Search results for: weather detection
1262 Insider Fraud and its Risks to FinTechs
Authors: Claire Maillet
Abstract:
Insider fraud, including its various forms such as employee fraud or internal fraud, is a major financial crime threat whereby an employee defrauds (or attempts to defraud) their current, prospective or past employer. ‘Employee’ covers anyone employed by the company, including contractors, agency workers, directors and part time staff. Insider fraud is even more of a concern given the impacts of the Coronavirus pandemic and the cost-of-living crisis, which have generated multiple opportunities to commit insider fraud. Insider fraud is something that is not necessarily thought of as a significant financial crime; Without the face-to-face, ‘over the shoulder’ capabilities of staff being able to keep an eye on their employees, there is a heightened reliance on trust and transparency. With this, naturally, comes an increased risk of insider fraud. Given that the number of FinTechs is on the rise and there is a significant lack of empirically based solutions for reducing insider fraud, these are gaps in the research space that this thesis aims to fill. Finally, Kassem (2022) notes that “academic research plays a crucial role in raising awareness about fraud and researching effective methods for countering it”. Thus, this thesis may be used as an opportune tool to provide an extensive list of controls spanning detection, deterrence and prevention, that are recommended to be implemented to help combat the insider threat.Keywords: insider fraud, internal fraud, pandemic, Covid-19
Procedia PDF Downloads 221261 Effect of Acoustical Performance Detection and Evaluation in Music Practice Rooms on Teaching
Authors: Hsu-Hui Cheng, Peng-Chian Chen, Shu-Yuan Chang, Jie-Ying Zhang
Abstract:
Activities in the music practice rooms range from playing, listening, rehearsing to music performing. The good room acoustics in a music practice room enables a music teacher to teach more effectively subtle concepts such as intonation, articulation, balance, dynamics and tone production. A poor acoustical environment would deeply affect the development of basic musical skills of music students. Practicing in the music practice room is an essential daily activity for music students; consequently, music practice rooms are very important facilities in a music school or department. The purpose of this survey is to measure and analyze the acoustic condition of piano practice rooms at the department of music in Zhaoqing University and accordingly apply a more effective teaching method to music students. The volume of the music practice room is approximately 25 m³, and it has existing curtains and some wood hole sound-absorbing panels. When all small music practice rooms are in constant use for teaching, it was found that the values of the background noise at 45, 46, 42, 46, 45 dB(A) in the small music practice room ( the doors and windows were close), respectively. The noise levels in the small music practice room to higher than standard levels (35dB(A)).Keywords: acoustical performance, music practice room, noise level, piano room
Procedia PDF Downloads 2271260 Synthesis and Characterization of Mass Catalysts Based on Cobalt and Molybdenum
Authors: Nassira Ouslimani
Abstract:
The electronic structure of transition metals gives them many catalytic possibilities in many types of reactions, particularly cobalt and molybdenum. It is in this context that this study is part of the synthesis and characterization of mass catalysts based on cobalt and molybdenum Co1₋xMoO4 (X=0 and X=0.5 and X=1). The two catalysts were prepared by Co-precipitation using ammonia as a precipitating agent and one by precipitation. The samples obtained were analyzed by numerous physic-chemical analysis techniques: ATG-ATD-DSC, DRX-HT, SEM-EDX, and the elemental composition of the catalysts was verified by SAA as well as the FTIR. The ATG-DSC shows a mass loss for all the catalysts of approximately 8%, corresponding to the loss of water and the decomposition of nitrates. The DRX-HT analysis allows the detection of the two CoMoO4 phases with diffraction peaks which increase with the increase in temperature. The results of the FTIR analysis made it possible to highlight the vibration modes of the bonds of the structure of the prepared catalysts. The SEM images of the solids show very different textures with almost homogeneous surfaces with a more regular particle size distribution and a more defined grain shape. The EDX analysis showed the presence of the elements Co, Mo, and O in proportions very close to the nominal proportions. Finally, the actual composition, evaluated by SAA, is close to the theoretical composition fixed during the preparation. This testifies to the good conditions for the preparation of the catalysts by the co-precipitation method.Keywords: catalytic, molybdenum, coprecipitation, cobalt, ammonia
Procedia PDF Downloads 901259 Thermal Comfort and Outdoor Urban Spaces in the Hot Dry City of Damascus, Syria
Authors: Lujain Khraiba
Abstract:
Recently, there is a broad recognition that micro-climate conditions contribute to the quality of life in urban spaces outdoors, both from economical and social viewpoints. The consideration of urban micro-climate and outdoor thermal comfort in urban design and planning processes has become one of the important aspects in current related studies. However, these aspects are so far not considered in urban planning regulations in practice and these regulations are often poorly adapted to the local climate and culture. Therefore, there is a huge need to adapt the existing planning regulations to the local climate especially in cities that have extremely hot weather conditions. The overall aim of this study is to point out the complexity of the relationship between urban planning regulations, urban design, micro-climate and outdoor thermal comfort in the hot dry city of Damascus, Syria. The main aim is to investigate the temporal and spatial effects of micro-climate on urban surface temperatures and outdoor thermal comfort in different urban design patterns as a result of urban planning regulations during the extreme summer conditions. In addition, studying different alternatives of how to mitigate the surface temperature and thermal stress is also a part of the aim. The novelty of this study is to highlight the combined effect of urban surface materials and vegetation to develop the thermal environment. This study is based on micro-climate simulations using ENVI-met 3.1. The input data is calibrated according to a micro-climate fieldwork that has been conducted in different urban zones in Damascus. Different urban forms and geometries including the old and the modern parts of Damascus are thermally evaluated. The Physiological Equivalent Temperature (PET) index is used as an indicator for outdoor thermal comfort analysis. The study highlights the shortcomings of existing planning regulations in terms of solar protection especially at street levels. The results show that the surface temperatures in Old Damascus are lower than in the modern part. This is basically due to the difference in urban geometries that prevent the solar radiation in Old Damascus to reach the ground and heat up the surface whereas in modern Damascus, the streets are prescribed as wide spaces with high values of Sky View Factor (SVF is about 0.7). Moreover, the canyons in the old part are paved in cobblestones whereas the asphalt is the main material used in the streets of modern Damascus. Furthermore, Old Damascus is less stressful than the modern part (the difference in PET index is about 10 °C). The thermal situation is enhanced when different vegetation are considered (an improvement of 13 °C in the surface temperature is recorded in modern Damascus). The study recommends considering a detailed landscape code at street levels to be integrated in urban regulations of Damascus in order to achieve a better urban development in harmony with micro-climate and comfort. Such strategy will be very useful to decrease the urban warming in the city.Keywords: micro-climate, outdoor thermal comfort, urban planning regulations, urban spaces
Procedia PDF Downloads 4851258 Pitch Processing in Autistic Mandarin-Speaking Children with Hypersensitivityand Hypo-Sensitivity: An Event-Related Potential Study
Authors: Kaiying Lai, Suiping Wang, Luodi Yu, Yang Zhang, Pengmin Qin
Abstract:
Abnormalities in auditory processing are one of the most commonly reported sensory processing impairments in children with Autism Spectrum Disorder (ASD). Tonal language speaker with autism has enhanced neural sensitivity to pitch changes in pure tone. However, not all children with ASD exhibit the same performance in pitch processing due to different auditory sensitivity. The current study aimed to examine auditory change detection in ASD with different auditory sensitivity. K-means clustering method was adopted to classify ASD participants into two groups according to the auditory processing scores of the Sensory Profile, 11 autism with hypersensitivity (mean age = 11.36 ; SD = 1.46) and 18 with hypo-sensitivity (mean age = 10.64; SD = 1.89) participated in a passive auditory oddball paradigm designed for eliciting mismatch negativity (MMN) under the pure tone condition. Results revealed that compared to hypersensitive autism, the children with hypo-sensitivity showed smaller MMN responses to pure tone stimuli. These results suggest that ASD with auditory hypersensitivity and hypo-sensitivity performed differently in processing pure tone, so neural responses to pure tone hold promise for predicting the auditory sensitivity of ASD and targeted treatment in children with ASD.Keywords: ASD, sensory profile, pitch processing, mismatch negativity, MMN
Procedia PDF Downloads 3911257 A Different Approach to Smart Phone-Based Wheat Disease Detection System Using Deep Learning for Ethiopia
Authors: Nathenal Thomas Lambamo
Abstract:
Based on the fact that more than 85% of the labor force and 90% of the export earnings are taken by agriculture in Ethiopia and it can be said that it is the backbone of the overall socio-economic activities in the country. Among the cereal crops that the agriculture sector provides for the country, wheat is the third-ranking one preceding teff and maize. In the present day, wheat is in higher demand related to the expansion of industries that use them as the main ingredient for their products. The local supply of wheat for these companies covers only 35 to 40% and the rest 60 to 65% percent is imported on behalf of potential customers that exhaust the country’s foreign currency reserves. The above facts show that the need for this crop in the country is too high and in reverse, the productivity of the crop is very less because of these reasons. Wheat disease is the most devastating disease that contributes a lot to this unbalance in the demand and supply status of the crop. It reduces both the yield and quality of the crop by 27% on average and up to 37% when it is severe. This study aims to detect the most frequent and degrading wheat diseases, Septoria and Leaf rust, using the most efficiently used subset of machine learning technology, deep learning. As a state of the art, a deep learning class classification technique called Convolutional Neural Network (CNN) has been used to detect diseases and has an accuracy of 99.01% is achieved.Keywords: septoria, leaf rust, deep learning, CNN
Procedia PDF Downloads 761256 Analysis of Microbiological Quality and Detection of Antibiotic Residue in Bovine Raw Milk Produced in Blida State, Algeria
Authors: M. N. Boukhatem, M. A. Ferhat, K. Mansour
Abstract:
Bovine raw milk represents a favorable environment for the growth of several food-spoilage strains and some pathogens. It must meet stringent standards to ensure the highest microbiological and toxicological qualities.In order to assess the microbiological risks associated with the consumption of this food, we conducted this study to determine the microbiological quality of bovine raw milk (54 samples) commercialized at the state of Blida (Algeria). The samples analyzed were unsatisfactory in terms of total flora where 61.11% of samples were considered as non acceptable in terms of quality standards, fecal coliforms (40.74%), fecal streptococci (55.55%) and staphylococci (74.07%). Salmonella and Clostridium strains were not detected in all the samples. Furthermore, antibiotic residues were found in 26% of analysed samples. These results reflect non-compliance with the rules of good hygiene practices at milking, storage, transportatio, and sale of milk. Bovine raw milk consumed presents a serious health risk to the population of the study areas.The livestock coaching actors and dissemination of good hygiene practices throughout the production chain are needed to improve the quality of local milk.Keywords: bovine raw milk, microbiological quality, fecal coliforms, antibiotic residue, Blida state
Procedia PDF Downloads 2381255 CLOUD Japan: Prospective Multi-Hospital Study to Determine the Population-Based Incidence of Hospitalized Clostridium difficile Infections
Authors: Kazuhiro Tateda, Elisa Gonzalez, Shuhei Ito, Kirstin Heinrich, Kevin Sweetland, Pingping Zhang, Catia Ferreira, Michael Pride, Jennifer Moisi, Sharon Gray, Bennett Lee, Fred Angulo
Abstract:
Clostridium difficile (C. difficile) is the most common cause of antibiotic-associated diarrhea and infectious diarrhea in healthcare settings. Japan has an aging population; the elderly are at increased risk of hospitalization, antibiotic use, and C. difficile infection (CDI). Little is known about the population-based incidence and disease burden of CDI in Japan although limited hospital-based studies have reported a lower incidence than the United States. To understand CDI disease burden in Japan, CLOUD (Clostridium difficile Infection Burden of Disease in Adults in Japan) was developed. CLOUD will derive population-based incidence estimates of the number of CDI cases per 100,000 population per year in Ota-ku (population 723,341), one of the districts in Tokyo, Japan. CLOUD will include approximately 14 of the 28 Ota-ku hospitals including Toho University Hospital, which is a 1,000 bed tertiary care teaching hospital. During the 12-month patient enrollment period, which is scheduled to begin in November 2018, Ota-ku residents > 50 years of age who are hospitalized at a participating hospital with diarrhea ( > 3 unformed stools (Bristol Stool Chart 5-7) in 24 hours) will be actively ascertained, consented, and enrolled by study surveillance staff. A stool specimen will be collected from enrolled patients and tested at a local reference laboratory (LSI Medience, Tokyo) using QUIK CHEK COMPLETE® (Abbott Laboratories). which simultaneously tests specimens for the presence of glutamate dehydrogenase (GDH) and C. difficile toxins A and B. A frozen stool specimen will also be sent to the Pfizer Laboratory (Pearl River, United States) for analysis using a two-step diagnostic testing algorithm that is based on detection of C. difficile strains/spores harboring toxin B gene by PCR followed by detection of free toxins (A and B) using a proprietary cell cytotoxicity neutralization assay (CCNA) developed by Pfizer. Positive specimens will be anaerobically cultured, and C. difficile isolates will be characterized by ribotyping and whole genomic sequencing. CDI patients enrolled in CLOUD will be contacted weekly for 90 days following diarrhea onset to describe clinical outcomes including recurrence, reinfection, and mortality, and patient reported economic, clinical and humanistic outcomes (e.g., health-related quality of life, worsening of comorbidities, and patient and caregiver work absenteeism). Studies will also be undertaken to fully characterize the catchment area to enable population-based estimates. The 12-month active ascertainment of CDI cases among hospitalized Ota-ku residents with diarrhea in CLOUD, and the characterization of the Ota-ku catchment area, including estimation of the proportion of all hospitalizations of Ota-ku residents that occur in the CLOUD-participating hospitals, will yield CDI population-based incidence estimates, which can be stratified by age groups, risk groups, and source (hospital-acquired or community-acquired). These incidence estimates will be extrapolated, following age standardization using national census data, to yield CDI disease burden estimates for Japan. CLOUD also serves as a model for studies in other countries that can use the CLOUD protocol to estimate CDI disease burden.Keywords: Clostridium difficile, disease burden, epidemiology, study protocol
Procedia PDF Downloads 2611254 The Role of Okra (Abelmoschus esculentus Linn.) on Lipopolysaccharide-Induced Reactive Oxygen Species and Inflammatory Mediator in BV2 Microglial Cells
Authors: Nootchanat Mairuae, Walaiporn Tongjaroenbuangam, Chalisa Louicharoen Cheepsunthorn, Poonlarp Cheepsunthorn
Abstract:
The aim of this study was to investigate the anti-oxidative effect, the anti-inflammatory effects, and the molecular mechanisms of okra (Abelmoschus esculentus Linn.) on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. The BV2 cells were treated with LPS in the presence or absence of okra. Reactive oxygen species (ROS) and nitric oxide (NO) production were measured using the ROS detection reagent DCF-DA and the Griess reaction, respectively. The phosphorylation levels of nuclear factor-kappa B (NF-kB) p65 was detected by Western blot assay. Treatment of BV2 microglia cells with okra was found to significantly suppress the LPS-induced inflammatory mediator NO as well as ROS compared to untreated cells. The levels of LPS-induced NF-kB p65 phosphorylation were significantly decreased following okra treatment too. These results show that okra exerts anti-oxidative and anti-inflammatory effects in LPS-stimulated BV2 microglial cells by suppressing the NF-κB pathway. This suggests okra might be a valuable agent for treatment of anti-neuroinflammatory diseases mediated by microglial cells.Keywords: Abelmoschus esculentus Linn, microglia, neuroinflammation, reactive oxygen spicy
Procedia PDF Downloads 2871253 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques
Authors: Joseph Wolff, Jeffrey Eilbott
Abstract:
Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences
Procedia PDF Downloads 2091252 Use of Satellite Altimetry and Moderate Resolution Imaging Technology of Flood Extent to Support Seasonal Outlooks of Nuisance Flood Risk along United States Coastlines and Managed Areas
Authors: Varis Ransibrahmanakul, Doug Pirhalla, Scott Sheridan, Cameron Lee
Abstract:
U.S. coastal areas and ecosystems are facing multiple sea level rise threats and effects: heavy rain events, cyclones, and changing wind and weather patterns all influence coastal flooding, sedimentation, and erosion along critical barrier islands and can strongly impact habitat resiliency and water quality in protected habitats. These impacts are increasing over time and have accelerated the need for new tracking techniques, models and tools of flood risk to support enhanced preparedness for coastal management and mitigation. To address this issue, NOAA National Ocean Service (NOS) evaluated new metrics from satellite altimetry AVISO/Copernicus and MODIS IR flood extents to isolate nodes atmospheric variability indicative of elevated sea level and nuisance flood events. Using de-trended time series of cross-shelf sea surface heights (SSH), we identified specific Self Organizing Maps (SOM) nodes and transitions having a strongest regional association with oceanic spatial patterns (e.g., heightened downwelling favorable wind-stress and enhanced southward coastal transport) indicative of elevated coastal sea levels. Results show the impacts of the inverted barometer effect as well as the effects of surface wind forcing; Ekman-induced transport along broad expanses of the U.S. eastern coastline. Higher sea levels and corresponding localized flooding are associated with either pattern indicative of enhanced on-shore flow, deepening cyclones, or local- scale winds, generally coupled with an increased local to regional precipitation. These findings will support an integration of satellite products and will inform seasonal outlook model development supported through NOAAs Climate Program Office and NOS office of Center for Operational Oceanographic Products and Services (CO-OPS). Overall results will prioritize ecological areas and coastal lab facilities at risk based on numbers of nuisance flood projected and inform coastal management of flood risk around low lying areas subjected to bank erosion.Keywords: AVISO satellite altimetry SSHA, MODIS IR flood map, nuisance flood, remote sensing of flood
Procedia PDF Downloads 1441251 Nafion Multiwalled Carbon Nano Tubes Composite Film Modified Glassy Carbon Sensor for the Voltammetric Estimation of Dianabol Steroid in Pharmaceuticals and Biological Fluids
Authors: Nouf M. Al-Ourfi, A. S. Bashammakh, M. S. El-Shahawi
Abstract:
The redox behavior of dianabol steroid (DS) on Nafion Multiwalled Carbon nano -tubes (MWCNT) composite film modified glassy carbon electrode (GCE) in various buffer solutions was studied using cyclic voltammetry (CV) and differential pulse- adsorptive cathodic stripping voltammetry (DP-CSV) and successfully compared with the results at non modified bare GCE. The Nafion-MWCNT composite film modified GCE exhibited the best electrochemical response among the two electrodes for the electro reduction of DS that was inferred from the EIS, CV and DP-CSV. The modified sensor showed a sensitive, stable and linear response in the concentration range of 5 – 100 nM with a detection limit of 0.08 nM. The selectivity of the proposed sensor was assessed in the presence of high concentration of major interfering species. The analytical application of the sensor for the quantification of DS in pharmaceutical formulations and biological fluids (urine) was determined and the results demonstrated acceptable recovery and RSD of 5%. Statistical treatment of the results of the proposed method revealed no significant differences in the accuracy and precision. The relative standard deviations for five measurements of 50 and 300 ng mL−1 of DS were 3.9 % and 1.0 %, respectively.Keywords: dianabol steroid, determination, modified GCE, urine
Procedia PDF Downloads 2841250 Evaluating Portfolio Performance by Highlighting Network Property and the Sharpe Ratio in the Stock Market
Authors: Zahra Hatami, Hesham Ali, David Volkman
Abstract:
Selecting a portfolio for investing is a crucial decision for individuals and legal entities. In the last two decades, with economic globalization, a stream of financial innovations has rushed to the aid of financial institutions. The importance of selecting stocks for the portfolio is always a challenging task for investors. This study aims to create a financial network to identify optimal portfolios using network centralities metrics. This research presents a community detection technique of superior stocks that can be described as an optimal stock portfolio to be used by investors. By using the advantages of a network and its property in extracted communities, a group of stocks was selected for each of the various time periods. The performance of the optimal portfolios compared to the famous index. Their Sharpe ratio was calculated in a timely manner to evaluate their profit for making decisions. The analysis shows that the selected potential portfolio from stocks with low centrality measurement can outperform the market; however, they have a lower Sharpe ratio than stocks with high centrality scores. In other words, stocks with low centralities could outperform the S&P500 yet have a lower Sharpe ratio than high central stocks.Keywords: portfolio management performance, network analysis, centrality measurements, Sharpe ratio
Procedia PDF Downloads 1541249 A Study on the False Alarm Rates of MEWMA and MCUSUM Control Charts When the Parameters Are Estimated
Authors: Umar Farouk Abbas, Danjuma Mustapha, Hamisu Idi
Abstract:
It is now a known fact that quality is an important issue in manufacturing industries. A control chart is an integrated and powerful tool in statistical process control (SPC). The mean µ and standard deviation σ parameters are estimated. In general, the multivariate exponentially weighted moving average (MEWMA) and multivariate cumulative sum (MCUSUM) are used in the detection of small shifts in joint monitoring of several correlated variables; the charts used information from past data which makes them sensitive to small shifts. The aim of the paper is to compare the performance of Shewhart xbar, MEWMA, and MCUSUM control charts in terms of their false rates when parameters are estimated with autocorrelation. A simulation was conducted in R software to generate the average run length (ARL) values of each of the charts. After the analysis, the results show that a comparison of the false alarm rates of the charts shows that MEWMA chart has lower false alarm rates than the MCUSUM chart at various levels of parameter estimated to the number of ARL0 (in control) values. Also noticed was that the sample size has an advert effect on the false alarm of the control charts.Keywords: average run length, MCUSUM chart, MEWMA chart, false alarm rate, parameter estimation, simulation
Procedia PDF Downloads 2221248 Tuberculosis in Patients with HIV-Infection in Russia: Cohort Study over the Period of 2015-2016 Years
Authors: Marina Nosik, Irina Rymanova, Konstantin Ryzhov, Joan Yarovaya, Alexander Sobkin
Abstract:
Tuberculosis (TB) associated with HIV is one of the top causes of death worldwide. However, early detection and treatment of TB in HIV-infected individuals significantly reduces the risk of developing severe forms of TB and mortality. The goal of the study was to analyze the peculiarities of TB associated with HIV infection. Over the period of 2015-2016 a retrospective cohort study was conducted among 377 patients with TB/HIV co-infection who attended the Moscow Tuberculosis Clinic. The majority of the patients was male (64,5%). The median age was: men 37,9 (24÷62) and women 35,4 (22÷72) years. The most prevalent age group was 30-39 years both for men and women (73,3% and 54,7%, respectively). The ratio of patients in age group 50-59 and senior was 3,9%. Socioeconomic status of patients was rather low: only 2.3% of patients had a university degree; 76,1% was unemployed (of whom 21,7% were disabled). Most patients had disseminated pulmonary tuberculosis in the phase of infiltration/ decay (41,5%). The infiltrative TB was detected in 18,9% of patients; 20,1% patients had tuberculosis of intrathoracic lymph nodes. The occurrence of MDR-TB was 16,8% and XDR-TB – 17,9%. The number of HIV-positive patients with newly diagnosed TB was n=261(69,2%). The active TB-form (MbT+) among new TB/HIV cases was 44,7 %. The severe clinical forms of TB and a high TB incidence rate among HIV-infected individuals alongside with a large number of cases of newly diagnosed tuberculosis, indicate the need for more intense interaction with TB services for timely diagnosis of TB which will optimize treatment outcomes.Keywords: HIV, tuberculosis (TB), TB associated with HIV, multidrug-resistant TB (MDR-TB)
Procedia PDF Downloads 2431247 Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures
Authors: Tamanna Goyal, Divya Bansal, Sanjeev Sofat
Abstract:
In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results.Keywords: association rules, clustering, similarity measure, statistical approaches
Procedia PDF Downloads 3201246 Analysis and Modeling of Vibratory Signals Based on LMD for Rolling Bearing Fault Diagnosis
Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine
Abstract:
The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally non-stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. the results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.Keywords: fault diagnosis, local mean decomposition, rolling element bearing, vibration analysis
Procedia PDF Downloads 4081245 Effect of Composition Fuel on Safety of Combustion Process
Authors: Lourdes I. Meriño, Viatcheslav Kafarov, Maria Gómez
Abstract:
Fuel gas used in the burner receives as contributors other gases from different processes and this result in variability in the composition, which may cause an incomplete combustion. The burners are designed to operate in a certain curve, the calorific power dependent on the pressure and gas burners. When deviation of propane and C5+ is huge, there is a large release of energy, which causes it to work out the curves of the burners, because less pressure is required to force curve into operation. That increases the risk of explosion in an oven, besides of a higher environmental impact. There should be flame detection systems, and instrumentation equipment, such as local pressure gauges located at the entrance of the gas burners, to permit verification by the operator. Additionally, distributed control systems must be configured with different combustion instruments associated with respective alarms, as well as its operational windows, and windows control guidelines of integrity, leaving the design information of this equipment. Therefore, it is desirable to analyze when a plant is taken out of service and make good operational analysis to determine the impact of changes in fuel gas streams contributors, by varying the calorific power. Hence, poor combustion is one of the cause instability in the flame of the burner and having a great impact on process safety, the integrity of individuals and teams and environment.Keywords: combustion process, fuel composition, safety, fuel gas
Procedia PDF Downloads 4901244 Stability Indicating Method Development and Validation for Estimation of Antiasthmatic Drug in Combined Dosages Formed by RP-HPLC
Authors: Laxman H. Surwase, Lalit V. Sonawane, Bhagwat N. Poul
Abstract:
A simple stability indicating high performance liquid chromatographic method has been developed for the simultaneous determination of Levosalbutamol Sulphate and Ipratropium Bromide in bulk and pharmaceutical dosage form using reverse phase Zorbax Eclipse Plus C8 column (250mm×4.6mm), with mobile phase phosphate buffer (0.05M KH2PO4): acetonitrile (55:45v/v) pH 3.5 adjusted with ortho-phosphoric acid, the flow rate was 1.0 mL/min and the detection was carried at 212 nm. The retention times of Levosalbutamol Sulphate and Ipratropium Bromide were 2.2007 and 2.6611 min respectively. The correlation coefficient of Levosalbutamol Sulphate and Ipratropium Bromide was found to be 0.997 and 0.998.Calibration plots were linear over the concentration ranges 10-100µg/mL for both Levosalbutamol Sulphate and Ipratropium Bromide. The LOD and LOQ of Levosalbutamol Sulphate were 2.520µg/mL and 7.638µg/mL while for Ipratropium Bromide was 1.201µg/mL and 3.640 µg/mL. The accuracy of the proposed method was determined by recovery studies and found to be 100.15% for Levosalbutamol Sulphate and 100.19% for Ipratropium Bromide respectively. The method was validated for accuracy, linearity, sensitivity, precision, robustness, system suitability. The proposed method could be utilized for routine analysis of Levosalbutamol Sulphate and Ipratropium Bromide in bulk and pharmaceutical capsule dosage form.Keywords: levosalbutamol sulphate, ipratropium bromide, RP-HPLC, phosphate buffer, acetonitrile
Procedia PDF Downloads 3511243 Electronic Nose for Monitoring Fungal Deterioration of Stored Rapeseed
Authors: Robert Rusinek, Marek Gancarz, Jolanta Wawrzyniak, Marzena Gawrysiak-Witulska, Dariusz Wiącek, Agnieszka Nawrocka
Abstract:
Investigations were performed to examine the possibility of using an electronic nose to monitor the development of fungal microflora during the first eighteen days of rapeseed storage. The Cyranose 320 device with polymer-composite sensors was used. Each sample of infected material was divided into three parts, and the degree of spoilage was measured in three ways: analysis of colony forming units (CFU), determination of ergosterol content (ERG), and measurement with the eNose. Principal component analysis (PCA) was performed on the generated patterns of signals, and six groups of different spoilage levels were isolated. The electronic nose with polymer-composite sensors under laboratory conditions distinguished between species of spoiled and unspoiled seeds with 100% accuracy. Despite some minor differences in the CFU and ergosterol content, the electronic nose provided responses correctly corresponding to the level of spoilage with 85% accuracy. Therefore, the main conclusion from the study is that the electronic nose is a promising tool for quick and non-destructive detection of the level of oil seed spoilage. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013.Keywords: colony forming units, electronic nose, ergosterol, rapeseed
Procedia PDF Downloads 3211242 Internal DC Short-Circuit Fault Analysis and Protection for VSI of Wind Power Generation Systems
Authors: Mehdi Radmehr, Amir Hamed Mashhadzadeh, Mehdi Jafari
Abstract:
Traditional HVDC systems are tough to DC short circuits as they are current regulated with a large reactance connected in series with cables. Multi-terminal DC wind farm topologies are attracting increasing research attempt. With AC/DC converters on the generator side, this topology can be developed into a multi-terminal DC network for wind power collection, which is especially suitable for large-scale offshore wind farms. For wind farms, the topology uses high-voltage direct-current transmission based on voltage-source converters (VSC-HVDC). Therefore, they do not suffer from over currents due to DC cable faults and there is no over current to react to. In this study, the multi-terminal DC wind farm topology is introduced. Then, possible internal DC faults are analyzed according to type and characteristic. Fault over current expressions are given in detail. Under this characteristic analysis, fault detection and detailed protection methods are proposed. Theoretical analysis and PSCAD/EMTDC simulations are provided.Keywords: DC short circuits, multi-terminal DC wind farm topologies, HVDC transmission based on VSC, fault analysis
Procedia PDF Downloads 4211241 The Analysis of One Million Reddit Confessions Corpus: The Use of Emotive Verbs and First Person Singular Pronoun as Linguistic Psychotherapy Features
Authors: Natalia Wojarnik
Abstract:
The paper aims to present the analysis of a Reddit confessions corpus. The interpretation focuses on the use of emotional language, in particular emotive verbs, in the context of personal pronouns. The analysis of the linguistic properties answers the question of what the Reddit users confess about and who is the subject of confessions. The study reveals that the specific language patterns used in Reddit confessions reflect the language of depression and the language used by patients during different stages of their psychotherapy sessions. The paper concludes that Reddit users are more willing to confess about their own experiences, not rarely very private and intimate, extensively using the first person singular pronoun I. It indicates that the Reddit users use the language of depression and the language used by psychotherapy patients. The language they use is very emotionally impacted and includes many emotive verbs such as want, feel, need, hate, love. This finding in Reddit confessions correlates with the extensive use of stative affective verbs in the first stages of the psychotherapy sessions. Lastly, the paper refers to the positive and negative lexicon and helps determine how online posts can serve as a depression detector and “talking cure” for the users.Keywords: confessions, emotional language, emotive verbs, pronouns, first person pronoun, language of depression, depression detection, psychotherapy language
Procedia PDF Downloads 1191240 Determination of Aflatoxins in Edible-Medicinal Plant Samples by HPLC with Fluorescence Detector and KOBRA-Cell
Authors: Isil Gazioglu, Abdulselam Ertas
Abstract:
Aflatoxins (AFs) are secondary toxic metabolites of Aspergillus flavus and A. parasiticus. AFs can be absorbed through the skin. Potent carcinogens like AFs should be completely absent from cosmetics, this can be achieved by careful quality control of the raw plant materials. Regulatory limits for aflatoxins have been established in many countries, and reliable testing methodology is needed to implement and enforce the regulatory limits. In this study, ten medicinal plant samples (Bundelia tournefortti, Capsella bursa-pastoris, Carduus tenuiflorus, Cardaria draba, Malva neglecta, Malvella sharardiana, Melissa officinalis, Sideritis libanotica, Stakys thirkei, Thymus nummularius) were investigated for aflatoxin (AF) contaminations by employing an HPLC assay for the determination of AFB1, B2, G1 and G2. The samples were extracted with 70% (v/v) methanol in water before further cleaned up with an immunoaffinity column and followed by the detection of AFs by using an electrochemically post-column derivatization with Kobra-Cell and fluorescence detector. The extraction procedure was optimized in order to obtain the best recovery. The method was successfully carried out with all medicinal plant samples. The results revealed that five (50%) of samples were contaminated with AFs. The association between particular samples and the AF contaminated could not be determined due to the low frequency of positive samples.Keywords: aflatoxin B1, HPLC-FLD, KOBRA-Cell, mycotoxin
Procedia PDF Downloads 6051239 Molecular Characterization of White Spot Syndrome Virus in Some Cultured Penaeid Shrimps of Coastal Regions in Bangladesh
Authors: Md. Baki Billah, Suraiya Parveen, Shuvra Kanti Dey
Abstract:
Bangladesh is earning a lot of foreign currency by exporting shrimp, but this industry is facing a tremendous problem due to the infection of white spot syndrome virus (WSSV). This study was undermined to develop rapid detection method of WSSV. A total of shrimp samples 240 collected from the 12 shrimp farms of different coastal regions (Satkhira, Khulna, and Bagerhat) were analyzed by conventional PCR using VP28 and VP664 gene-specific primers. In satkhira, Bagerhat and Khulna 39, 41 and 29 samples were found WSSV positive respectively. Real-time PCR using 71-bp amplicon for VP664 gene correlated well with conventional PCR data. The prevalence rates of WSSV among the collected 240 samples were Satkhira 38%, Khulna 47% and Bagerhat 50%. Molecular analysis of the VP28 gene sequences of WSSV revealed that Bangladeshi strains phylogenetically affiliated to the strains belong to India. This work concluded that WSSV infections are widely distributed in the coastal regions cultured shrimp in Bangladesh. Physico-chemical parameters were within the range of fish culture.Keywords: coastal regions of Bangladesh, PCR, shrimp, white spot syndrome virus
Procedia PDF Downloads 1281238 Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning
Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor
Abstract:
Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH
Procedia PDF Downloads 1741237 Airon Project: IoT-Based Agriculture System for the Optimization of Irrigation Water Consumption
Authors: África Vicario, Fernando J. Álvarez, Felipe Parralejo, Fernando Aranda
Abstract:
The irrigation systems of traditional agriculture, such as gravity-fed irrigation, produce a great waste of water because, generally, there is no control over the amount of water supplied in relation to the water needed. The AIRON Project tries to solve this problem by implementing an IoT-based system to sensor the irrigation plots so that the state of the crops and the amount of water used for irrigation can be known remotely. The IoT system consists of a sensor network that measures the humidity of the soil, the weather conditions (temperature, relative humidity, wind and solar radiation) and the irrigation water flow. The communication between this network and a central gateway is conducted by means of long-range wireless communication that depends on the characteristics of the irrigation plot. The main objective of the AIRON project is to deploy an IoT sensor network in two different plots of the irrigation community of Aranjuez in the Spanish region of Madrid. The first plot is 2 km away from the central gateway, so LoRa has been used as the base communication technology. The problem with this plot is the absence of mains electric power, so devices with energy-saving modes have had to be used to maximize the external batteries' use time. An ESP32 SOC board with a LoRa module is employed in this case to gather data from the sensor network and send them to a gateway consisting of a Raspberry Pi with a LoRa hat. The second plot is located 18 km away from the gateway, a range that hampers the use of LoRa technology. In order to establish reliable communication in this case, the long-term evolution (LTE) standard is used, which makes it possible to reach much greater distances by using the cellular network. As mains electric power is available in this plot, a Raspberry Pi has been used instead of the ESP32 board to collect sensor data. All data received from the two plots are stored on a proprietary server located at the irrigation management company's headquarters. The analysis of these data by means of machine learning algorithms that are currently under development should allow a short-term prediction of the irrigation water demand that would significantly reduce the waste of this increasingly valuable natural resource. The major finding of this work is the real possibility of deploying a remote sensing system for irrigated plots by using Commercial-Off-The-Shelf (COTS) devices, easily scalable and adaptable to design requirements such as the distance to the control center or the availability of mains electrical power at the site.Keywords: internet of things, irrigation water control, LoRa, LTE, smart farming
Procedia PDF Downloads 851236 Evaluating Daylight Performance in an Office Environment in Malaysia, Using Venetian Blind System: Case Study
Authors: Fatemeh Deldarabdolmaleki, Mohamad Fakri Zaky Bin Ja'afar
Abstract:
Having a daylit space together with view results in a pleasant and productive environment for office employees. A daylit space is a space which utilizes daylight as a basic source of illumination to fulfill user’s visual demands and minimizes the electric energy consumption. Malaysian weather is hot and humid all over the year because of its location in the equatorial belt. however, because most of the commercial buildings in Malaysia are air-conditioned, huge glass windows are normally installed in order to keep the physical and visual relation between inside and outside. As a result of climatic situation and mentioned new trend, an ordinary office has huge heat gain, glare, and discomfort for occupants. Balancing occupant’s comfort and energy conservation in a tropical climate is a real challenge. This study concentrates on evaluating a venetian blind system using per pixel analyzing tools based on the suggested cut-out metrics by the literature. Workplace area in a private office room has been selected as a case study. Eight-day measurement experiment was conducted to investigate the effect of different venetian blind angles in an office area under daylight conditions in Serdang, Malaysia. The study goal was to explore daylight comfort of a commercially available venetian blind system, its’ daylight sufficiency and excess (8:00 AM to 5 PM) as well as Glare examination. Recently developed software, analyzing High Dynamic Range Images (HDRI captured by CCD camera), such as radiance based Evalglare and hdrscope help to investigate luminance-based metrics. The main key factors are illuminance and luminance levels, mean and maximum luminance, daylight glare probability (DGP) and luminance ratio of the selected mask regions. The findings show that in most cases, morning session needs artificial lighting in order to achieve daylight comfort. However, in some conditions (e.g. 10° and 40° slat angles) in the second half of day the workplane illuminance level exceeds the maximum of 2000 lx. Generally, a rising trend is discovered toward mean window luminance and the most unpleasant cases occur after 2 P.M. Considering the luminance criteria rating, the uncomfortable conditions occur in the afternoon session. Surprisingly in no blind condition, extreme case of window/task ratio is not common. Studying the daylight glare probability, there is not any DGP value higher than 0.35 in this experiment.Keywords: daylighting, energy simulation, office environment, Venetian blind
Procedia PDF Downloads 2591235 Sarcasm Recognition System Using Hybrid Tone-Word Spotting Audio Mining Technique
Authors: Sandhya Baskaran, Hari Kumar Nagabushanam
Abstract:
Sarcasm sentiment recognition is an area of natural language processing that is being probed into in the recent times. Even with the advancements in NLP, typical translations of words, sentences in its context fail to provide the exact information on a sentiment or emotion of a user. For example, if something bad happens, the statement ‘That's just what I need, great! Terrific!’ is expressed in a sarcastic tone which could be misread as a positive sign by any text-based analyzer. In this paper, we are presenting a unique real time ‘word with its tone’ spotting technique which would provide the sentiment analysis for a tone or pitch of a voice in combination with the words being expressed. This hybrid approach increases the probability for identification of special sentiment like sarcasm much closer to the real world than by mining text or speech individually. The system uses a tone analyzer such as YIN-FFT which extracts pitch segment-wise that would be used in parallel with a speech recognition system. The clustered data is classified for sentiments and sarcasm score for each of it determined. Our Simulations demonstrates the improvement in f-measure of around 12% compared to existing detection techniques with increased precision and recall.Keywords: sarcasm recognition, tone-word spotting, natural language processing, pitch analyzer
Procedia PDF Downloads 2931234 An Approach for Estimation in Hierarchical Clustered Data Applicable to Rare Diseases
Authors: Daniel C. Bonzo
Abstract:
Practical considerations lead to the use of unit of analysis within subjects, e.g., bleeding episodes or treatment-related adverse events, in rare disease settings. This is coupled with data augmentation techniques such as extrapolation to enlarge the subject base. In general, one can think about extrapolation of data as extending information and conclusions from one estimand to another estimand. This approach induces hierarchichal clustered data with varying cluster sizes. Extrapolation of clinical trial data is being accepted increasingly by regulatory agencies as a means of generating data in diverse situations during drug development process. Under certain circumstances, data can be extrapolated to a different population, a different but related indication, and different but similar product. We consider here the problem of estimation (point and interval) using a mixed-models approach under an extrapolation. It is proposed that estimators (point and interval) be constructed using weighting schemes for the clusters, e.g., equally weighted and with weights proportional to cluster size. Simulated data generated under varying scenarios are then used to evaluate the performance of this approach. In conclusion, the evaluation result showed that the approach is a useful means for improving statistical inference in rare disease settings and thus aids not only signal detection but risk-benefit evaluation as well.Keywords: clustered data, estimand, extrapolation, mixed model
Procedia PDF Downloads 1361233 Life Cycle Assessment-Based Environmental Assessment of the Production and Maintenance of Wooden Windows
Authors: Pamela Del Rosario, Elisabetta Palumbo, Marzia Traverso
Abstract:
The building sector plays an important role in addressing pressing environmental issues such as climate change and resource scarcity. The energy performance of buildings is considerably affected by the external envelope. In fact, a considerable proportion of the building energy demand is due to energy losses through the windows. Nevertheless, according to literature, to pay attention only to the contribution of windows to the building energy performance, i.e., their influence on energy use during building operation, could result in a partial evaluation. Hence, it is important to consider not only the building energy performance but also the environmental performance of windows, and this not only during the operational stage but along its complete life cycle. Life Cycle Assessment (LCA) according to ISO 14040:2006 and ISO 14044:2006+A1:2018 is one of the most adopted and robust methods to evaluate the environmental performance of products throughout their complete life cycle. This life-cycle based approach avoids the shift of environmental impacts of a life cycle stage to another, allowing to allocate them to the stage in which they originated and to adopt measures that optimize the environmental performance of the product. Moreover, the LCA method is widely implemented in the construction sector to assess whole buildings as well as construction products and materials. LCA is regulated by the European Standards EN 15978:2011, at the building level, and EN 15804:2012+A2:2019, at the level of construction products and materials. In this work, the environmental performance of wooden windows was assessed by implementing the LCA method and adopting primary data. More specifically, the emphasis is given to embedded and operational impacts. Furthermore, correlations are made between these environmental impacts and aspects such as type of wood and window transmittance. In the particular case of the operational impacts, special attention is set on the definition of suitable maintenance scenarios that consider the potential climate influence on the environmental impacts. For this purpose, a literature review was conducted, and expert consultation was carried out. The study underlined the variability of the embedded environmental impacts of wooden windows by considering different wood types and transmittance values. The results also highlighted the need to define appropriate maintenance scenarios for precise assessment results. It was found that both the service life and the window maintenance requirements in terms of treatment and its frequency are highly dependent not only on the wood type and its treatment during the manufacturing process but also on the weather conditions of the place where the window is installed. In particular, it became evident that maintenance-related environmental impacts were the highest for climate regions with the lowest temperatures and the greatest amount of precipitation.Keywords: embedded impacts, environmental performance, life cycle assessment, LCA, maintenance stage, operational impacts, wooden windows
Procedia PDF Downloads 232