Search results for: tissue scanning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3566

Search results for: tissue scanning

596 Development of Novel Amphiphilic Block Copolymer of Renewable ε-Decalactone for Drug Delivery Application

Authors: Deepak Kakde, Steve Howdle, Derek Irvine, Cameron Alexander

Abstract:

The poor aqueous solubility is one of the major obstacles in the formulation development of many drugs. Around 70% of drugs are poorly soluble in aqueous media. In the last few decades, micelles have emerged as one of the major tools for solubilization of hydrophobic drugs. Micelles are nanosized structures (10-100nm) obtained by self-assembly of amphiphilic molecules into the water. The hydrophobic part of the micelle forms core which is surrounded by a hydrophilic outer shell called corona. These core-shell structures have been used as a drug delivery vehicle for many years. Although, the utility of micelles have been reduced due to the lack of sustainable materials. In the present study, a novel methoxy poly(ethylene glycol)-b-poly(ε-decalactone) (mPEG-b-PεDL) copolymer was synthesized by ring opening polymerization (ROP) of renewable ε-decalactone (ε-DL) monomers on methoxy poly(ethylene glycol) (mPEG) initiator using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a organocatalyst. All the reactions were conducted in bulk to avoid the use of toxic organic solvents. The copolymer was characterized by nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC).The mPEG-b-PεDL block copolymeric micelles containing indomethacin (IND) were prepared by nanoprecipitation method and evaluated as drug delivery vehicle. The size of the micelles was less than 40nm with narrow polydispersity pattern. TEM image showed uniform distribution of spherical micelles defined by clear surface boundary. The indomethacin loading was 7.4% for copolymer with molecular weight of 13000 and drug/polymer weight ratio of 4/50. The higher drug/polymer ratio decreased the drug loading. The drug release study in PBS (pH7.4) showed a sustained release of drug over a period of 24hr. In conclusion, we have developed a new sustainable polymeric material for IND delivery by combining the green synthetic approach with the use of renewable monomer for sustainable development of polymeric nanomedicine.

Keywords: dopolymer, ε-decalactone, indomethacin, micelles

Procedia PDF Downloads 295
595 Treatment of Municipal Wastewater by Means of Uv-Assisted Irradiation Technologies: Fouling Studies and Optimization of Operational Parameters

Authors: Tooba Aslam, Efthalia Chatzisymeon

Abstract:

UV-assisted irradiation technologies are well-established for water and wastewater treatment. UVC treatments are widely used at large-scale, while UVA irradiation has more often been applied in combination with a catalyst (e.g. TiO₂ or FeSO₄) in smaller-scale systems. A technical issue of these systems is the formation of fouling on the quartz sleeves that houses the lamps. This fouling can prevent complete irradiation, therefore reducing the efficiency of the process. This paper investigates the effects of operational parameters, such as the type of wastewater, irradiation source, H₂O₂ addition, and water pH on fouling formation and, ultimately, the treatment of municipal wastewater. Batch experiments have been performed at lab-scale while monitoring water quality parameters including: COD, TS, TSS, TDS, temperature, pH, hardness, alkalinity, turbidity, TOC, UV transmission, UV₂₅₄ absorbance, and metal concentrations. The residence time of the wastewater in the reactor was 5 days in order to observe any fouling formation on the quartz surface. Over this period, it was observed that chemical oxygen demand (COD) decreased by 30% and 59% during photolysis (Ultraviolet A) and photo-catalysis (UVA/Fe/H₂O₂), respectively. Higher fouling formation was observed with iron-rich and phosphorous-rich wastewater. The highest rate of fouling was developed with phosphorous-rich wastewater, followed by the iron-rich wastewater. Photo-catalysis (UVA/Fe/H₂O₂) had better removal efficiency than photolysis (UVA). This was attributed to the Photo-Fenton reaction, which was initiated under these operational conditions. Scanning electron microscope (SEM) measurements of fouling formed on the quartz sleeves showed that particles vary in size, shape, and structure; some have more distinct structures and are generally larger and have less compact structure than the others. Energy-dispersive X-ray spectroscopy (EDX) results showed that the major metals present in the fouling cake were iron, phosphorous, and calcium. In conclusion, iron-rich wastewaters are more suitable for UV-assisted treatment since fouling formation on quartz sleeves can be minimized by the formation of oxidizing agents during treatment, such as hydroxyl radicals.

Keywords: advanced oxidation processes, photo-fenton treatment, photo-catalysis, wastewater treatment

Procedia PDF Downloads 77
594 Materials and Techniques of Anonymous Egyptian Polychrome Cartonnage Mummy Mask: A Multiple Analytical Study

Authors: Hanaa A. Al-Gaoudi, Hassan Ebeid

Abstract:

The research investigates the materials and processes used in the manufacturing of an Egyptian polychrome cartonnage mummy mask with the aim of dating this object and establishing trade patterns of certain materials that were used and available at the time of ancient Egypt. This anonymous-source object was held in the basement storage of the Egyptian Museum in Cairo (EMC) and has never been on display. Furthermore, there is no information available regarding its owner, provenance, date, and even the time of its possession by the museum. Moreover, the object is in a very poor condition where almost two-thirds of the mask was bent and has never received any previous conservation treatment. This research has utilized well-established multi-analytical methods to identify the considerable diversity of materials that have been used in the manufacturing of this object. These methods include Computed Tomography Scan (CT scan) to acquire detailed pictures of the inside physical structure and condition of the bended layers. Dino-Lite portable digital microscope, scanning electron microscopy with energy dispersive X-ray spectrometer (SEM-EDX), and the non-invasive imaging technique of multispectral imaging (MSI) to obtain information about the physical characteristics and condition of the painted layers and to examine the microstructure of the materials. Portable XRF Spectrometer (PXRF) and X-Ray powder diffraction (XRD) to identify mineral phases and the bulk element composition in the gilded layer, ground, and pigments; Fourier-transform infrared (FTIR) to identify organic compounds and their molecular characterization; accelerator mass spectrometry (AMS 14C) to date the object. Preliminary results suggest that there are no human remains inside the object, and the textile support is linen fibres with tabby weave 1/1 and these fibres are in a very bad condition. Several pigments have been identified, such as Egyptian blue, Magnetite, Egyptian green frit, Hematite, Calcite, and Cinnabar; moreover, the gilded layers are pure gold and the binding media in the pigments is Arabic gum and animal glue in the textile support layer.

Keywords: analytical methods, Egyptian museum, mummy mask, pigments, textile

Procedia PDF Downloads 124
593 Effectiveness of a Healthy Lifestyle Combined with Abdominal Massage on Treating Infertility Due to Endometriosis and Adhesions in the Fallopian Tubes

Authors: Flora Tajiki

Abstract:

Undoubtedly, the desire to experience the beauty of motherhood is a dream for every woman, and delays in achieving this can have significant psychological consequences. Endometriosis, which is the presence of endometrial tissue in organs other than the uterus, can cause infertility through adhesion and inflammation. The fallopian tubes play a crucial role in transferring the egg to the uterus; if adhesions are present, the chances of natural pregnancy decrease, while the likelihood of ectopic pregnancy and miscarriage increases. In cases of mild adhesions observed during hysterosalpingography or laparoscopy, the tubes may open, but in severe adhesions, this is usually not possible. The aim of this study is to assess the effectiveness of a healthy lifestyle combined with massage of the uterine and ovarian areas in relieving adhesions in the fallopian tubes and treating the complications of endometriosis. This case study focuses on a 33-year-old woman, who married at 20, and experienced a miscarriage five years ago that required curettage. Following this, a hysterosalpingography revealed blockages in both fallopian tubes. A laparoscopic examination also indicated endometriosis and specialists in infertility ruled out the possibility of natural pregnancy. Three years ago, she underwent an unsuccessful IVF procedure. Two years ago, she began a lifestyle modification program that included improving sleep patterns, eliminating sugar and preservatives, avoiding red meat and gluten, eating a balanced diet, walking, exercising, and incorporating beneficial foods like olive oil, almonds, and nutritious vegetables, along with abdominal massage using chamomile oil. She also took vitamin C and vitamin D supplements. After approximately twenty weeks of these methods, and given that infertility centers had indicated that surgery and repeated IVF were the only options for her to conceive, she became pregnant naturally and had a successful pregnancy and delivery. Endometriosis is one of the significant factors contributing to infertility and adhesions in the fallopian tubes and uterus, and unfortunately, it has no definitive cure and can recur even after surgery. The treatment of similar cases emphasizes lifestyle modifications, and this approach has proven to be both cost-effective and harmless. Therefore, it seems essential to focus on this treatment strategy.

Keywords: infertility, endometriosis, adhesions, fallopian tubes, healthy lifestyle, lifestyle modifications, abdominal massage, case study, natural pregnancy, ivf, psychological consequences, uterine health, complementary treatments, nutrition, women's health.

Procedia PDF Downloads 18
592 Exhaled Breath Condensate in Lung Cancer: A Non-Invasive Sample for Easier Mutations Detection by Next Generation Sequencing

Authors: Omar Youssef, Aija Knuuttila, Paivi Piirilä, Virinder Sarhadi, Sakari Knuutila

Abstract:

Exhaled breath condensate (EBC) is a unique sample that allows studying different genetic changes in lung carcinoma through a non-invasive way. With the aid of next generation sequencing (NGS) technology, analysis of genetic mutations has been more efficient with increased sensitivity for detection of genetic variants. In order to investigate the possibility of applying this method for cancer diagnostics, mutations in EBC DNA from lung cancer patients and healthy individuals were studied by using NGS. The key aim is to assess the feasibility of using this approach to detect clinically important mutations in EBC. EBC was collected from 20 healthy individuals and 9 lung cancer patients (four lung adenocarcinomas, four 8 squamous cell carcinoma, and one case of mesothelioma). Mutations in hotpot regions of 22 genes were studied by using Ampliseq Colon and Lung cancer panel and sequenced on Ion PGM. Results demonstrated that all nine patients showed a total of 19 cosmic mutations in APC, BRAF, EGFR, ERBB4, FBXW7, FGFR1, KRAS, MAP2K1, NRAS, PIK3CA, PTEN, RET, SMAD4, and TP53. In controls, 15 individuals showed 35 cosmic mutations in BRAF, CTNNB1, DDR2, EGFR, ERBB2, FBXW7, FGFR3, KRAS, MET, NOTCH1, NRAS, PIK3CA, PTEN, SMAD4, and TP53. Additionally, 45 novel mutations not reported previously were also seen in patients’ samples, and 106 novel mutations were seen in controls’ specimens. KRAS exon 2 mutations G12D was identified in one control specimen with mutant allele fraction of 6.8%, while KRAS G13D mutation seen in one patient sample showed mutant allele fraction of 17%. These findings illustrate that hotspot mutations are present in DNA from EBC of both cancer patients and healthy controls. As some of the cosmic mutations were seen in controls too, no firm conclusion can be drawn on the clinical importance of cosmic mutations in patients. Mutations reported in controls could represent early neoplastic changes or normal homeostatic process of apoptosis occurring in lung tissue to get rid of mutant cells. At the same time, mutations detected in patients might represent a non-invasive easily accessible way for early cancer detection. Follow up of individuals with important cancer mutations is necessary to clarify the significance of these mutations in both healthy individuals and cancer patients.

Keywords: exhaled breath condensate, lung cancer, mutations, next generation sequencing

Procedia PDF Downloads 176
591 Identification and Management of Septic Arthritis of the Untouched Glenohumeral Joint

Authors: Sumit Kanwar, Manisha Chand, Gregory Gilot

Abstract:

Background: Septic arthritis of the shoulder has infrequently been discussed. Focus on infection of the untouched shoulder has not heretofore been described. We present four patients with glenohumeral septic arthritis. Methods: Case 1: A 59 year old male with left shoulder pain in the anterior, posterior and superior aspects. Case 2: A 60 year old male with fever, chills, and generalized muscle aches. Case 3: A 70 year old male with right shoulder pain about the anterior and posterior aspects. Case 4: A 55 year old male with global right shoulder pain, swelling, and limited ROM. Results: In case 1, the left shoulder was affected. Physical examination, swelling was notable, there was global tenderness with a painful range of motion (ROM). The lab values indicated an erythrocyte sedimentation rate (ESR) of 96, and a C-reactive protein (CRP) of 304.30. Imaging studies were performed and MRI indicated a high suspicion for an abscess with osteomyelitis of the humeral head. Our second case’s left arm was affected. He had swelling, global tenderness and painful ROM. His ESR was 38, CRP was 14.9. X-ray showed severe arthritis. Case 3 differed with the right arm being affected. Again, global tenderness and painful ROM was observed. His ESR was 94, and CRP was 10.6. X-ray displayed an eroded glenoid space. Our fourth case’s right shoulder was affected. He had global tenderness and painful, limited ROM. ESR was 108 and CRP was 2.4. X-ray was non-significant. Discussion: Monoarticular septic arthritis of the virgin glenohumeral joint is seldom diagnosed in clinical practice. Common denominators include elevated ESR, painful, limited ROM, and involvement of the dominant arm. The male population is more frequently affected with an average age of 57. Septic arthritis is managed with incision and drainage or needle aspiration of synovial fluid supplemented with 3-6 weeks of intravenous antibiotics. Due to better irrigation and joint visualization, arthroscopy is preferred. Open surgical drainage may be indicated if the above methods fail. Conclusion: If a middle-aged male presents with vague anterior or posterior shoulder pain, elevated inflammatory markers and a low grade fever, an x-ray should be performed. If this displays degenerative joint disease, the complete further workup with advanced imaging, such as an MRI, CT scan, or an ultrasound. If these imaging modalities display anterior space joint effusion with soft tissue involvement, we can suspect septic arthritis of the untouched glenohumeral joint and surgery is indicated.

Keywords: glenohumeral joint, identification, infection, septic arthritis, shoulder

Procedia PDF Downloads 422
590 Double Functionalization of Magnetic Colloids with Electroactive Molecules and Antibody for Platelet Detection and Separation

Authors: Feixiong Chen, Naoufel Haddour, Marie Frenea-Robin, Yves MéRieux, Yann Chevolot, Virginie Monnier

Abstract:

Neonatal thrombopenia occurs when the mother generates antibodies against her baby’s platelet antigens. It is particularly critical for newborns because it can cause coagulation troubles leading to intracranial hemorrhage. In this case, diagnosis must be done quickly to make platelets transfusion immediately after birth. Before transfusion, platelet antigens must be tested carefully to avoid rejection. The majority of thrombopenia (95 %) are caused by antibodies directed against Human Platelet Antigen 1a (HPA-1a) or 5b (HPA-5b). The common method for antigen platelets detection is polymerase chain reaction allowing for identification of gene sequence. However, it is expensive, time-consuming and requires significant blood volume which is not suitable for newborns. We propose to develop a point-of-care device based on double functionalized magnetic colloids with 1) antibodies specific to antigen platelets and 2) highly sensitive electroactive molecules in order to be detected by an electrochemical microsensor. These magnetic colloids will be used first to isolate platelets from other blood components, then to capture specifically platelets bearing HPA-1a and HPA-5b antigens and finally to attract them close to sensor working electrode for improved electrochemical signal. The expected advantages are an assay time lower than 20 min starting from blood volume smaller than 100 µL. Our functionalization procedure based on amine dendrimers and NHS-ester modification of initial carboxyl colloids will be presented. Functionalization efficiency was evaluated by colorimetric titration of surface chemical groups, zeta potential measurements, infrared spectroscopy, fluorescence scanning and cyclic voltammetry. Our results showed that electroactive molecules and antibodies can be immobilized successfully onto magnetic colloids. Application of a magnetic field onto working electrode increased the detected electrochemical signal. Magnetic colloids were able to capture specific purified antigens extracted from platelets.

Keywords: Magnetic Nanoparticles , Electroactive Molecules, Antibody, Platelet

Procedia PDF Downloads 270
589 An Electrochemical Enzymatic Biosensor Based on Multi-Walled Carbon Nanotubes and Poly (3,4 Ethylenedioxythiophene) Nanocomposites for Organophosphate Detection

Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar

Abstract:

The most controversial issue in crop production is the use of Organophosphate insecticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. OPs detection is of crucial importance for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). Substrate kinetics has been performed and studied for the determination of Michaelis Menten constant. The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared biosensor is observed to be 30 days and seven times, respectively. The application of the developed biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed biosensor made them reliable, sensitive and a low cost process.

Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, biosensor, oxime (2-PAM)

Procedia PDF Downloads 444
588 Quantification of the Erosion Effect on Small Caliber Guns: Experimental and Numerical Analysis

Authors: Dhouibi Mohamed, Stirbu Bogdan, Chabotier André, Pirlot Marc

Abstract:

Effects of erosion and wear on the performance of small caliber guns have been analyzed throughout numerical and experimental studies. Mainly, qualitative observations were performed. Correlations between the volume change of the chamber and the maximum pressure are limited. This paper focuses on the development of a numerical model to predict the maximum pressure evolution when the interior shape of the chamber changes in the different weapon’s life phases. To fulfill this goal, an experimental campaign, followed by a numerical simulation study, is carried out. Two test barrels, « 5.56x45mm NATO » and « 7.62x51mm NATO,» are considered. First, a Coordinate Measuring Machine (CMM) with a contact scanning probe is used to measure the interior profile of the barrels after each 300-shots cycle until their worn out. Simultaneously, the EPVAT (Electronic Pressure Velocity and Action Time) method with a special WEIBEL radar are used to measure: (i) the chamber pressure, (ii) the action time, (iii) and the bullet velocity in each barrel. Second, a numerical simulation study is carried out. Thus, a coupled interior ballistic model is developed using the dynamic finite element program LS-DYNA. In this work, two different models are elaborated: (i) coupled Eularien Lagrangian method using fluid-structure interaction (FSI) techniques and a coupled thermo-mechanical finite element using a lumped parameter model (LPM) as a subroutine. Those numerical models are validated and checked through three experimental results, such as (i) the muzzle velocity, (ii) the chamber pressure, and (iii) the surface morphology of fired projectiles. Results show a good agreement between experiments and numerical simulations. Next, a comparison between the two models is conducted. The projectile motions, the dynamic engraving resistances and the maximum pressures are compared and analyzed. Finally, using this obtained database, a statistical correlation between the muzzle velocity, the maximum pressure and the chamber volume is established.

Keywords: engraving process, finite element analysis, gun barrel erosion, interior ballistics, statistical correlation

Procedia PDF Downloads 215
587 The Descending Genicular Artery Perforator Free Flap as a Reliable Flap: Literature Review

Authors: Doran C. Kalmin

Abstract:

The descending genicular artery (DGA) perforator free flap provides an alternative to free flap reconstruction based on a review of the literature detailing both anatomical and clinical studies. The descending genicular artery (DGA) supplies skin, muscle, tendon, and bone located around the medial aspect of the knee that has been used in several pioneering reports in reconstructing defects located in various areas throughout the body. After the success of the medial femoral condyle flap in early studies, a small number of studies have been published detailing the use of the DGA in free flap reconstruction. Despite early success in the use of the DGA flap, acceptance within the Plastic and Reconstructive Surgical community has been limited due primarily to anatomical variations of the pedicle. This literature review is aimed at detailing the progression of the DGA perforator free flap and its variations as an alternative and reliable free flap for reconstruction of composite defects with an exploration into both anatomical and clinical studies. A literature review was undertaken, and the progression of the DGA flap is explored from the early review by Acland et al. pioneering the saphenous free flap to exploring modern changes and studies of the anatomy of the DGA. An extensive review of the literature was undertaken that details the anatomy and its variations, approaches to harvesting the flap, the advantages, and disadvantages of the DGA perforator free flap as well as flap outcomes. There are 15 published clinical series of DGA perforator free flaps that incorporate cutaneous, osteoperiosteal, cartilage, osteocutaneous, osteoperiosteal and muscle, osteoperiosteal and subcutaneous and tendocutatenous. The commonest indication for using a DGA free flap was for non-union of bone, particularly that of the scaphoid whereby the medial femoral condyle could be used. In the case series, a success rate of over 90% was established, showing that these early studies have had good success with a wide range of tissue transfers. The greatest limitation is the anatomical variation of the DGA and therefore, the challenges associated with raising the flap. Despite the variation in anatomy and around 10-15% absence of the DGA, the saphenous artery can be used as well as the superior medial genicular artery if the vascular bone is required as part of the flap. Despite only a handful of anatomical and clinical studies describing the DGA perforator free flap, it ultimately provides a reliable flap that can include a variety of composite structure used for reconstruction in almost any area throughout the body. Although it has limitations, it provides a reliable option for free flap reconstruction that can routinely be performed as a single-stage procedure.

Keywords: anatomical study, clinical study, descending genicular artery, literature review, perforator free flap reconstruction

Procedia PDF Downloads 144
586 Instrumental Characterization of Cyanobacteria as Polyhydroxybutyrate Producer

Authors: Eva Slaninova, Diana Cernayova, Zuzana Sedrlova, Katerina Mrazova, Petr Sedlacek, Jana Nebesarova, Stanislav Obruca

Abstract:

Cyanobacteria are gram-negative prokaryotes belonging to a group of photosynthetic bacteria. In comparison with heterotrophic microorganisms, cyanobacteria utilize atmospheric nitrogen and carbon dioxide without any additional substrates. This ability of these microorganisms could be employed in biotechnology for the production of bioplastics, concretely polyhydroxyalkanoates (PHAs) which are primarily accumulated as a storage material in cells in the form of intracellular granules. In this study, there two cyanobacterial cultures from genera Synechocystis were used, namely Synechocystic sp. PCC 6803 and Synechocystis salina CCALA 192. There were optimized and used several various approaches, including microscopic techniques such as cryo-scanning electron microscopy (Cryo-SEM) and transmission electron microscopy (TEM), and fluorescence lifetime imaging microscopy using Nile red as a fluorescent probe (FLIM). Due to these instrumental techniques, the morphology of intracellular space and surface of cells were characterized. The next group of methods which were employed was spectroscopic techniques such as UV-Vis spectroscopy measured in two modes (turbidimetry and integration sphere) and Fourier transform infrared spectroscopy (FTIR). All these diverse techniques were used for the detection and characterization of pigments (chlorophylls, carotenoids, phycocyanin, etc.) and PHAs, in our case poly (3-hydroxybutyrate) (P3HB). To verify results, gas chromatography (GC) was employed concretely for the determination of the amount of P3HB in biomass. Cyanobacteria were also characterized as polyhydroxybutyrate producers by flow cytometer, which could count cells and at the same time distinguish cells including P3HB and without due to fluorescent probe called BODIPY and live/dead fluorescent probe SYTO Blue. Based on results, P3HB content in cyanobacteria cells was determined, as also the overall fitness of the cells. Acknowledgment: Funding: This study was partly funded by the projectGA19-29651L of the Czech Science Foundation (GACR) and partly funded by the Austrian Science Fund (FWF), project I 4082-B25.

Keywords: cyanobacteria, fluorescent probe, microscopic techniques, poly(3hydroxybutyrate), spectroscopy, chromatography

Procedia PDF Downloads 229
585 Effect of Varying Zener-Hollomon Parameter (Temperature and Flow Stress) and Stress Relaxation on Creep Response of Hot Deformed AA3104 Can Body Stock

Authors: Oyindamola Kayode, Sarah George, Roberto Borrageiro, Mike Shirran

Abstract:

A phenomenon identified by our industrial partner has experienced sag on AA3104 can body stock (CBS) transfer bar during transportation of the slab from the breakdown mill to the finishing mill. Excessive sag results in bottom scuffing of the slab onto the roller table, resulting in surface defects on the final product. It has been found that increasing the strain rate on the breakdown mill final pass results in a slab resistant to sag. The creep response for materials hot deformed at different Zener–Holloman parameter values needs to be evaluated experimentally to gain better understanding of the operating mechanism. This study investigates this identified phenomenon through laboratory simulation of the breakdown mill conditions for various strain rates by utilizing the Gleeble at UCT Centre for Materials Engineering. The experiment will determine the creep response for a range of conditions as well as quantifying the associated material microstructure (sub-grain size, grain structure etc). The experimental matrices were determined based on experimental conditions approximate to industrial hot breakdown rolling and carried out on the Gleeble 3800 at the Centre for Materials Engineering, University of Cape Town. Plane strain compression samples were used for this series of tests at an applied load that allow for better contact and exaggerated creep displacement. A tantalum barrier layer was used for increased conductivity and decreased risk of anvil welding. One set of tests with no in-situ hold time was performed, where the samples were quenched after deformation. The samples were retained for microstructure analysis of the micrographs from the light microscopy (LM), quantitative data and images from scanning electron microscopy (SEM) and energy dispersive X-ray (EDX), sub-grain size and grain structure from electron back scattered diffraction (EBSD).

Keywords: aluminium alloy, can-body stock, hot rolling, creep response, Zener-Hollomon parameter

Procedia PDF Downloads 86
584 Ammonia Sensing Properties of Nanostructured Hybrid Halide Perovskite Thin Film

Authors: Nidhi Gupta, Omita Nanda, Rakhi Grover, Kanchan Saxena

Abstract:

Hybrid perovskite is new class of material which has gained much attention due to their different crystal structure and interesting optical and electrical properties. Easy fabrication, high absorption coefficient, and photoluminescence properties make them a strong candidate for various applications such as sensors, photovoltaics, photodetectors, etc. In perovskites, ions arrange themselves in a special type of crystal structure with chemical formula ABX3, where A is organic species like CH3NH3+, B is metal ion (e.g., Pb, Sn, etc.) and X is halide (Cl-, Br-, I-). In crystal structure, A is present at corner position, B at center of the crystal lattice and halide ions at the face centers. High stability and sensitivity of nanostructured perovskite make them suitable for chemical sensors. Researchers have studied sensing properties of perovskites for number of analytes such as 2,4,6-trinitrophenol, ethanol and other hazardous chemical compounds. Ammonia being highly toxic agent makes it a reason of concern for the environment. Thus the detection of ammonia is extremely important. Our present investigation deals with organic inorganic hybrid perovskite based ammonia sensor. Various methods like sol-gel, solid state synthesis, thermal vapor deposition etc can be used to synthesize Different hybrid perovskites. In the present work, a novel hybrid perovskite has been synthesized by a single step method. Ethylenediammnedihalide and lead halide were used as precursor. Formation of hybrid perovskite was confirmed by FT-IR and XRD. Morphological characterization of the synthesized material was performed using scanning electron microscopy (SEM). SEM analysis revealed the formation of one dimensional nanowire perovskite with mean diameter of 200 nm. Measurements for sensing properties of halide perovskite for ammonia vapor were carried out. Perovskite thin films showed a color change from yellow to orange on exposure of ammonia vapor. Electro-optical measurements show that sensor based on lead halide perovskite has high sensitivity towards ammonia with effective selectivity and reversibility. Sensor exhibited rapid response time of less than 20 seconds.

Keywords: hybrid perovskite, ammonia, sensor, nanostructure, thin film

Procedia PDF Downloads 276
583 Development and Characterization of Expandable TPEs Compounds for Footwear Applications

Authors: Ana Elisa Ribeiro Costa, Sónia Daniela Ferreira Miranda, João Pedro De Carvalho Pereira, João Carlos Simões Bernardo

Abstract:

Elastomeric thermoplastics (TPEs) have been widely used in the footwear industry over the years. Recently this industry has been requesting materials that can combine lightweight and high abrasion resistance. Although there are blowing agents on the market to improve the lightweight, when these are incorporated into molten polymers during the extrusion or injection molding, it is necessary to have some specific processing conditions (e.g. effect of temperature and hydrodynamic stresses) to obtain good properties and acceptable surface appearance on the final products. Therefore, it is a great advantage for the compounder industry to acquire compounds that already include the blowing agents. In this way, they can be handled and processed under the same conditions as a conventional raw material. In this work, the expandable TPEs compounds, namely a TPU and a SEBS, with the incorporation of blowing agents, have been developed through a co-rotating modular twin-screw parallel extruder. Different blowing agents such as thermo-expandable microspheres and an azodicarbonamide were selected and different screw configurations and temperature profiles were evaluated since these parameters have a particular influence on the expansion inhibition of the blowing agents. Furthermore, percentages of incorporation were varied in order to investigate their influence on the final product properties. After the extrusion of these compounds, expansion was tested by the injection process. The mechanical and physical properties were characterized by different analytical methods like tensile, flexural and abrasive tests, determination of hardness and density measurement. Also, scanning electron microscopy (SEM) was performed. It was observed that it is possible to incorporate the blowing agents on the TPEs without their expansion on the extrusion process. Only with reprocessing (injection molding) did the expansion of the agents occur. These results are corroborated by SEM micrographs, which show a good distribution of blowing agents in the polymeric matrices. The other experimental results showed a good mechanical performance and its density decrease (30% for SEBS and 35% for TPU). This study suggested that it is possible to develop optimized compounds for footwear applications (e.g., sole shoes), which only will be able to expand during the injection process.

Keywords: blowing agents, expandable thermoplastic elastomeric compounds, low density, footwear applications

Procedia PDF Downloads 206
582 Uncertainty Evaluation of Erosion Volume Measurement Using Coordinate Measuring Machine

Authors: Mohamed Dhouibi, Bogdan Stirbu, Chabotier André, Marc Pirlot

Abstract:

Internal barrel wear is a major factor affecting the performance of small caliber guns in their different life phases. Wear analysis is, therefore, a very important process for understanding how wear occurs, where it takes place, and how it spreads with the aim on improving the accuracy and effectiveness of small caliber weapons. This paper discusses the measurement and analysis of combustion chamber wear for a small-caliber gun using a Coordinate Measuring Machine (CMM). Initially, two different NATO small caliber guns: 5.56x45mm and 7.62x51mm, are considered. A Micura Zeiss Coordinate Measuring Machine (CMM) equipped with the VAST XTR gold high-end sensor is used to measure the inner profile of the two guns every 300-shot cycle. The CMM parameters, such us (i) the measuring force, (ii) the measured points, (iii) the time of masking, and (iv) the scanning velocity, are investigated. In order to ensure minimum measurement error, a statistical analysis is adopted to select the reliable CMM parameters combination. Next, two measurement strategies are developed to capture the shape and the volume of each gun chamber. Thus, a task-specific measurement uncertainty (TSMU) analysis is carried out for each measurement plan. Different approaches of TSMU evaluation have been proposed in the literature. This paper discusses two different techniques. The first is the substitution method described in ISO 15530 part 3. This approach is based on the use of calibrated workpieces with similar shape and size as the measured part. The second is the Monte Carlo simulation method presented in ISO 15530 part 4. Uncertainty evaluation software (UES), also known as the Virtual Coordinate Measuring Machine (VCMM), is utilized in this technique to perform a point-by-point simulation of the measurements. To conclude, a comparison between both approaches is performed. Finally, the results of the measurements are verified through calibrated gauges of several dimensions specially designed for the two barrels. On this basis, an experimental database is developed for further analysis aiming to quantify the relationship between the volume of wear and the muzzle velocity of small caliber guns.

Keywords: coordinate measuring machine, measurement uncertainty, erosion and wear volume, small caliber guns

Procedia PDF Downloads 150
581 The Effects of Addition of Chloride Ions on the Properties of ZnO Nanostructures Grown by Electrochemical Deposition

Authors: L. Mentar, O. Baka, A. Azizi

Abstract:

Zinc oxide as a wide band semiconductor materials, especially nanostructured materials, have potential applications in large-area such as electronics, sensors, photovoltaic cells, photonics, optical devices and optoelectronics due to their unique electrical and optical properties and surface properties. The feasibility of ZnO for these applications is due to the successful synthesis of diverse ZnO nanostructures, including nanorings, nanobows, nanohelixes, nanosprings, nanobelts, nanotubes, nanopropellers, nanodisks, and nanocombs, by different method. Among various synthesis methods, electrochemical deposition represents a simple and inexpensive solution based method for synthesis of semiconductor nanostructures. In this study, the electrodeposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate as TCO from chloride bath. We present a systematic study on the effects of the concentration of chloride anion on the properties of ZnO. The influence of KCl concentrations on the electrodeposition process, morphological, structural and optical properties of ZnO nanostructures was examined. In this research electrochemical deposition of ZnO nanostructures is investigated using conventional electrochemical measurements (cyclic voltammetry and Mott-Schottky), scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. The potentials of electrodeposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. SEM images shows different size and morphology of the nanostructures and depends greatly on the KCl concentrations. The morphology of ZnO nanostructures is determined by the corporated action between [Zn(NO3)2] and [Cl-].Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. XRD studies revealed that the all deposited films were polycrystalline in nature with wurtzite phase. The electrodeposited thin films are found to have preferred oriented along (002) plane of the wurtzite structure of ZnO with c-axis normal to the substrate surface for sample at different concentrations of KCl. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV.

Keywords: electrodeposition, ZnO, chloride ions, Mott-Schottky, SEM, XRD

Procedia PDF Downloads 290
580 Drug Design Modelling and Molecular Virtual Simulation of an Optimized BSA-Based Nanoparticle Formulation Loaded with Di-Berberine Sulfate Acid Salt

Authors: Eman M. Sarhan, Doaa A. Ghareeb, Gabriella Ortore, Amr A. Amara, Mohamed M. El-Sayed

Abstract:

Drug salting and nanoparticle-based drug delivery formulations are considered to be an effective means for rendering the hydrophobic drugs’ nano-scale dispersion in aqueous media, and thus circumventing the pitfalls of their poor solubility as well as enhancing their membrane permeability. The current study aims to increase the bioavailability of quaternary ammonium berberine through acid salting and biodegradable bovine serum albumin (BSA)-based nanoparticulate drug formulation. Berberine hydroxide (BBR-OH) that was chemically synthesized by alkalization of the commercially available berberine hydrochloride (BBR-HCl) was then acidified to get Di-berberine sulfate (BBR)₂SO₄. The purified crystals were spectrally characterized. The desolvation technique was optimized for the preparation of size-controlled BSA-BBR-HCl, BSA-BBR-OH, and BSA-(BBR)₂SO₄ nanoparticles. Particle size, zeta potential, drug release, encapsulation efficiency, Fourier transform infrared spectroscopy (FTIR), tandem MS-MS spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning and transmitting electron microscopic examination (SEM, TEM), in vitro bioactivity, and in silico drug-polymer interaction were determined. BSA (PDB ID; 4OR0) protonation state at different pH values was predicted using Amber12 molecular dynamic simulation. Then blind docking was performed using Lamarkian genetic algorithm (LGA) through AutoDock4.2 software. Results proved the purity and the size-controlled synthesis of berberine-BSA-nanoparticles. The possible binding poses, hydrophobic and hydrophilic interactions of berberine on BSA at different pH values were predicted. Antioxidant, anti-hemolytic, and cell differentiated ability of tested drugs and their nano-formulations were evaluated. Thus, drug salting and the potentially effective albumin berberine nanoparticle formulations can be successfully developed using a well-optimized desolvation technique and exhibiting better in vitro cellular bioavailability.

Keywords: berberine, BSA, BBR-OH, BBR-HCl, BSA-BBR-HCl, BSA-BBR-OH, (BBR)₂SO₄, BSA-(BBR)₂SO₄, FTIR, AutoDock4.2 Software, Lamarkian genetic algorithm, SEM, TEM, EDX

Procedia PDF Downloads 174
579 Concanavaline a Conjugated Bacterial Polyester Based PHBHHx Nanoparticles Loaded with Curcumin for the Ovarian Cancer Therapy

Authors: E. Kilicay, Z. Karahaliloglu, B. Hazer, E. B. Denkbas

Abstract:

In this study, we have prepared concanavaline A (ConA) functionalized curcumin (CUR) loaded PHBHHx (poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)) nanoparticles as a novel and efficient drug delivery system. CUR is a promising anticancer agent for various cancer types. The aim of this study was to evaluate therapeutic potential of curcumin loaded PHBHHx nanoparticles (CUR-NPs) and concanavaline A conjugated curcumin loaded NPs (ConA-CUR NPs) for ovarian cancer treatment. ConA was covalently connected to the carboxylic group of nanoparticles by EDC/NHS activation method. In the ligand attachment experiment, the binding capacity of ConA on the surface of NPs was found about 90%. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis showed that the prepared nanoparticles were smooth and spherical in shape. The size and zeta potential of prepared NPs were about 228±5 nm and −21.3 mV respectively. ConA-CUR NPs were characterized by FT-IR spectroscopy which confirmed the existence of CUR and ConA in the nanoparticles. The entrapment and loading efficiencies of different polymer/drug weight ratios, 1/0.125 PHBHHx/CUR= 1.25CUR-NPs; 1/0.25 PHBHHx/CUR= 2.5CUR-NPs; 1/0.5 PHBHHx/CUR= 5CUR-NPs, ConA-1.25CUR NPs, ConA-2.5CUR NPs and ConA-5CUR NPs were found to be ≈ 68%-16.8%; 55%-17.7 %; 45%-33.6%; 70%-15.7%; 60%-17%; 51%-30.2% respectively. In vitro drug release showed that the sustained release of curcumin was observed from CUR-NPs and ConA-CUR NPs over a period of 19 days. After binding of ConA, the release rate was slightly increased due to the migration of curcumin to the surface of the nanoparticles and the matrix integrities was decreased because of the conjugation reaction. This functionalized nanoparticles demonstrated high drug loading capacity, sustained drug release profile, and high and long term anticancer efficacy in human cancer cell lines. Anticancer activity of ConA-CUR NPs was proved by MTT assay and reconfirmed by apoptosis and necrosis assay. The anticancer activity of ConA-CUR NPs was measured in ovarian cancer cells (SKOV-3) and the results revealed that the ConA-CUR NPs had better tumor cells decline activity than free curcumin. The nacked nanoparticles have no cytotoxicity against human ovarian carcinoma cells. Thus the developed functionalized nanoformulation could be a promising candidate in cancer therapy.

Keywords: curcumin, curcumin-PHBHHx nanoparticles, concanavalin A, concanavalin A-curcumin PHBHHx nanoparticles, PHBHHx nanoparticles, ovarian cancer cell

Procedia PDF Downloads 399
578 In vitro Establishment and Characterization of Oral Squamous Cell Carcinoma Derived Cancer Stem-Like Cells

Authors: Varsha Salian, Shama Rao, N. Narendra, B. Mohana Kumar

Abstract:

Evolving evidence proposes the existence of a highly tumorigenic subpopulation of undifferentiated, self-renewing cancer stem cells, responsible for exhibiting resistance to conventional anti-cancer therapy, recurrence, metastasis and heterogeneous tumor formation. Importantly, the mechanisms exploited by cancer stem cells to resist chemotherapy are very less understood. Oral squamous cell carcinoma (OSCC) is one of the most regularly diagnosed cancer types in India and is associated commonly with alcohol and tobacco use. Therefore, the isolation and in vitro characterization of cancer stem-like cells from patients with OSCC is a critical step to advance the understanding of the chemoresistance processes and for designing therapeutic strategies. With this, the present study aimed to establish and characterize cancer stem-like cells in vitro from OSCC. The primary cultures of cancer stem-like cell lines were established from the tissue biopsies of patients with clinical evidence of an ulceroproliferative lesion and histopathological confirmation of OSCC. The viability of cells assessed by trypan blue exclusion assay showed more than 95% at passage 1 (P1), P2 and P3. Replication rate was performed by plating cells in 12-well plate and counting them at various time points of culture. Cells had a more marked proliferative activity and the average doubling time was less than 20 hrs. After being cultured for 10 to 14 days, cancer stem-like cells gradually aggregated and formed sphere-like bodies. More spheroid bodies were observed when cultured in DMEM/F-12 under low serum conditions. Interestingly, cells with higher proliferative activity had a tendency to form more sphere-like bodies. Expression of specific markers, including membrane proteins or cell enzymes, such as CD24, CD29, CD44, CD133, and aldehyde dehydrogenase 1 (ALDH1) is being explored for further characterization of cancer stem-like cells. To summarize the findings, the establishment of OSCC derived cancer stem-like cells may provide scope for better understanding the cause for recurrence and metastasis in oral epithelial malignancies. Particularly, identification and characterization studies on cancer stem-like cells in Indian population seem to be lacking thus provoking the need for such studies in a population where alcohol consumption and tobacco chewing are major risk habits.

Keywords: cancer stem-like cells, characterization, in vitro, oral squamous cell carcinoma

Procedia PDF Downloads 221
577 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection

Authors: Ali Hamza

Abstract:

Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.

Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network

Procedia PDF Downloads 84
576 Miniature Fast Steering Mirrors for Space Optical Communication on NanoSats and CubeSats

Authors: Sylvain Chardon, Timotéo Payre, Hugo Grardel, Yann Quentel, Mathieu Thomachot, Gérald Aigouy, Frank Claeyssen

Abstract:

With the increasing digitalization of society, access to data has become vital and strategic for individuals and nations. In this context, the number of satellite constellation projects is growing drastically worldwide and is a next-generation challenge of the New Space industry. So far, existing satellite constellations have been using radio frequencies (RF) for satellite-to-ground communications, inter-satellite communications, and feeder link communication. However, RF has several limitations, such as limited bandwidth and low protection level. To address these limitations, space optical communication will be the new trend, addressing both very high-speed and secured encrypted communication. Fast Steering Mirrors (FSM) are key components used in optical communication as well as space imagery and for a large field of functions such as Point Ahead Mechanisms (PAM), Raster Scanning, Beam Steering Mirrors (BSM), Fine Pointing Mechanisms (FPM) and Line of Sight stabilization (LOS). The main challenges of space FSM development for optical communication are to propose both a technology and a supply chain relevant for high quantities New Space approach, which requires secured connectivity for high-speed internet, Earth planet observation and monitoring, and mobility applications. CTEC proposes a mini-FSM technology offering a stroke of +/-6 mrad and a resonant frequency of 1700 Hz, with a mass of 50 gr. This FSM mechanism is a good candidate for giant constellations and all applications on board NanoSats and CubeSats, featuring a very high level of miniaturization and optimized for New Space high quantities cost efficiency. The use of piezo actuators offers a high resonance frequency for optimal control, with almost zero power consumption in step and stay pointing, and with very high-reliability figures > 0,995 demonstrated over years of recurrent manufacturing for Optronics applications at CTEC.

Keywords: fast steering mirror, feeder link, line of sight stabilization, optical communication, pointing ahead mechanism, raster scan

Procedia PDF Downloads 80
575 Optimizing 3D Shape Parameters of Sports Bra Pads in Motion by Finite Element Dynamic Modelling with Inverse Problem Solution

Authors: Jiazhen Chen, Yue Sun, Joanne Yip, Kit-Lun Yick

Abstract:

The design of sports bras poses a considerable challenge due to the difficulty in accurately predicting the wearing result after computer-aided design (CAD). It needs repeated physical try-on or virtual try-on to obtain a comfortable pressure range during motion. Specifically, in the context of running, the exact support area and force exerted on the breasts remain unclear. Consequently, obtaining an effective method to design the sports bra pads shape becomes particularly challenging. This predicament hinders the successful creation and production of sports bras that cater to women's health needs. The purpose of this study is to propose an effective method to obtain the 3D shape of sports bra pads and to understand the relationship between the supporting force and the 3D shape parameters of the pads. Firstly, the static 3D shape of the sports bra pad and human motion data (Running) are obtained by using the 3D scanner and advanced 4D scanning technology. The 3D shape of the sports bra pad is parameterised and simplified by Free-form Deformation (FFD). Then the sub-models of sports bra and human body are constructed by segmenting and meshing them with MSC Apex software. The material coefficient of sports bras is obtained by material testing. The Marc software is then utilised to establish a dynamic contact model between the human breast and the sports bra pad. To realise the reverse design of the sports bra pad, this contact model serves as a forward model for calculating the inverse problem. Based on the forward contact model, the inverse problem of the 3D shape parameters of the sports bra pad with the target bra-wearing pressure range as the boundary condition is solved. Finally, the credibility and accuracy of the simulation are validated by comparing the experimental results with the simulations by the FE model on the pressure distribution. On the one hand, this research allows for a more accurate understanding of the support area and force distribution on the breasts during running. On the other hand, this study can contribute to the customization of sports bra pads for different individuals. It can help to obtain sports bra pads with comfortable dynamic pressure.

Keywords: sports bra design, breast motion, running, inverse problem, finite element dynamic model

Procedia PDF Downloads 59
574 The Anesthesia Considerations in Robotic Mastectomies

Authors: Amrit Vasdev, Edwin Rho, Gurinder Vasdev

Abstract:

Robotic surgery has enabled a new spectrum of minimally invasive breast reconstruction by improving visualization, surgeon posturing, and improved patient outcomes.1 The DaVinci robot system can be utilized in nipple sparing mastectomies and reconstructions. The process involves the insufflation of the subglandular space and a dissection of the mammary gland with a combination of cautery and blunt dissection. This case outlines a 35-year-old woman who has a long-standing family history of breast cancer and a diagnosis of a deleterious BRCA2 genetic mutation. She has decided to proceed with bilateral nipple sparing mastectomies with implants. Her perioperative mammogram and MRI were negative for masses, however, her left internal mammary lymph node was enlarged. She has taken oral contraceptive pills for 3-5 years and denies DES exposure, radiation therapy, human replacement therapy, or prior breast surgery. She does not smoke and rarely consumes alcohol. During the procedure, the patient received a standardized anesthetic for out-patient surgery of propofol infusion, succinylcholine, sevoflurane, and fentanyl. Aprepitant was given as an antiemetic and preoperative Tylenol and gabapentin for pain management. Concerns for the patient during the procedure included CO2 insufflation into the subcutaneous space. With CO2 insufflation, there is a potential for rapid uptake leading to severe acidosis, embolism, and subcutaneous emphysema.2To mitigate this, it is important to hyperventilate the patient and reduce both the insufflation pressure and the CO2 flow rate to the minimal acceptable by the surgeon. For intraoperative monitoring during this 6-9 hour long procedure, it has been suggested to utilize an Arterial-Line for end-tidal CO2 monitoring. However, in this case, it was not necessary as the patient had excellent cardiovascular reserve, and end-tidal CO2 was within normal limits for the duration of the procedure. A BIS monitor was also utilized to reduce anesthesia burden and to facilitate a prompt discharge from the PACU. Minimal Invasive Robotic Surgery will continue to evolve, and anesthesiologists need to be prepared for the new challenges ahead. Based on our limit number of patients, robotic mastectomy appears to be a safe alternative to open surgery with the promise of clearer tissue demarcation and better cosmetic results.

Keywords: anesthesia, mastectomies, robotic, hypercarbia

Procedia PDF Downloads 112
573 Enhanced Kinetic Solubility Profile of Epiisopiloturine Solid Solution in Hipromellose Phthalate

Authors: Amanda C. Q. M. Vieira, Cybelly M. Melo, Camila B. M. Figueirêdo, Giovanna C. R. M. Schver, Salvana P. M. Costa, Magaly A. M. de Lyra, Ping I. Lee, José L. Soares-Sobrinho, Pedro J. Rolim-Neto, Mônica F. R. Soares

Abstract:

Epiisopiloturine (EPI) is a drug candidate that is extracted from Pilocarpus microphyllus and isolated from the waste of Pilocarpine. EPI has demonstrated promising schistosomicidal, leishmanicide, anti-inflammatory and antinociceptive activities, according to in vitro studies that have been carried out since 2009. However, this molecule shows poor aqueous solubility, which represents a problem for the release of the drug candidate and its absorption by the organism. The purpose of the present study is to investigate the extent of enhancement of kinetic solubility of a solid solution (SS) of EPI in hipromellose phthalate HP-55 (HPMCP), an enteric polymer carrier. SS was obtained by the solvent evaporation methodology, using acetone/methanol (60:40) as solvent system. Both EPI and polymer (drug loading 10%) were dissolved in this solvent until a clear solution was obtained, and then dried in oven at 60ºC during 12 hours, followed by drying in a vacuum oven for 4 h. The results show a considerable modification in the crystalline structure of the drug candidate. For instance, X-ray diffraction (XRD) shows a crystalline behavior for the EPI, which becomes amorphous for the SS. Polarized light microscopy, a more sensitive technique than XRD, also shows completely absence of crystals in SS sample. Differential Scanning Calorimetric (DSC) curves show no signal of EPI melting point in SS curve, indicating, once more, no presence of crystal in this system. Interaction between the drug candidate and the polymer were found in Infrared microscopy, which shows a carbonyl 43.3 cm-1 band shift, indicating a moderate-strong interaction between them, probably one of the reasons to the SS formation. Under sink conditions (pH 6.8), EPI SS had its dissolution performance increased in 2.8 times when compared with the isolated drug candidate. EPI SS sample provided a release of more than 95% of the drug candidate in 15 min, whereas only 45% of EPI (alone) could be dissolved in 15 min and 70% in 90 min. Thus, HPMCP demonstrates to have a good potential to enhance the kinetic solubility profile of EPI. Future studies to evaluate the stability of SS are required to conclude the benefits of this system.

Keywords: epiisopiloturine, hipromellose phthalate HP-55, pharmaceuticaltechnology, solubility

Procedia PDF Downloads 607
572 Effect of Ramp Rate on the Preparation of Activated Carbon from Saudi Date Tree Fronds (Agro Waste) by Physical Activation Method

Authors: Muhammad Shoaib, Hassan M Al-Swaidan

Abstract:

Saudi Arabia is the major date producer in the world. In order to maximize the production from date tree, pruning of the date trees is required annually. Large amount of this agriculture waste material (palm tree fronds) is available in Saudi Arabia and considered as an ideal source as a precursor for production of activated carbon (AC). The single step procedure for the preparation of micro porous activated carbon (AC) from Saudi date tree fronds using mixture of gases (N2 and CO2) is carried out at carbonization/activation temperature at 850°C and at different ramp rates of 10, 20 and 30 degree per minute. Alloy 330 horizontal reactor is used for tube furnace. Flow rate of nitrogen and carbon dioxide gases are kept at 150 ml/min and 50 ml/min respectively during the preparation. Characterization results reveal that the BET surface area, pore volume, and average pore diameter of the resulting activated carbon generally decreases with the increase in ramp rate. The activated carbon prepared at a ramp rate of 10 degrees/minute attains larger surface area and can offer higher potential to produce activated carbon of greater adsorption capacity from agriculture wastes such as date fronds. The BET surface areas of the activated carbons prepared at a ramp rate of 10, 20 and 30 degree/minute after 30 minutes activation time are 1094, 1020 and 515 m2/g, respectively. Scanning electron microscopy (SEM) for surface morphology, and FTIR for functional groups was carried out that also verified the same trend. Moreover, by increasing the ramp rate from 10 and 20 degrees/min the yield remains same, i.e. 18%, whereas at a ramp rate of 30 degrees/min the yield increases from 18 to 20%. Thus, it is feasible to produce high-quality micro porous activated carbon from date frond agro waste using N2 carbonization followed by physical activation with CO2 and N2 mixture. This micro porous activated carbon can be used as adsorbent of heavy metals from wastewater, NOx SOx emission adsorption from ambient air and electricity generation plants, purification of gases, sewage treatment and many other applications.

Keywords: activated carbon, date tree fronds, agricultural waste, applied chemistry

Procedia PDF Downloads 278
571 Diversity, Biochemical and Genomic Assessment of Selected Benthic Species of Two Tropical Lagoons, Southwest Nigeria

Authors: G. F. Okunade, M. O. Lawal, R. E. Uwadiae, D. Portnoy

Abstract:

The diversity, physico-chemical, biochemical and genomics assessment of Macrofauna species of Ologe and Badagry Lagoons were carried out between August 2016 and July 2018. The concentrations of Fe, Zn, Mn, Cd, Cr, and Pb in water were determined by Atomic Absorption Spectrophotometer (AAS). Particle size distribution was determined with wet-sieving and sedimentation using hydrometer method. Genomics analyses were carried using 25 P. fusca (quadriseriata) and 25 P.fusca from each lagoon due to abundance in both lagoons all through the two years of collection. DNA was isolated from each sample using the Mag-Bind Blood and Tissue DNA HD 96 kit; a method designed to isolate high quality. The biochemical characteristics were analysed in the dominanat species (P.aurita and T. fuscatus) using ELISA kits. Physico-chemical parameters such as pH, total dissolved solids, dissolved oxygen, conductivity and TDS were analysed using APHA standard protocols. The Physico-chemical parameters of the water quality recorded with mean values of 32.46 ± 0.66mg/L and 41.93 ± 0.65 for COD, 27.28 ± 0.97 and 34.82 ± 0.1 mg/L for BOD, 0.04 ± 4.71 mg/L for DO, 6.65 and 6.58 for pH in Ologe and Badagry lagoons with significant variations (p ≤ 0.05) across seasons. The mean and standard deviation of salinity for Ologe and Badagry Lagoons ranged from 0.43 ± 0.30 to 0.27 ± 0.09. A total of 4210 species belonging to a phylum, two classes, four families and a total of 2008 species in Ologe lagoon while a phylum, two classes, 5 families and a total of 2202 species in Badagry lagoon. The percentage composition of the classes at Ologe lagoon had 99% gastropod and 1% bivalve, while Gastropod contributed 98.91% and bivalve 1.09% in Badagry lagoon. Particle size was distributed in 0.002mm to 2.00mm, particle size distribution in Ologe lagoon recorded 0.83% gravels, 97.83% sand, and 1.33% silt particles while Badagry lagoon recorded 7.43% sand, 24.71% silt, and 67.86% clay particles hence, the excessive dredging activities going on in the lagoon. Maximum percentage of sand (100%) was seen in station 6 in Ologe lagoon while the minimum (96%) was found in station 1. P. aurita (Ologe Lagoon) and T. fuscastus (Badagry Lagoon) were the most abundant benthic species in which both contributed 61.05% and 64.35%, respectively. The enzymatic activities of P. aurita observed with mean values of 21.03 mg/dl for AST, 10.33 mg/dl for ALP, 82.16 mg/dl for ALT and 73.06 mg/dl for CHO in Ologe Lagoon While T. fuscatus observed mean values of Badagry Lagoon) recorded mean values 29.76 mg/dl, ALP with 11.69mg/L, ALT with 140.58 mg/dl and CHO with 45.98 mg/dl. There were significant variations (P < 0.05) in AST and CHO levels of activities in the muscles of the species.

Keywords: benthos, biochemical responses, genomics, metals, particle size

Procedia PDF Downloads 126
570 A Fast Method for Graphene-Supported Pd-Co Nanostructures as Catalyst toward Ethanol Oxidation in Alkaline Media

Authors: Amir Shafiee Kisomi, Mehrdad Mofidi

Abstract:

Nowadays, fuel cells as a promising alternative for power source have been widely studied owing to their security, high energy density, low operation temperatures, renewable capability and low environmental pollutant emission. The nanoparticles of core-shell type could be widely described in a combination of a shell (outer layer material) and a core (inner material), and their characteristics are greatly conditional on dimensions and composition of the core and shell. In addition, the change in the constituting materials or the ratio of core to the shell can create their special noble characteristics. In this study, a fast technique for the fabrication of a Pd-Co/G/GCE modified electrode is offered. Thermal decomposition reaction of cobalt (II) formate salt over the surface of graphene/glassy carbon electrode (G/GCE) is utilized for the synthesis of Co nanoparticles. The nanoparticles of Pd-Co decorated on the graphene are created based on the following method: (1) Thermal decomposition reaction of cobalt (II) formate salt and (2) the galvanic replacement process Co by Pd2+. The physical and electrochemical performances of the as-prepared Pd-Co/G electrocatalyst are studied by Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Cyclic Voltammetry (CV), and Chronoamperometry (CHA). Galvanic replacement method is utilized as a facile and spontaneous approach for growth of Pd nanostructures. The Pd-Co/G is used as an anode catalyst for ethanol oxidation in alkaline media. The Pd-Co/G not only delivered much higher current density (262.3 mAcm-2) compared to the Pd/C (32.1 mAcm-2) catalyst, but also demonstrated a negative shift of the onset oxidation potential (-0.480 vs -0.460 mV) in the forward sweep. Moreover, the novel Pd-Co/G electrocatalyst represents large electrochemically active surface area (ECSA), lower apparent activation energy (Ea), higher levels of durability and poisoning tolerance compared to the Pd/C catalyst. The paper demonstrates that the catalytic activity and stability of Pd-Co/G electrocatalyst are higher than those of the Pd/C electrocatalyst toward ethanol oxidation in alkaline media.

Keywords: thermal decomposition, nanostructures, galvanic replacement, electrocatalyst, ethanol oxidation, alkaline media

Procedia PDF Downloads 153
569 Nonlinear Evolution of the Pulses of Elastic Waves in Geological Materials

Authors: Elena B. Cherepetskaya, Alexander A. Karabutov, Natalia B. Podymova, Ivan Sas

Abstract:

Nonlinear evolution of broadband ultrasonic pulses passed through the rock specimens is studied using the apparatus ‘GEOSCAN-02M’. Ultrasonic pulses are excited by the pulses of Q-switched Nd:YAG laser with the time duration of 10 ns and with the energy of 260 mJ. This energy can be reduced to 20 mJ by some light filters. The laser beam radius did not exceed 5 mm. As a result of the absorption of the laser pulse in the special material – the optoacoustic generator–the pulses of longitudinal ultrasonic waves are excited with the time duration of 100 ns and with the maximum pressure amplitude of 10 MPa. The immersion technique is used to measure the parameters of these ultrasonic pulses passed through a specimen, the immersion liquid is distilled water. The reference pulse passed through the cell with water has the compression and the rarefaction phases. The amplitude of the rarefaction phase is five times lower than that of the compression phase. The spectral range of the reference pulse reaches 10 MHz. The cubic-shaped specimens of the Karelian gabbro are studied with the rib length 3 cm. The ultimate strength of the specimens by the uniaxial compression is (300±10) MPa. As the reference pulse passes through the area of the specimen without cracks the compression phase decreases and the rarefaction one increases due to diffraction and scattering of ultrasound, so the ratio of these phases becomes 2.3:1. After preloading some horizontal cracks appear in the specimens. Their location is found by one-sided scanning of the specimen using the backward mode detection of the ultrasonic pulses reflected from the structure defects. Using the computer processing of these signals the images are obtained of the cross-sections of the specimens with cracks. By the increase of the reference pulse amplitude from 0.1 MPa to 5 MPa the nonlinear transformation of the ultrasonic pulse passed through the specimen with horizontal cracks results in the decrease by 2.5 times of the amplitude of the rarefaction phase and in the increase of its duration by 2.1 times. By the increase of the reference pulse amplitude from 5 MPa to 10 MPa the time splitting of the phases is observed for the bipolar pulse passed through the specimen. The compression and rarefaction phases propagate with different velocities. These features of the powerful broadband ultrasonic pulses passed through the rock specimens can be described by the hysteresis model of Preisach-Mayergoyz and can be used for the location of cracks in the optically opaque materials.

Keywords: cracks, geological materials, nonlinear evolution of ultrasonic pulses, rock

Procedia PDF Downloads 350
568 Immobilizing Quorum Sensing Inhibitors on Biomaterial Surfaces

Authors: Aditi Taunk, George Iskander, Kitty Ka Kit Ho, Mark Willcox, Naresh Kumar

Abstract:

Bacterial infections on biomaterial implants and medical devices accounts for 60-70% of all hospital acquired infections (HAIs). Treatment or removal of these infected devices results in high patient mortality and morbidity along with increased hospital expenses. In addition, with no effective strategies currently available and rapid development of antibacterial resistance has made device-related infections extremely difficult to treat. Therefore, in this project we have developed biomaterial surfaces using antibacterial compounds that inhibit biofilm formation by interfering with the bacterial communication mechanism known as quorum sensing (QS). This study focuses on covalent attachment of potent quorum sensing (QS) inhibiting compounds, halogenated furanones (FUs) and dihydropyrrol-2-ones (DHPs), onto glass surfaces. The FUs were attached by photoactivating the azide groups on the surface, and the acid functionalized DHPs were immobilized on amine surface via EDC/NHS coupling. The modified surfaces were tested in vitro against pathogenic organisms such as Staphylococcus aureus and Pseudomonas aeruginosa using confocal laser scanning microscopy (CLSM). Successful attachment of compounds on the substrates was confirmed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antibacterial efficacy was assessed, and significant reduction in bacterial adhesion and biofilm formation was observed on the FU and DHP coated surfaces. The activity of the coating was dependent upon the type of substituent present on the phenyl group of the DHP compound. For example, the ortho-fluorophenyl DHP (DHP-2) exhibited 79% reduction in bacterial adhesion against S. aureus and para-fluorophenyl DHP (DHP-3) exhibited 70% reduction against P. aeruginosa. The results were found to be comparable to DHP coated surfaces prepared in earlier study via Michael addition reaction. FUs and DHPs were able to retain their in vitro antibacterial efficacy after covalent attachment via azide chemistry. This approach is a promising strategy to develop efficient antibacterial biomaterials to reduce device related infections.

Keywords: antibacterial biomaterials, biomedical device-related infections, quorum sensing, surface functionalization

Procedia PDF Downloads 268
567 An Inorganic Nanofiber/Polymeric Microfiber Network Membrane for High-Performance Oil/Water Separation

Authors: Zhaoyang Liu

Abstract:

It has been highly desired to develop a high-performance membrane for separating oil/water emulsions with the combined features of high water flux, high oil separation efficiency, and high mechanical stability. Here, we demonstrated a design for high-performance membranes constructed with ultra-long titanate nanofibers (over 30 µm in length)/cellulose microfibers. An integrated network membrane was achieved with these ultra-long nano/microfibers, contrast to the non-integrated membrane constructed with carbon nanotubes (5 µm in length)/cellulose microfibers. The morphological properties of the prepared membranes were characterized by A FEI Quanta 400 (Hillsboro, OR, United States) environmental scanning electron microscope (ESEM). The hydrophilicity, underwater oleophobicity and oil adhesion property of the membranes were examined using an advanced goniometer (Rame-hart model 500, Succasunna, NJ, USA). More specifically, the hydrophilicity of membranes was investigated by analyzing the spreading process of water into membranes. A filtration device (Nalgene 300-4050, Rochester, NY, USA) with an effective membrane area of 11.3 cm² was used for evaluating the separation properties of the fabricated membranes. The prepared oil-in-water emulsions were poured into the filtration device. The separation process was driven under vacuum with a constant pressure of 5 kPa. The filtrate was collected, and the oil content in water was detected by a Shimadzu total organic carbon (TOC) analyzer (Nakagyo-ku, Kyoto, Japan) to examine the separation efficiency. Water flux (J) of the membrane was calculated by measuring the time needed to collect some volume of permeate. This network membrane demonstrated good mechanical flexibility and robustness, which are critical for practical applications. This network membrane also showed high separation efficiency (99.9%) for oil/water emulsions with oil droplet size down to 3 µm, and meanwhile, has high water permeation flux (6.8 × 10³ L m⁻² h⁻¹ bar⁻¹) at low operation pressure. The high water flux is attributed to the interconnected scaffold-like structure throughout the whole membrane, while the high oil separation efficiency is attributed to the nanofiber-made nanoporous selective layer. Moreover, the economic materials and low-cost fabrication process of this membrane indicate its great potential for large-scale industrial applications.

Keywords: membrane, inorganic nanofibers, oil/water separation, emulsions

Procedia PDF Downloads 172