Search results for: convolutional neural network topology
2505 Parallel Computing: Offloading Matrix Multiplication to GPU
Authors: Bharath R., Tharun Sai N., Bhuvan G.
Abstract:
This project focuses on developing a Parallel Computing method aimed at optimizing matrix multiplication through GPU acceleration. Addressing algorithmic challenges, GPU programming intricacies, and integration issues, the project aims to enhance efficiency and scalability. The methodology involves algorithm design, GPU programming, and optimization techniques. Future plans include advanced optimizations, extended functionality, and integration with high-level frameworks. User engagement is emphasized through user-friendly interfaces, open- source collaboration, and continuous refinement based on feedback. The project's impact extends to significantly improving matrix multiplication performance in scientific computing and machine learning applications.Keywords: matrix multiplication, parallel processing, cuda, performance boost, neural networks
Procedia PDF Downloads 612504 Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region
Authors: Mace Bentley, Zhuojun Duan, Tobias Gerken, Dudley Bonsal, Henry Way, Endre Szakal, Mia Pham, Hunter Donaldson, Chelsea Lang, Hayden Abbott, Leah Wilcynzski
Abstract:
Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region.Keywords: lightning, urbanization, thunderstorms, climatology
Procedia PDF Downloads 772503 A Review of Brain Implant Device: Current Developments and Applications
Authors: Ardiansyah I. Ryan, Ashsholih K. R., Fathurrohman G. R., Kurniadi M. R., Huda P. A
Abstract:
The burden of brain-related disease is very high. There are a lot of brain-related diseases with limited treatment result and thus raise the burden more. The Parkinson Disease (PD), Mental Health Problem, or Paralysis of extremities treatments had risen concern, as the patients for those diseases usually had a low quality of life and low chance to recover fully. There are also many other brain or related neural diseases with the similar condition, mainly the treatments for those conditions are still limited as our understanding of the brain function is insufficient. Brain Implant Technology had given hope to help in treating this condition. In this paper, we examine the current update of the brain implant technology. Neurotechnology is growing very rapidly worldwide. The United States Food and Drug Administration (FDA) has approved the use of Deep Brain Stimulation (DBS) as a brain implant in humans. As for neural implant both the cochlear implant and retinal implant are approved by FDA too. All of them had shown a promising result. DBS worked by stimulating a specific region in the brain with electricity. This device is planted surgically into a very specific region of the brain. This device consists of 3 main parts: Lead (thin wire inserted into the brain), neurostimulator (pacemaker-like device, planted surgically in the chest) and an external controller (to turn on/off the device by patient/programmer). FDA had approved DBS for the treatment of PD, Pain Management, Epilepsy and Obsessive Compulsive Disorder (OCD). The target treatment of DBS in PD is to reduce the tremor and dystonia symptoms. DBS has been showing the promising result in animal and limited human trial for other conditions such as Alzheimer, Mental Health Problem (Major Depression, Tourette Syndrome), etc. Every surgery has risks of complications, although in DBS the chance is very low. DBS itself had a very satisfying result as long as the subject criteria to be implanted this device based on indication and strictly selection. Other than DBS, there are several brain implant devices that still under development. It was included (not limited to) implant to treat paralysis (In Spinal Cord Injury/Amyotrophic Lateral Sclerosis), enhance brain memory, reduce obesity, treat mental health problem and treat epilepsy. The potential of neurotechnology is unlimited. When brain function and brain implant were fully developed, it may be one of the major breakthroughs in human history like when human find ‘fire’ for the first time. Support from every sector for further research is very needed to develop and unveil the true potential of this technology.Keywords: brain implant, deep brain stimulation (DBS), deep brain stimulation, Parkinson
Procedia PDF Downloads 1552502 A Study of the Establishment of the Evaluation Index System for Tourist Attraction Disaster Resilience
Authors: Chung-Hung Tsai, Ya-Ping Li
Abstract:
Tourism industry is highly depended on the natural environment and climate. Compared to other industries, it is more susceptible to environment and climate. Taiwan belongs to a sea island country and located in the subtropical monsoon zone. The events of climate variability, frequency of typhoons and rainfalls raged are caused regularly serious disaster. In traditional disaster assessment, it usually focuses on the disaster damage and risk assessment, which is short of the features from different industries to understand the impact of the restoring force in post-disaster resilience and the main factors that constitute resilience. The object of this study is based on disaster recovery experience of tourism area and to understand the main factors affecting the tourist area of disaster resilience. The combinations of literature review and interviews with experts are prepared an early indicator system of the disaster resilience. Then, it is screened through a Fuzzy Delphi Method and Analytic Network Process for weight analysis. Finally, this study will establish the tourism disaster resilience evaluation index system considering the Taiwan's tourism industry characteristics. We hope that be able to enhance disaster resilience after tourist areas and increases the sustainability of industrial development. It is expected to provide government departments the tourism industry as the future owner of the assets in extreme climates responses.Keywords: resilience, Fuzzy Delphi Method, Analytic Network Process, industrial development
Procedia PDF Downloads 4112501 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads
Authors: Salah R. Al Zaidee, Ali S. Mahdi
Abstract:
Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.Keywords: meta-modal, objective function, steel frames, seismic analysis, design
Procedia PDF Downloads 2462500 Sexual Cognitive Behavioral Therapy: Psychological Performance and Openness to Experience
Authors: Alireza Monzavi Chaleshtari, Mahnaz Aliakbari Dehkordi, Amin Asadi Hieh, Majid Kazemnezhad
Abstract:
This research was conducted with the aim of determining the effectiveness of sexual cognitive behavioral therapy on psychological performance and openness to experience in women. The type of research was experimental in the form of pre-test-post-test. The statistical population of this research was made up of all working and married women with membership in the researcher's Instagram social network who had problems in marital-sexual relationships (N=900). From the statistical community, which includes working and married women who are members of the researcher's Instagram social network who have problems in marital-sexual relationships, there are 30 people including two groups (15 people in the experimental group and 15 people in the control group) as available sampling and selected randomly. They were placed in two experimental and control groups. The anxiety, stress, and depression scale (DASS) and the Costa and McCree personality questionnaire were used to collect data, and the cognitive behavioral therapy protocol of Dr. Mehrnaz Ali Akbari was used for the treatment sessions. To analyze the data, the covariance test was used in the SPSS22 software environment. The results showed that sexual cognitive behavioral therapy has a positive and significant effect on psychological performance and openness to experience in women. Conclusion: It can be concluded that interventions such as cognitive-behavioral sex can be used to treat marital problems.Keywords: sexual cognitive behavioral therapy, psychological function, openness to experience, women
Procedia PDF Downloads 792499 Emerging Cyber Threats and Cognitive Vulnerabilities: Cyberterrorism
Authors: Oludare Isaac Abiodun, Esther Omolara Abiodun
Abstract:
The purpose of this paper is to demonstrate that cyberterrorism is existing and poses a threat to computer security and national security. Nowadays, people have become excitedly dependent upon computers, phones, the Internet, and the Internet of things systems to share information, communicate, conduct a search, etc. However, these network systems are at risk from a different source that is known and unknown. These network systems risk being caused by some malicious individuals, groups, organizations, or governments, they take advantage of vulnerabilities in the computer system to hawk sensitive information from people, organizations, or governments. In doing so, they are engaging themselves in computer threats, crime, and terrorism, thereby making the use of computers insecure for others. The threat of cyberterrorism is of various forms and ranges from one country to another country. These threats include disrupting communications and information, stealing data, destroying data, leaking, and breaching data, interfering with messages and networks, and in some cases, demanding financial rewards for stolen data. Hence, this study identifies many ways that cyberterrorists utilize the Internet as a tool to advance their malicious mission, which negatively affects computer security and safety. One could identify causes for disparate anomaly behaviors and the theoretical, ideological, and current forms of the likelihood of cyberterrorism. Therefore, for a countermeasure, this paper proposes the use of previous and current computer security models as found in the literature to help in countering cyberterrorismKeywords: cyberterrorism, computer security, information, internet, terrorism, threat, digital forensic solution
Procedia PDF Downloads 982498 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence
Procedia PDF Downloads 1452497 The Analysis of Internet and Social Media Behaviors of the Students in Vocational High School
Authors: Mehmet Balci, Sakir Tasdemir, Mustafa Altin, Ozlem Bozok
Abstract:
Our globalizing world has become almost a small village and everyone can access any information at any time. Everyone lets each other know who does whatever in which place. We can learn which social events occur in which place in the world. From the perspective of education, the course notes that a lecturer use in lessons in a university in any state of America can be examined by a student studying in a city of Africa or the Far East. This dizzying communication we have mentioned happened thanks to fast developments in computer technologies and in parallel with this, internet technology. While these developments in the world, has a very large young population and a rapidly evolving electronic communications infrastructure Turkey has been affected by this situation. Researches has shown that almost all young people in Turkey has an account in a social network. Especially becoming common of mobile devices causes data traffic in social networks to increase. In this study, has been surveyed on students in the different age groups and at the Selcuk University Vocational School of Technical Sciences Department of Computer Technology. Student’s opinions about the use of internet and social media has been gotten. Using the Internet and social media skills, purposes, operating frequency, access facilities and tools, social life and effects on vocational education etc. have been explored. Both internet and use of social media positive and negative effects on this department students results have been obtained by the obtained findings evaluating from various aspects. Relations and differences have been found out with statistic.Keywords: computer technologies, internet use, social network, higher vocational school
Procedia PDF Downloads 5442496 Participatory Planning of the III Young Sea Meeting: An Experience of the Young Albatroz Collective
Authors: Victor V. Ribeiro, Thais C. Lopes, Rafael A. A. Monteiro
Abstract:
The Albatroz, Baleia Jubarte, Coral Vivo, Golfinho Rotador and Tamar projects make up the Young Sea Network (YSN), part of the BIOMAR Network, which aims to integrate the environmental youths of the Brazilian coast. For this, three editions of the Young Sea Meeting (YSM) were performed. Seeking to stimulate belonging, self-knowledge, participation, autonomy and youth protagonism, the Albatroz Project hosted the III YSM, in Bertioga (SP), in April 2019 and aimed to collectively plan the meeting. Five pillars of Environmental Education were used: identity, community, dialogue, power to act and happiness, the OCA Method and the Young Educates Young; Young Chooses Young; and One Generation Learns from the Other principals. In December 2018, still in the II YSM, the participatory planning of the III YSM began. Two "representatives" of each group were voluntarily elected to facilitate joint decisions, propose, receive and communicate demands from their groups and coordinators. The Young Albatroz Collective (YAC) facilitated the organization process as a whole. The purpose of the meeting was collectively constructed, answering the following question: "What is the YSM for?". Only two of the five pairs of representatives responded. There was difficulty gathering the young people in each group, because it was the end of the year, with people traveling. Thus, due to the short planning time, the YAC built a pre-programming to be validated by the other groups, defining as the objective of the meeting the strengthening of youth protagonism within the YSN. In the planning process, the YAC held 20 meetings, with 60 hours of face-to-face work, in three months, and two technical visits to the headquarters of the III YSM. The participatory dynamics of consultation, when it occurred, required up to two weeks, evidencing the limits of participation. The project coordinations stated that they were not being included in the process by their young people. There is a need to work more to be able to aloud the participation, developing skills and understanding about its principles. This training must take place in an articulated way between the network, implying the important role of the five projects in jointly developing and implementing educator processes with this objective in a national dimension, but without forgetting the specificities of each young group. Finally, it is worth highlighting the great potential of the III YSM by stimulating the exercise of leading environmental youth in more than 50 young people from Brazilian coast, linked to the YSN, stimulating the learning and mobilization of young people in favor of coastal and marine conservation.Keywords: Marine Conservation, Environmental Education, Youth, Participation, Planning
Procedia PDF Downloads 1692495 Facial Recognition and Landmark Detection in Fitness Assessment and Performance Improvement
Authors: Brittany Richardson, Ying Wang
Abstract:
For physical therapy, exercise prescription, athlete training, and regular fitness training, it is crucial to perform health assessments or fitness assessments periodically. An accurate assessment is propitious for tracking recovery progress, preventing potential injury and making long-range training plans. Assessments include necessary measurements, height, weight, blood pressure, heart rate, body fat, etc. and advanced evaluation, muscle group strength, stability-mobility, and movement evaluation, etc. In the current standard assessment procedures, the accuracy of assessments, especially advanced evaluations, largely depends on the experience of physicians, coaches, and personal trainers. And it is challenging to track clients’ progress in the current assessment. Unlike the tradition assessment, in this paper, we present a deep learning based face recognition algorithm for accurate, comprehensive and trackable assessment. Based on the result from our assessment, physicians, coaches, and personal trainers are able to adjust the training targets and methods. The system categorizes the difficulty levels of the current activity for the client or user, furthermore make more comprehensive assessments based on tracking muscle group over time using a designed landmark detection method. The system also includes the function of grading and correcting the form of the clients during exercise. Experienced coaches and personal trainer can tell the clients' limit based on their facial expression and muscle group movements, even during the first several sessions. Similar to this, using a convolution neural network, the system is trained with people’s facial expression to differentiate challenge levels for clients. It uses landmark detection for subtle changes in muscle groups movements. It measures the proximal mobility of the hips and thoracic spine, the proximal stability of the scapulothoracic region and distal mobility of the glenohumeral joint, as well as distal mobility, and its effect on the kinetic chain. This system integrates data from other fitness assistant devices, including but not limited to Apple Watch, Fitbit, etc. for a improved training and testing performance. The system itself doesn’t require history data for an individual client, but the history data of a client can be used to create a more effective exercise plan. In order to validate the performance of the proposed work, an experimental design is presented. The results show that the proposed work contributes towards improving the quality of exercise plan, execution, progress tracking, and performance.Keywords: exercise prescription, facial recognition, landmark detection, fitness assessments
Procedia PDF Downloads 1352494 A Practice of Zero Trust Architecture in Financial Transactions
Authors: Liwen Wang, Yuting Chen, Tong Wu, Shaolei Hu
Abstract:
In order to enhance the security of critical financial infrastructure, this study carries out a transformation of the architecture of a financial trading terminal to a zero trust architecture (ZTA), constructs an active defense system for cybersecurity, improves the security level of trading services in the Internet environment, enhances the ability to prevent network attacks and unknown risks, and reduces the industry and security risks brought about by cybersecurity risks. This study introduces the SDP technology of ZTA, adapts and applies it to a financial trading terminal to achieve security optimization and fine-grained business grading control. The upgraded architecture of the trading terminal moves security protection forward to the user access layer, replaces VPN to optimize remote access, and significantly improves the security protection capability of Internet transactions. The study achieves 1. deep integration with the access control architecture of the transaction system; 2. no impact on the performance of terminals and gateways, and no perception of application system upgrades; 3. customized checklist and policy configuration; 4. introduction of industry-leading security technology such as single-packet authorization (SPA) and secondary authentication. This study carries out a successful application of ZTA in the field of financial trading and provides transformation ideas for other similar systems while improving the security level of financial transaction services in the Internet environment.Keywords: zero trust, trading terminal, architecture, network security, cybersecurity
Procedia PDF Downloads 1722493 A Fuzzy Multi-Criteria Model for Sustainable Development of Community-Based Tourism through the Homestay Program in Malaysia
Authors: Azizah Ismail, Zainab Khalifah, Abbas Mardani
Abstract:
Sustainable community-based tourism through homestay programme is a growing niche market that has impacted destinations in many countries including Malaysia. With demand predicted to continue increasing, the importance of the homestay product will grow in the tourism industry. This research examines the sustainability criteria for homestay programme in Malaysia covering economic, socio-cultural and environmental dimensions. This research applied a two-stage methodology for data analysis. Specifically, the researcher implements a hybrid method which combines two multi-criteria decision making approaches. In the first stage of the methodology, the Decision Making Trial and Evaluation Laboratory (DEMATEL) technique is applied. Then, Analytical Network Process (ANP) is employed for the achievement of the objective of the current research. After factors identification and problem formulation, DEMATEL is used to detect complex relationships and to build a Network Relation Map (NRM). Then ANP is used to prioritize and find the weights of the criteria and sub-criteria of the decision model. The research verifies the framework of multi-criteria for sustainable community-based tourism from the perspective of stakeholders. The result also provides a different perspective on the importance of sustainable criteria from the view of multi-stakeholders. Practically, this research gives the framework model and helps stakeholders to improve and innovate the homestay programme and also promote community-based tourism.Keywords: community-based tourism, homestay programme, sustainable tourism criteria, sustainable tourism development
Procedia PDF Downloads 1342492 Geographic Information Systems and a Breath of Opportunities for Supply Chain Management: Results from a Systematic Literature Review
Authors: Anastasia Tsakiridi
Abstract:
Geographic information systems (GIS) have been utilized in numerous spatial problems, such as site research, land suitability, and demographic analysis. Besides, GIS has been applied in scientific fields like geography, health, and economics. In business studies, GIS has been used to provide insights and spatial perspectives in demographic trends, spending indicators, and network analysis. To date, the information regarding the available usages of GIS in supply chain management (SCM) and how these analyses can benefit businesses is limited. A systematic literature review (SLR) of the last 5-year peer-reviewed academic literature was conducted, aiming to explore the existing usages of GIS in SCM. The searches were performed in 3 databases (Web of Science, ProQuest, and Business Source Premier) and reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. The analysis resulted in 79 papers. The results indicate that the existing GIS applications used in SCM were in the following domains: a) network/ transportation analysis (in 53 of the papers), b) location – allocation site search/ selection (multiple-criteria decision analysis) (in 45 papers), c) spatial analysis (demographic or physical) (in 34 papers), d) combination of GIS and supply chain/network optimization tools (in 32 papers), and e) visualization/ monitoring or building information modeling applications (in 8 papers). An additional categorization of the literature was conducted by examining the usage of GIS in the supply chain (SC) by the business sectors, as indicated by the volume of the papers. The results showed that GIS is mainly being applied in the SC of the biomass biofuel/wood industry (33 papers). Other industries that are currently utilizing GIS in their SC were the logistics industry (22 papers), the humanitarian/emergency/health care sector (10 papers), the food/agro-industry sector (5 papers), the petroleum/ coal/ shale gas sector (3 papers), the faecal sludge sector (2 papers), the recycle and product footprint industry (2 papers), and the construction sector (2 papers). The results were also presented by the geography of the included studies and the GIS software used to provide critical business insights and suggestions for future research. The results showed that research case studies of GIS in SCM were conducted in 26 countries (mainly in the USA) and that the most prominent GIS software provider was the Environmental Systems Research Institute’s ArcGIS (in 51 of the papers). This study is a systematic literature review of the usage of GIS in SCM. The results showed that the GIS capabilities could offer substantial benefits in SCM decision-making by providing key insights to cost minimization, supplier selection, facility location, SC network configuration, and asset management. However, as presented in the results, only eight industries/sectors are currently using GIS in their SCM activities. These findings may offer essential tools to SC managers who seek to optimize the SC activities and/or minimize logistic costs and to consultants and business owners that want to make strategic SC decisions. Furthermore, the findings may be of interest to researchers aiming to investigate unexplored research areas where GIS may improve SCM.Keywords: supply chain management, logistics, systematic literature review, GIS
Procedia PDF Downloads 1442491 Synthesis and Characterisation of Starch-PVP as Encapsulation Material for Drug Delivery System
Authors: Nungki Rositaningsih, Emil Budianto
Abstract:
Starch has been widely used as an encapsulation material for drug delivery system. However, starch hydrogel is very easily degraded during metabolism in human stomach. Modification of this material is needed to improve the encapsulation process in drug delivery system, especially for gastrointestinal drug. In this research, three modified starch-based hydrogels are synthesized i.e. Crosslinked starch hydrogel, Semi- and Full- Interpenetrating Polymer Network (IPN) starch hydrogel using Poly(N-Vinyl-Pyrrolidone). Non-modified starch hydrogel was also synthesized as a control. All of those samples were compared as biomaterials, floating drug delivery, and their ability in loading drug test. Biomaterial characterizations were swelling test, stereomicroscopy observation, Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FTIR). Buoyancy test and stereomicroscopy scanning were done for floating drug delivery characterizations. Lastly, amoxicillin was used as test drug, and characterized with UV-Vis spectroscopy for loading drug observation. Preliminary observation showed that Full-IPN has the most dense and elastic texture, followed by Semi-IPN, Crosslinked, and Non-modified in the last position. Semi-IPN and Crosslinked starch hydrogel have the most ideal properties and will not be degraded easily during metabolism. Therefore, both hydrogels could be considered as promising candidates for encapsulation material. Further analysis and issues will be discussed in the paper.Keywords: biomaterial, drug delivery system, interpenetrating polymer network, poly(N-vinyl-pyrrolidone), starch hydrogel
Procedia PDF Downloads 2532490 Incentive-Based Motivation to Network with Coworkers: Strengthening Professional Networks via Online Social Networks
Authors: Jung Lee
Abstract:
The last decade has witnessed more people than ever before using social media and broadening their social circles. Social media users connect not only with their friends but also with professional acquaintances, primarily coworkers, and clients; personal and professional social circles are mixed within the same social media platform. Considering the positive aspect of social media in facilitating communication and mutual understanding between individuals, we infer that social media interactions with co-workers could indeed benefit one’s professional life. However, given privacy issues, sharing all personal details with one’s co-workers is not necessarily the best practice. Should one connect with coworkers via social media? Will social media connections with coworkers eventually benefit one’s long-term career? Will the benefit differ across cultures? To answer, this study examines how social media can contribute to organizational communication by tracing the foundation of user motivation based on social capital theory, leader-member exchange (LMX) theory and expectancy theory of motivation. Although social media was originally designed for personal communication, users have shown intentions to extend social media use for professional communication, especially when the proper incentive is expected. To articulate the user motivation and the mechanism of the incentive expectation scheme, this study applies those three theories and identify six antecedents and three moderators of social media use motivation including social network flaunt, shared interest, perceived social inclusion. It also hypothesizes that the moderating effects of those constructs would significantly differ based on the relationship hierarchy among the workers. To validate, this study conducted a survey of 329 active social media users with acceptable levels of job experiences. The analysis result confirms the specific roles of the three moderators in social media adoption for organizational communication. The present study contributes to the literature by developing a theoretical modeling of ambivalent employee perceptions about establishing social media connections with co-workers. This framework shows not only how both positive and negative expectations of social media connections with co-workers are formed based on expectancy theory of motivation, but also how such expectations lead to behavioral intentions using career success model. It also enhances understanding of how various relationships among employees can be influenced through social media use and such usage can potentially affect both performance and careers. Finally, it shows how cultural factors induced by social media use can influence relations among the coworkers.Keywords: the social network, workplace, social capital, motivation
Procedia PDF Downloads 1242489 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates
Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera
Abstract:
Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR
Procedia PDF Downloads 2142488 A Study of the Planning and Designing of the Built Environment under the Green Transit-Oriented Development
Authors: Wann-Ming Wey
Abstract:
In recent years, the problems of global climate change and natural disasters have induced the concerns and attentions of environmental sustainability issues for the public. Aside from the environmental planning efforts done for human environment, Transit-Oriented Development (TOD) has been widely used as one of the future solutions for the sustainable city development. In order to be more consistent with the urban sustainable development, the development of the built environment planning based on the concept of Green TOD which combines both TOD and Green Urbanism is adapted here. The connotation of the urban development under the green TOD including the design toward environment protect, the maximum enhancement resources and the efficiency of energy use, use technology to construct green buildings and protected areas, natural ecosystems and communities linked, etc. Green TOD is not only to provide the solution to urban traffic problems, but to direct more sustainable and greener consideration for future urban development planning and design. In this study, we use both the TOD and Green Urbanism concepts to proceed to the study of the built environment planning and design. Fuzzy Delphi Technique (FDT) is utilized to screen suitable criteria of the green TOD. Furthermore, Fuzzy Analytic Network Process (FANP) and Quality Function Deployment (QFD) were then developed to evaluate the criteria and prioritize the alternatives. The study results can be regarded as the future guidelines of the built environment planning and designing under green TOD development in Taiwan.Keywords: green TOD, built environment, fuzzy delphi technique, quality function deployment, fuzzy analytic network process
Procedia PDF Downloads 3852487 Optimal Wind Based DG Placement Considering Monthly Changes Modeling in Wind Speed
Authors: Belal Mohamadi Kalesar, Raouf Hasanpour
Abstract:
Proper placement of Distributed Generation (DG) units such as wind turbine generators in distribution system are still very challenging issue for obtaining their maximum potential benefits because inappropriate placement may increase the system losses. This paper proposes Particle Swarm Optimization (PSO) technique for optimal placement of wind based DG (WDG) in the primary distribution system to reduce energy losses and voltage profile improvement with four different wind levels modeling in year duration. Also, wind turbine is modeled as a DFIG that will be operated at unity power factor and only one wind turbine tower will be considered to install at each bus of network. Finally, proposed method will be implemented on widely used 69 bus power distribution system in MATLAB software environment under four scenario (without, one, two and three WDG units) and for capability test of implemented program it is supposed that all buses of standard system can be candidate for WDG installing (large search space), though this program can consider predetermined number of candidate location in WDG placement to model financial limitation of project. Obtained results illustrate that wind speed increasing in some months will increase output power generated but this can increase / decrease power loss in some wind level, also results show that it is required about 3MW WDG capacity to install in different buses but when this is distributed in overall network (more number of WDG) it can cause better solution from point of view of power loss and voltage profile.Keywords: wind turbine, DG placement, wind levels effect, PSO algorithm
Procedia PDF Downloads 4502486 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning
Authors: Saahith M. S., Sivakami R.
Abstract:
In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis
Procedia PDF Downloads 402485 Riverine Urban Heritage: A Basis for Green Infrastructure
Authors: Ioanna H. Lioliou, Despoina D. Zavraka
Abstract:
The radical reformation that Greek urban space, has undergone over the last century, due to the socio-historical developments, technological development and political–geographic factors, has left its imprint on the urban landscape. While the big cities struggle to regain urban landscape balance, small towns are considered to offer high quality lifescapes, ensuring sustainable development potential. However, their unplanned urbanization process led to the loss of significant areas of nature, lack of essential infrastructure, chaotic built environment, incompatible land uses and urban cohesiveness. Natural environment reference points, such as springs, streams, rivers, forests, suburban greenbelts, and etc.; seems to be detached from urban space, while the public, open and green spaces, unequally distributed in the built environment, they are no longer able to offer a complete experience of nature in the city. This study focuses on Greek mainland, a small town Elassona, and aims to restore spatial coherence between the city’s homonymous river and its urban space surroundings. The existence of a linear aquatic ecosystem, is considered a precious greenway, also referred as blueway, able to initiate natural penetrations and ecosystems empowering. The integration of disconnected natural ecosystems forms the basis of a strategic intervention scheme, where the river becomes the urban integration tool / feature, constituting the main urban corridor and an indispensible part of a wider green network that connects open and green spaces, ensuring the function of all the established networks (transportation, commercial, social) of the town. The proposed intervention, introduces a green network highlighting the old stone bridge at the ‘entrance’ of the river in the town and expanding throughout the town with strategic uses and activities, providing accessibility for all the users. The methodology used, is based on the collection of design tools used in related urban river-design interventions around the world. The reinstallation/reactivation of the balance between natural and urban landscape, besides the environmental benefits, contributes decisively to the illustration/projection of urban green identity and re-enhancement of the quality of lifescape qualities and social interaction.Keywords: green network, rehabilitation scheme, urban landscape, urban streams
Procedia PDF Downloads 2812484 Bidirectional Encoder Representations from Transformers Sentiment Analysis Applied to Three Presidential Pre-Candidates in Costa Rica
Authors: Félix David Suárez Bonilla
Abstract:
A sentiment analysis service to detect polarity (positive, neural, and negative), based on transfer learning, was built using a Spanish version of BERT and applied to tweets written in Spanish. The dataset that was used consisted of 11975 reviews, which were extracted from Google Play using the google-play-scrapper package. The BETO trained model used: the AdamW optimizer, a batch size of 16, a learning rate of 2x10⁻⁵ and 10 epochs. The system was tested using tweets of three presidential pre-candidates from Costa Rica. The system was finally validated using human labeled examples, achieving an accuracy of 83.3%.Keywords: NLP, transfer learning, BERT, sentiment analysis, social media, opinion mining
Procedia PDF Downloads 1742483 Exploring Time-Series Phosphoproteomic Datasets in the Context of Network Models
Authors: Sandeep Kaur, Jenny Vuong, Marcel Julliard, Sean O'Donoghue
Abstract:
Time-series data are useful for modelling as they can enable model-evaluation. However, when reconstructing models from phosphoproteomic data, often non-exact methods are utilised, as the knowledge regarding the network structure, such as, which kinases and phosphatases lead to the observed phosphorylation state, is incomplete. Thus, such reactions are often hypothesised, which gives rise to uncertainty. Here, we propose a framework, implemented via a web-based tool (as an extension to Minardo), which given time-series phosphoproteomic datasets, can generate κ models. The incompleteness and uncertainty in the generated model and reactions are clearly presented to the user via the visual method. Furthermore, we demonstrate, via a toy EGF signalling model, the use of algorithmic verification to verify κ models. Manually formulated requirements were evaluated with regards to the model, leading to the highlighting of the nodes causing unsatisfiability (i.e. error causing nodes). We aim to integrate such methods into our web-based tool and demonstrate how the identified erroneous nodes can be presented to the user via the visual method. Thus, in this research we present a framework, to enable a user to explore phosphorylation proteomic time-series data in the context of models. The observer can visualise which reactions in the model are highly uncertain, and which nodes cause incorrect simulation outputs. A tool such as this enables an end-user to determine the empirical analysis to perform, to reduce uncertainty in the presented model - thus enabling a better understanding of the underlying system.Keywords: κ-models, model verification, time-series phosphoproteomic datasets, uncertainty and error visualisation
Procedia PDF Downloads 2592482 Assessing the Environmental Efficiency of China’s Power System: A Spatial Network Data Envelopment Analysis Approach
Authors: Jianli Jiang, Bai-Chen Xie
Abstract:
The climate issue has aroused global concern. Achieving sustainable development is a good path for countries to mitigate environmental and climatic pressures, although there are many difficulties. The first step towards sustainable development is to evaluate the environmental efficiency of the energy industry with proper methods. The power sector is a major source of CO2, SO2, and NOx emissions. Evaluating the environmental efficiency (EE) of power systems is the premise to alleviate the terrible situation of energy and the environment. Data Envelopment Analysis (DEA) has been widely used in efficiency studies. However, measuring the efficiency of a system (be it a nation, region, sector, or business) is a challenging task. The classic DEA takes the decision-making units (DMUs) as independent, which neglects the interaction between DMUs. While ignoring these inter-regional links may result in a systematic bias in the efficiency analysis; for instance, the renewable power generated in a certain region may benefit the adjacent regions while the SO2 and CO2 emissions act oppositely. This study proposes a spatial network DEA (SNDEA) with a slack measure that can capture the spatial spillover effects of inputs/outputs among DMUs to measure efficiency. This approach is used to study the EE of China's power system, which consists of generation, transmission, and distribution departments, using a panel dataset from 2014 to 2020. In the empirical example, the energy and patent inputs, the undesirable CO2 output, and the renewable energy (RE) power variables are tested for a significant spatial spillover effect. Compared with the classic network DEA, the SNDEA result shows an obvious difference tested by the global Moran' I index. From a dynamic perspective, the EE of the power system experiences a visible surge from 2015, then a sharp downtrend from 2019, which keeps the same trend with the power transmission department. This phenomenon benefits from the market-oriented reform in the Chinese power grid enacted in 2015. The rapid decline in the environmental efficiency of the transmission department in 2020 was mainly due to the Covid-19 epidemic, which hinders economic development seriously. While the EE of the power generation department witnesses a declining trend overall, this is reasonable, taking the RE power into consideration. The installed capacity of RE power in 2020 is 4.40 times that in 2014, while the power generation is 3.97 times; in other words, the power generation per installed capacity shrank. In addition, the consumption cost of renewable power increases rapidly with the increase of RE power generation. These two aspects make the EE of the power generation department show a declining trend. Incorporation of the interactions among inputs/outputs into the DEA model, this paper proposes an efficiency evaluation method on the basis of the DEA framework, which sheds some light on efficiency evaluation in regional studies. Furthermore, the SNDEA model and the spatial DEA concept can be extended to other fields, such as industry, country, and so on.Keywords: spatial network DEA, environmental efficiency, sustainable development, power system
Procedia PDF Downloads 1132481 Load Forecasting in Short-Term Including Meteorological Variables for Balearic Islands Paper
Authors: Carolina Senabre, Sergio Valero, Miguel Lopez, Antonio Gabaldon
Abstract:
This paper presents a comprehensive survey of the short-term load forecasting (STLF). Since the behavior of consumers and producers continue changing as new technologies, it is an ongoing process, and moreover, new policies become available. The results of a research study for the Spanish Transport System Operator (REE) is presented in this paper. It is presented the improvement of the forecasting accuracy in the Balearic Islands considering the introduction of meteorological variables, such as temperature to reduce forecasting error. Variables analyzed for the forecasting in terms of overall accuracy are cloudiness, solar radiation, and wind velocity. It has also been analyzed the type of days to be considered in the research.Keywords: short-term load forecasting, power demand, neural networks, load forecasting
Procedia PDF Downloads 1912480 Measurement of the Neutron Spectrum of 241AmLi and 241AmF Sources Using the Bonner Sphere Spectrometers
Authors: Victor Rocha Carvalho
Abstract:
The Bonner Sphere Spectrometry was used to obtain the average energy, the fluence rate, and radioprotection quantities such as the personal and ambient dose equivalent of the ²⁴¹AmLi and ²⁴¹AmF isotopic neutron sources used in the Neutron Metrology Laboratory - LN. The counts of the sources were performed with six different spherical moderators around the detector. Through this, the neutron spectrum was obtained by means of the software named NeuraLN, developed by the LN, that uses the neural networks technique. The 241AmLi achieved a result close to the literature, and 241AmF, which contains few published references, acquired a result with a slight variation from the literature. Therefore, besides fulfilling its objective, the work raises questions about a possible standard of the ²⁴¹AmLi and about the lack of work with the ²⁴¹AmF.Keywords: nuclear physics, neutron metrology, neutron spectrometry, bonner sphere spectrometers
Procedia PDF Downloads 1032479 Estimation of Sediment Transport into a Reservoir Dam
Authors: Kiyoumars Roushangar, Saeid Sadaghian
Abstract:
Although accurate sediment load prediction is very important in planning, designing, operating and maintenance of water resources structures, the transport mechanism is complex, and the deterministic transport models are based on simplifying assumptions often lead to large prediction errors. In this research, firstly, two intelligent ANN methods, Radial Basis and General Regression Neural Networks, are adopted to model of total sediment load transport into Madani Dam reservoir (north of Iran) using the measured data and then applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang, and Toffaleti for predicting of sediment load discharge are evaluated. Based on comparison of the results, it is found that the GRNN model gives better estimates than the sediment rating curve and mentioned classic methods.Keywords: sediment transport, dam reservoir, RBF, GRNN, prediction
Procedia PDF Downloads 4992478 The Morphogenesis of an Informal Settlement: An Examination of Street Networks through the Informal Development Stages Framework
Authors: Judith Margaret Tymon
Abstract:
As cities struggle to incorporate informal settlements into the fabric of urban areas, the focus has often been on the provision of housing. This study explores the underlying structure of street networks, with the goal of understanding the morphogenesis of informal settlements through the lens of the access network. As the stages of development progress from infill to consolidation and eventually, to a planned in-situ settlement, the access networks retain the form of the core segments; however, a majority of street patterns are adapted to a grid design to support infrastructure in the final upgraded phase. A case study is presented to examine the street network in the informal settlement of Gobabis Namibia as it progresses from its initial stages to a planned, in-situ, and permanently upgraded development. The Informal Development Stages framework of foundation, infill, and consolidation, as developed by Dr. Jota Samper, is utilized to examine the evolution of street networks. Data is gathered from historical Google Earth satellite images for the time period between 2003 and 2022. The results demonstrate that during the foundation through infill stages, incremental changes follow similar patterns, with pathways extended, lengthened, and densified as housing is created and the settlement grows. In the final stage of consolidation, the resulting street layout is transformed to support the installation of infrastructure; however, some elements of the original street patterns remain. The core pathways remain intact to accommodate the installation of infrastructure and the creation of housing plots, defining the shape of the settlement and providing the basis of the urban form. The adaptations, growth, and consolidation of the street network are critical to the eventual formation of the spatial layout of the settlement. This study will include a comparative analysis of findings with those of recent research performed by Kamalipour, Dovey, and others regarding incremental urbanism within informal settlements. Further comparisons will also include studies of street networks of well-established urban centers that have shown links between the morphogenesis of access networks and the eventual spatial layout of the city. The findings of the study can be used to guide and inform strategies for in-situ upgrading and can contribute to the sustainable development of informal settlements.Keywords: Gobabis Namibia, incremental urbanism, informal development stages, informal settlements, street networks
Procedia PDF Downloads 662477 How Acupuncture Improve Migraine: A Literature Review
Authors: Hsiang-Chun Lai, Hsien-Yin Liao, Yi-Wen Lin
Abstract:
Migraine is a primary headache disorder which presented as recurrent and moderate to severe headaches and affects nearly fifteen percent of people’s daily life. In East Asia, acupuncture is a common treatment for migraine prevention. Acupuncture can modulate migraine through both peripheral and central mechanism and decrease the allodynia process. Molecular pathway suggests that acupuncture relief migraine by regulating neurotransmitters/neuromodulators. This process was also proven by neural imaging. Acupuncture decrease the headache frequency and intensity compared to routine care. We also review the most common chosen acupoints to treat migraine and its treatment protocol. As a result, we suggested that acupuncture can serve as an option to migraine treatment and prevention. However, more studies are needed to establish the mechanism and therapeutic roles of acupuncture in treating migraine.Keywords: acupuncture, allodynia, headache, migraine
Procedia PDF Downloads 2672476 A Collective Intelligence Approach to Safe Artificial General Intelligence
Authors: Craig A. Kaplan
Abstract:
If AGI proves to be a “winner-take-all” scenario where the first company or country to develop AGI dominates, then the first AGI must also be the safest. The safest, and fastest, path to Artificial General Intelligence (AGI) may be to harness the collective intelligence of multiple AI and human agents in an AGI network. This approach has roots in seminal ideas from four of the scientists who founded the field of Artificial Intelligence: Allen Newell, Marvin Minsky, Claude Shannon, and Herbert Simon. Extrapolating key insights from these founders of AI, and combining them with the work of modern researchers, results in a fast and safe path to AGI. The seminal ideas discussed are: 1) Society of Mind (Minsky), 2) Information Theory (Shannon), 3) Problem Solving Theory (Newell & Simon), and 4) Bounded Rationality (Simon). Society of Mind describes a collective intelligence approach that can be used with AI and human agents to create an AGI network. Information theory helps address the critical issue of how an AGI system will increase its intelligence over time. Problem Solving Theory provides a universal framework that AI and human agents can use to communicate efficiently, effectively, and safely. Bounded Rationality helps us better understand not only the capabilities of SuperIntelligent AGI but also how humans can remain relevant in a world where the intelligence of AGI vastly exceeds that of its human creators. Each key idea can be combined with recent work in the fields of Artificial Intelligence, Machine Learning, and Large Language Models to accelerate the development of a working, safe, AGI system.Keywords: AI Agents, Collective Intelligence, Minsky, Newell, Shannon, Simon, AGI, AGI Safety
Procedia PDF Downloads 93