assessment score was then compared to the score by the faculty. The students were divided into 4 groups by analyzing the scores of self-assessment and faculty-assessment and statistically analyzed by summing the theoretical and practical examination scores. In the theoretical exam score, the group who over-estimated their performance (H group) was lower than the group with lower evaluation (L group). When comparing the first and last score determined by the faculty, H groups didn’t show any improvement, while the other group did. In H group, the less improvement of the self-assessment, the higher the theoretical exam score. In L group, the higher improvement of the self-assessment, the better the theoretical exam score. The results point to the need to develop students’ self-insight with more exercises and practical training.Keywords: dental students, endodontic, preclinical practice, self-assessment
Procedia PDF Downloads 2531530 Torture and Turkey: Legal Situation Related to Torture in Turkey and the Issue of Impunity of Torture
Authors: Zeynep Üskül Engin
Abstract:
Looking upon the world’s history, one can easily understand that the most drastic and evil comes to the human from his own kind. Human, proving that Hobbs was actually right, finally have agreed on taking some necessary measures after the destructive effects of the great World Wars. Surely after this, human rights have been more commonly mentioned in written form and now the priority of the values and goals of a democratic society is to protect its individuals. Due to this fact, the right of living is found to be valuable and all the existing forms of torture, anti-human and humiliating activities have been banned. Turkey, having signed the international papers of human rights, has aimed for eliminating torture through changing its laws and regulations to a certain extent. Monitoring Turkey’s experience, it is likely to say that during certain periods of time systematic torture has been applied. The urge to enter the European Union and verdicts against Turkey, have led to considerable progress in human rights. Besides, changes in law and the comprehensive training for the police, judges, medical and prison staff have resulted in positive improvement related to this issue. Certainly, this current legal update does not completely mean the total elimination of the practice of torture; however, in the commitment of this crime, the ones who have committed are standing a trial and facing severe punishments. In this article, Turkey, with a notorious reputation in international arena is going to be examined through its policy towards torture and defects in practice.Keywords: torture, human rights, impunity of torture, sociology
Procedia PDF Downloads 4631529 Implementation of Lean Manufacturing in Some Companies in Colombia: A Case Study
Authors: Natalia Marulanda, Henry González, Gonzalo León, Alejandro Hincapié
Abstract:
Continuous improvement tools are the result of a set of studies that developed theories and methodologies. These methodologies enable organizations to increase their levels of efficiency, effectiveness, and productivity. Based on these methodologies, lean manufacturing philosophy, which is based on the optimization of resources, waste disposal, and generation of value to products and services, was developed. Lean application has been massive globally, but Colombian companies have been made it incipiently. Therefore, the purpose of this article is to identify the impacts generated by the implementation of lean manufacturing tools in five companies located in Colombia and Medellín metropolitan area. It also seeks to make a comparison of the results obtained from the implementation of lean philosophy and Theory of Constraints. The methodology is qualitative and quantitative, is based on the case study interview from dialogue with the leaders of the processes that used lean tools. The most used tools by research companies are 5's with 100% and TPM with 80%. The less used tool is the synchronous production with 20%. The main reason for the implementation of lean was supply chain management with 83.3%. For the application of lean and TOC, we did not find significant differences between the impact, in terms of methodology, areas of application, staff initiatives, supply chain management, planning, and training.Keywords: business strategy, lean manufacturing, theory of constraints, supply chain
Procedia PDF Downloads 3541528 Behavioral Analysis of Anomalies in Intertemporal Choices Through the Concept of Impatience and Customized Strategies for Four Behavioral Investor Profiles With an Application of the Analytic Hierarchy Process: A Case Study
Authors: Roberta Martino, Viviana Ventre
Abstract:
The Discounted Utility Model is the essential reference for calculating the utility of intertemporal prospects. According to this model, the value assigned to an outcome is the smaller the greater the distance between the moment in which the choice is made and the instant in which the outcome is perceived. This diminution determines the intertemporal preferences of the individual, the psychological significance of which is encapsulated in the discount rate. The classic model provides a discount rate of linear or exponential nature, necessary for temporally consistent preferences. Empirical evidence, however, has proven that individuals apply discount rates with a hyperbolic nature generating the phenomenon of intemporal inconsistency. What this means is that individuals have difficulty managing their money and future. Behavioral finance, which analyzes the investor's attitude through cognitive psychology, has made it possible to understand that beyond individual financial competence, there are factors that condition choices because they alter the decision-making process: behavioral bias. Since such cognitive biases are inevitable, to improve the quality of choices, research has focused on a personalized approach to strategies that combines behavioral finance with personality theory. From the considerations, it emerges the need to find a procedure to construct the personalized strategies that consider the personal characteristics of the client, such as age or gender, and his personality. The work is developed in three parts. The first part discusses and investigates the weight of the degree of impatience and impatience decrease in the anomalies of the discounted utility model. Specifically, the degree of decrease in impatience quantifies the impact that emotional factors generated by haste and financial market agitation have on decision making. The second part considers the relationship between decision making and personality theory. Specifically, four behavioral categories associated with four categories of behavioral investors are considered. This association allows us to interpret intertemporal choice as a combination of bias and temperament. The third part of the paper presents a method for constructing personalized strategies using Analytic Hierarchy Process. Briefly: the first level of the analytic hierarchy process considers the goal of the strategic plan; the second level considers the four temperaments; the third level compares the temperaments with the anomalies of the discounted utility model; and the fourth level contains the different possible alternatives to be selected. The weights of the hierarchy between level 2 and level 3 are constructed considering the degrees of decrease in impatience derived for each temperament with an experimental phase. The results obtained confirm the relationship between temperaments and anomalies through the degree of decrease in impatience and highlight that the actual impact of emotions in decision making. Moreover, it proposes an original and useful way to improve financial advice. Inclusion of additional levels in the Analytic Hierarchy Process can further improve strategic personalization.Keywords: analytic hierarchy process, behavioral finance anomalies, intertemporal choice, personalized strategies
Procedia PDF Downloads 891527 Sinhala Sign Language to Grammatically Correct Sentences using NLP
Authors: Anjalika Fernando, Banuka Athuraliya
Abstract:
This paper presents a comprehensive approach for converting Sinhala Sign Language (SSL) into grammatically correct sentences using Natural Language Processing (NLP) techniques in real-time. While previous studies have explored various aspects of SSL translation, the research gap lies in the absence of grammar checking for SSL. This work aims to bridge this gap by proposing a two-stage methodology that leverages deep learning models to detect signs and translate them into coherent sentences, ensuring grammatical accuracy. The first stage of the approach involves the utilization of a Long Short-Term Memory (LSTM) deep learning model to recognize and interpret SSL signs. By training the LSTM model on a dataset of SSL gestures, it learns to accurately classify and translate these signs into textual representations. The LSTM model achieves a commendable accuracy rate of 94%, demonstrating its effectiveness in accurately recognizing and translating SSL gestures. Building upon the successful recognition and translation of SSL signs, the second stage of the methodology focuses on improving the grammatical correctness of the translated sentences. The project employs a Neural Machine Translation (NMT) architecture, consisting of an encoder and decoder with LSTM components, to enhance the syntactical structure of the generated sentences. By training the NMT model on a parallel corpus of Sinhala wrong sentences and their corresponding grammatically correct translations, it learns to generate coherent and grammatically accurate sentences. The NMT model achieves an impressive accuracy rate of 98%, affirming its capability to produce linguistically sound translations. The proposed approach offers significant contributions to the field of SSL translation and grammar correction. Addressing the critical issue of grammar checking, it enhances the usability and reliability of SSL translation systems, facilitating effective communication between hearing-impaired and non-sign language users. Furthermore, the integration of deep learning techniques, such as LSTM and NMT, ensures the accuracy and robustness of the translation process. This research holds great potential for practical applications, including educational platforms, accessibility tools, and communication aids for the hearing-impaired. Furthermore, it lays the foundation for future advancements in SSL translation systems, fostering inclusive and equal opportunities for the deaf community. Future work includes expanding the existing datasets to further improve the accuracy and generalization of the SSL translation system. Additionally, the development of a dedicated mobile application would enhance the accessibility and convenience of SSL translation on handheld devices. Furthermore, efforts will be made to enhance the current application for educational purposes, enabling individuals to learn and practice SSL more effectively. Another area of future exploration involves enabling two-way communication, allowing seamless interaction between sign-language users and non-sign-language users.In conclusion, this paper presents a novel approach for converting Sinhala Sign Language gestures into grammatically correct sentences using NLP techniques in real time. The two-stage methodology, comprising an LSTM model for sign detection and translation and an NMT model for grammar correction, achieves high accuracy rates of 94% and 98%, respectively. By addressing the lack of grammar checking in existing SSL translation research, this work contributes significantly to the development of more accurate and reliable SSL translation systems, thereby fostering effective communication and inclusivity for the hearing-impaired communityKeywords: Sinhala sign language, sign Language, NLP, LSTM, NMT
Procedia PDF Downloads 1041526 Resource Allocation of Small Agribusinesses and Entrepreneurship Development In Nigeria
Authors: Festus M. Epetimehin
Abstract:
Resources are essential materials required for production of goods and services. Effective allocation of these resources can engender the success of current business activities and its sustainability for future generation. The study examined effect of resource allocation of small agribusinesses on entrepreneurship development in Southwest Nigeria. Sample size of 385 was determined using Cochran’s formula. 350 valid copies of questionnaire were used in the analysis. In order to achieve the objective, research design (descriptive and cross sectional designs) was used to gather data for the study through the administration of questionnaire to respondents. Both descriptive and inferential statistics were used to investigate the objective of the study. The result obtained indicated that resource allocation by small agribusinesses had a substantial positive effect on entrepreneurship development with the p-value of (0.0000) which was less than the 5.0% critical value with a positive regression coefficient of 0.53. The implication of this is that the ability of the entrepreneurs to deploy their resources efficiently through adequate realization of better gross margin could enhance business activities and development. The study recommends that business owners still need some level of serious training and exposure on how to manage modern small agribusiness resources to enhance business performance. The intervention of Agricultural Development Programme (ADP) and other Agricultural institutions are needed in this regard.Keywords: resource, resource allocation, small businesses, agriculture, entrepreneurship development
Procedia PDF Downloads 511525 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations
Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha
Abstract:
This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation
Procedia PDF Downloads 1421524 Social Adjustment of Adolescence Living with Step Parent Families in Pakistan
Authors: Akbar Ali
Abstract:
This study played an important role in the investigation of social adjustment of adolescent living with step parent families in Pakistan. Families plays an crucial role in the training and adjustment of adolescents’ personal, social and academic life. Adolescents living with parent families often experience different challenges which affects their social adjustment in the family and which further have impact on their academic and social life. One of central theme investigated in this study is parenting practice and other major theme is parental capital. The objectives of the study were to determine how different parenting styles being practiced in family affects adolescents’ adjustment and what is the role of parental capital in adolescents adjustment. qualitative approach was adopted for this research. Adolescents who are studying at college and living with step parent families participated in this study. Data was collected through interviews. Collected data was analyzed through NVIVO. Through findings, it is stated that parenting style and parental capital determining factors affecting adolescents’ adjustment and family experiences. The study suggest a comprehensive and practical approach for the adjustment of adolescents. Government should establish counselling and enabling facilities for adolescents’ for the wellbeing and better social adjustment.Keywords: adolescents, academic life, parental capital, parental practices, social adjustment
Procedia PDF Downloads 111523 AI as a Tool Hindering Digital Education
Authors: Justyna Żywiołek, Marek Matulewski
Abstract:
The article presents the results of a survey conducted among students from various European countries. The aim of the study was to understand how artificial intelligence (AI) affects educational processes in a digital environment. The survey covered a wide range of topics, including students' understanding and use of AI, its impact on motivation and engagement, interaction and support issues, accessibility and equity, and data security and privacy concerns. Most respondents admitted having difficulties comprehending the advanced functions of AI in educational tools. Many students believe that excessive use of AI in education can decrease their motivation for self-study and active participation in classes. Additionally, students reported that interaction with AI-based tools is often less satisfying compared to direct contact with teachers. Furthermore, the survey highlighted inequalities in access to advanced AI tools, which can widen the educational gap between students from different economic backgrounds. Students also expressed concerns about the security and privacy of their personal data collected and processed by AI systems. The findings suggest that while AI has the potential to support digital education, significant challenges need to be addressed to make these tools more effective and acceptable for students. Recommendations include increasing training for students and teachers on using AI, providing more interactive and engaging forms of education, and implementing stricter regulations on data protection.Keywords: AI, digital education, education tools, motivation and engagement
Procedia PDF Downloads 281522 Mobile Phones in Saudi Arabian EFL Classrooms
Authors: Srinivasa Rao Idapalapati, Manssour Habbash
Abstract:
As mobile connectedness continues to sweep across the landscape, the value of deploying mobile technology to the service of learning and teaching appears to be both self-evident and unavoidable. To this end, this study explores the reasons for the reluctance of teachers in Saudi Arabia to use mobiles in EFL (English as a Foreign Language) classes for teaching and learning purposes. The main objective of this study is a qualitative analysis of the responses of the views of the teachers at a university in Saudi Arabia about the use of mobile phones in classrooms for educational purposes. Driven by the hypothesis that the teachers in Saudi Arabian universities aren’t prepared well enough to use mobile phones in classrooms for educational purposes, this study examines the data obtained through a questionnaire provided to about hundred teachers working at a university in Saudi Arabia through convenient sampling method. The responses are analyzed by qualitative interpretive method and found that teachers and the students are in confusion whether to use mobiles, and need some training sessions on the use of mobile phones in classrooms for educational purposes. The outcome of the analysis is discussed in light of the concerns bases adoption model and the inferences are provided in a descriptive mode.Keywords: mobile assisted language learning, technology adoption, classroom instruction, concerns based adoption model
Procedia PDF Downloads 364