Search results for: language learning
Adapted Intersection over Union: A Generalized Metric for Evaluating Unsupervised Classification Models
Authors: Prajwal Prakash Vasisht, Sharath Rajamurthy, Nishanth Dara
Abstract:
In a supervised machine learning approach, metrics such as precision, accuracy, and coverage can be calculated using ground truth labels to help in model tuning, evaluation, and selection. In an unsupervised setting, however, where the data has no ground truth, there are few interpretable metrics that can guide us to do the same. Our approach creates a framework to adapt the Intersection over Union metric, referred to as Adapted IoU, usually used to evaluate supervised learning models, into the unsupervised domain, which solves the problem by factoring in subject matter expertise and intuition about the ideal output from the model. This metric essentially provides a scale that allows us to compare the performance across numerous unsupervised models or tune hyper-parameters and compare different versions of the same model.Keywords: general metric, unsupervised learning, classification, intersection over union
Procedia PDF Downloads 54Using ePortfolios to Mapping Social Work Graduate Competencies
Authors: Cindy Davis
Abstract:
Higher education is changing globally and there is increasing pressure from professional social work accreditation bodies for academic programs to demonstrate how students have successfully met mandatory graduate competencies. As professional accreditation organizations increase their demand for evidence of graduate competencies, strategies to document and recording learning outcomes becomes increasingly challenging for academics and students. Studies in higher education have found support for the pedagogical value of ePortfolios, a flexible personal learning space that is owned by the student and include opportunity for assessment, feedback and reflection as well as a virtual space to store evidence of demonstration of professional competencies and graduate attributes. Examples of institutional uses of ePortfolios include e-administration of a diverse student population, assessment of student learning, and the demonstration of graduate attributes attained and future student career preparation. The current paper presents a case study on the introduction of ePortfolios for social work graduates in Australia as part of an institutional approach to technology-enhanced learning and e-learning. Social work graduates were required to submit an ePortfolio hosted on PebblePad. The PebblePad platform was selected because it places the student at the center of their learning whilst providing powerful tools for staff to structure, guide and assess that learning. The ePortofolio included documentation and evidence of how the student met each graduate competency as set out by the social work accreditation body in Australia (AASW). This digital resource played a key role in the process of external professional accreditation by clearly documenting and evidencing how students met required graduate competencies. In addition, student feedback revealed a positive outcome on how this resource provided them with a consolidation of their learning experiences and assisted them in obtaining employment post-graduation. There were also significant institutional factors that were key to successful implementation such as investment in the digital technology, capacity building amongst academics, and technical support for staff and students.Keywords: accreditation, social work, teaching, technology
Procedia PDF Downloads 140A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification
Authors: Ian Omung'a
Abstract:
Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision
Procedia PDF Downloads 97The School Based Support Program: An Evaluation of a Comprehensive School Reform Initiative in the State of Qatar
Authors: Abdullah Abu-Tineh, Youmen Chaaban
Abstract:
This study examines the development of a professional development (PD) model for teacher growth and learning that is embedded into the school context. The School based Support Program (SBSP), designed for the Qatari context, targets the practices, knowledge and skills of both school leadership and teachers in an attempt to improve student learning outcomes. Key aspects of the model include the development of learning communities among teachers, strong leadership that supports school improvement activities, and the use of research-based PD to improve teacher practices and student achievement. This paper further presents findings from an evaluation of this PD program. Based on an adaptation of Guskey’s evaluation of PD models, 100 teachers at the participating schools were selected for classroom observations and 40 took part in in-depth interviews to examine changed classroom practices. The impact of the PD program on student learning was also examined. Teachers’ practices and their students’ achievement in English, Arabic, mathematics and science were measured at the beginning and at the end of the intervention.Keywords: initiative, professional development, school based support Program (SBSP), school reform
Procedia PDF Downloads 500Non-Cognitive Skills Associated with Learning in a Serious Gaming Environment: A Pretest-Posttest Experimental Design
Authors: Tanja Kreitenweis
Abstract:
Lifelong learning is increasingly seen as essential for coping with the rapidly changing work environment. To this end, serious games can provide convenient and straightforward access to complex knowledge for all age groups. However, learning achievements depend largely on a learner’s non-cognitive skill disposition (e.g., motivation, self-belief, playfulness, and openness). With the aim of combining the fields of serious games and non-cognitive skills, this research focuses in particular on the use of a business simulation, which conveys change management insights. Business simulations are a subset of serious games and are perceived as a non-traditional learning method. The presented objectives of this work are versatile: (1) developing a scale, which measures learners’ knowledge and skills level before and after a business simulation was played, (2) investigating the influence of non-cognitive skills on learning in this business simulation environment and (3) exploring the moderating role of team preference in this type of learning setting. First, expert interviews have been conducted to develop an appropriate measure for learners’ skills and knowledge assessment. A pretest-posttest experimental design with German management students was implemented to approach the remaining objectives. By using the newly developed, reliable measure, it was found that students’ skills and knowledge state were higher after the simulation had been played, compared to before. A hierarchical regression analysis revealed two positive predictors for this outcome: motivation and self-esteem. Unexpectedly, playfulness had a negative impact. Team preference strengthened the link between grit and playfulness, respectively, and learners’ skills and knowledge state after completing the business simulation. Overall, the data underlined the potential of business simulations to improve learners’ skills and knowledge state. In addition, motivational factors were found as predictors for benefitting most from the applied business simulation. Recommendations are provided for how pedagogues can use these findings.Keywords: business simulations, change management, (experiential) learning, non-cognitive skills, serious games
Procedia PDF Downloads 111Satisfaction of the Training at ASEAN Camp: E-Learning Knowledge and Application at Chantanaburi Province, Thailand
Authors: Sinchai Poolklai
Abstract:
The purpose of this research paper was aimed to examine the level of satisfaction of the faculty members who participated in the ASEAN camp, Chantaburi, Thailand. The population of this study included all the faculty members of Suan Sunandha Rajabhat University who participated in the training and activities of the ASEAN camp during March, 2014. Among a total of 200 faculty members who answered the questionnaire, the data was complied by using SPSS program. Percentage, mean and standard deviation were utilized in analyzing the data. The findings revealed that the average mean of satisfaction was 4.37, and standard deviation was 0.7810. Moreover, the mean average can be used to rank the level of satisfaction from each of the following factors: lower cost, less time consuming, faster delivery, more effective learning, and lower environment impact.Keywords: ASEAN camp, e-learning, satisfaction, application
Procedia PDF Downloads 393Circle Work as a Relational Praxis to Facilitate Collaborative Learning within Higher Education: A Decolonial Pedagogical Framework for Teaching and Learning in the Virtual Classroom
Authors: Jennifer Nutton, Gayle Ployer, Ky Scott, Jenny Morgan
Abstract:
Working in a circle within higher education creates a decolonial space of mutual respect, responsibility, and reciprocity that facilitates collaborative learning and deep connections among learners and instructors. This approach is beyond simply facilitating a group in a circle but opens the door to creating a sacred space connecting each member to the land, to the Indigenous peoples who have taken care of the lands since time immemorial, to one another, and to one’s own positionality. These deep connections not only center human knowledges and relationships but also acknowledges responsibilities to land. Working in a circle as a relational pedagogical praxis also disrupts institutional power dynamics by creating a space of collaborative learning and deep connections in the classroom. Inherent within circle work is to facilitate connections not just academically but emotionally, physically, culturally, and spiritually. Recent literature supports the use of online talking circles, finding that it can offer a more relational and experiential learning environment, which is often absent in the virtual world and has been made more evident and necessary since the pandemic. These deeper experiences of learning and connection, rooted in both knowledge and the land, can then be shared with openness and vulnerability with one another, facilitating growth and change. This process of beginning with the land is critical to ensure we have the grounding to obstruct the ongoing realities of colonialism. The authors, who identify as both Indigenous and non-Indigenous, as both educators and learners, reflect on their teaching and learning experiences in circle. They share a relational pedagogical praxis framework that has been successful in educating future social workers, environmental activists, and leaders in social and human services, health, legal and political fields.Keywords: circle work, relational pedagogies, decolonization, distance education
Procedia PDF Downloads 81Enhancing Student Learning Outcomes Using Engineering Design Process: Case Study in Physics Course
Authors: Thien Van Ngo
Abstract:
The engineering design process is a systematic approach to solving problems. It involves identifying a problem, brainstorming solutions, prototyping and testing solutions, and evaluating the results. The engineering design process can be used to teach students how to solve problems in a creative and innovative way. The research aim of this study was to investigate the effectiveness of using the engineering design process to enhance student learning outcomes in a physics course. A mixed research method was used in this study. The quantitative data were collected using a pretest-posttest control group design. The qualitative data were collected using semi-structured interviews. The sample was 150 first-year students in the Department of Mechanical Engineering Technology at Cao Thang Technical College in Vietnam in the 2022-2023 school year. The quantitative data were collected using a pretest-posttest control group design. The pretest was administered to both groups at the beginning of the study. The posttest was administered to both groups at the end of the study. The qualitative data were collected using semi-structured interviews with a sample of eight students in the experimental group. The interviews were conducted after the posttest. The quantitative data were analyzed using independent sample T-tests. The qualitative data were analyzed using thematic analysis. The quantitative data showed that students in the experimental group, who were taught using the engineering design process, had significantly higher post-test scores on physics problem-solving than students in the control group, who were taught using the conventional method. The qualitative data showed that students in the experimental group were more motivated and engaged in the learning process than students in the control group. Students in the experimental group also reported that they found the engineering design process to be a more effective way of learning physics. The findings of this study suggest that the engineering design process can be an effective way of enhancing student learning outcomes in physics courses. The engineering design process engages students in the learning process and helps them to develop problem-solving skills.Keywords: engineering design process, problem-solving, learning outcome of physics, students’ physics competencies, deep learning
Procedia PDF Downloads 71Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models
Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt
Abstract:
Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach
Procedia PDF Downloads 103Glucose Monitoring System Using Machine Learning Algorithms
Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe
Abstract:
The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning
Procedia PDF Downloads 209A Consideration of Dialectal and Stylistic Shifts in Literary Translation
Authors: Pushpinder Syal
Abstract:
Literary writing carries the stamp of the current language of its time. In translating such texts, it becomes a challenge to capture such reflections which may be evident at several levels: the level of dialectal use of language by characters in stories, the alterations in syntax as tools of writers’ individual stylistic choices, the insertion of quasi-proverbial and gnomic utterances, and even the level of the pragmatics of narrative discourse. Discourse strategies may differ between earlier and later texts, reflecting changing relationships between narrators and readers in changed cultural and social contexts. This paper is a consideration of these features by an approach that combines historicity with a description, contextualizing language change within a discourse framework. The process of translating a collection of writings of Punjabi literature spanning 100 years was undertaken for this study and it was observed that the factor of the historicity of language was seen to play a role. While intended for contemporary readers, the translation of literature over the span of a century poses the dual challenge of needing to possess both accessibility and immediacy as well as adherence to the 'old world' styles of communicating and narrating. The linguistic changes may be observed in a more obvious sense in the difference of diction and word formation – with evidence of more hybridized and borrowed forms in modern and contemporary writings, as compared to the older writings. The latter not only contain vestiges of proverbs and folk sayings, but are also closer to oral speech styles. These will be presented and analysed in the form of chronological listing and by these means, the social process of translation from orality to written text can be seen as traceable in the above-mentioned works. More subtle and underlying shifts can be seen through the analysis of speech acts and implicatures in the same literature, in which the social relationships underlying language use are evident as discourse systems of belief and understanding. They present distinct shifts in worldview as seen at different points in time. However, some continuities of language and style are also clearly visible, and these aid the translator in putting together a set of thematic links which identify the literature of a region and community, and constitute essential outcomes in the effort to preserve its distinctive nature.Keywords: cultural change, dialect, historicity, stylistic variation
Procedia PDF Downloads 134Students’ Post COVID-19 Experiences with E-Learning Platforms among Undergraduate Students of Public Universities in the Ashanti Region, Ghana
Authors: Michael Oppong, Stephanie Owusu Ansah, Daniel Ofori
Abstract:
The study investigated students’ post-covid-19 experiences with e-learning platforms among undergraduate students of public universities in the Ashanti region of Ghana. The study respectively drew 289 respondents from two public universities, i.e., Kwame Nkrumah University of Science and Technology (KNUST) Business School and the Kumasi Technical University (KsTU) Business School in Ghana. Given that the population from the two public universities was fairly high, sampling had to be done. The overall population of the study was 480 students randomly sampled from the two public universities using the sampling ratio given by Alreck and Settle (2004). The population constituted 360 students from the Kwame Nkrumah University of Science and Technology (KNUST) Business School and 120 from the Kumasi Technical University Business School (KsTU). The study employed questionnaires as a data collection tool. The data gathered were 289 responses out of 480 questionnaires administered, representing 60.2%. The data was analyzed using pie charts, bar charts, percentages, and line graphs. Findings revealed that the e-learning platforms were still useful. However, the students used it on a weekly basis post-COVID-19, unlike in the COVID-19 era, where it was used daily. All other academic activities, with the exception of examinations, are still undertaken on the e-learning platforms; however, it is underutilized in the post-COVID-19 experience. The study recommends that universities should invest in infrastructure development to enable all academic activities, most especially examinations, to be undertaken using the e-learning platforms to curtail future challenges.Keywords: e-learning platform, undergraduate students, post-COVID-19 experience, public universities
Procedia PDF Downloads 107Role of Special Training Centers (STC) in Right to Education Act Challenges And Remedies
Authors: Anshu Radha Aggarwal
Abstract:
As per the Right to Education Act (RTE), 2009, every child in the age group of 6-14 years shall be admitted in a neighborhood school. All the Out of School Children identified have to be enrolled / mainstreamed in to age appropriate class and there-after be provided special training. This paper addresses issues emerging from provisions in the RTE Act that specifically refer to the enrolment of out-of school children into age appropriate classes and the requirement to provide special trainings that will enable this to take place. In the context of RTE Act, the Out-of-School Children are first enrolled in the formal school and then they are provided with Special Training through NRSTCs (Long Term / Short term basis). These centers are functioning in formal school campus itself. This paper specifies the role of special training centers (STC). It presents a re-envisioning of assessment that recognizes two principal functions of assessment, assessment for learning and assessment of learning, instead of the more familiar categories of formative, diagnostic, summative, and evaluative assessment. The use of these two functions of assessment highlights and emphasizes the role of special training centers (STC) to assess their level for giving them appropriate special training and to evaluate their improvement in learning level. Challenge of problem faced by teachers to do diagnostic assessment, including its place in the sequence of assessment procedures appropriate in identifying and addressing individual children’s learning difficulties are solved by special training centers (STC). It is important that assessment is used to identify children with learning difficulties at the earliest possible stage so that appropriate support and intervention can be put in place. So appropriate challenges with tools are presented here for their assessment at entry level and at completion level of primary children by special training centers (STC).Keywords: right to education, assessment, challenges, out of school children
Procedia PDF Downloads 464Modeling False Statements in Texts
Authors: Francielle A. Vargas, Thiago A. S. Pardo
Abstract:
According to the standard philosophical definition, lying is saying something that you believe to be false with the intent to deceive. For deception detection, the FBI trains its agents in a technique named statement analysis, which attempts to detect deception based on parts of speech (i.e., linguistics style). This method is employed in interrogations, where the suspects are first asked to make a written statement. In this poster, we model false statements using linguistics style. In order to achieve this, we methodically analyze linguistic features in a corpus of fake news in the Portuguese language. The results show that they present substantial lexical, syntactic and semantic variations, as well as punctuation and emotion distinctions.Keywords: deception detection, linguistics style, computational linguistics, natural language processing
Procedia PDF Downloads 223The Different Ways to Describe Regular Languages by Using Finite Automata and the Changing Algorithm Implementation
Authors: Abdulmajid Mukhtar Afat
Abstract:
This paper aims at introducing finite automata theory, the different ways to describe regular languages and create a program to implement the subset construction algorithms to convert nondeterministic finite automata (NFA) to deterministic finite automata (DFA). This program is written in c++ programming language. The program reads FA 5tuples from text file and then classifies it into either DFA or NFA. For DFA, the program will read the string w and decide whether it is acceptable or not. If accepted, the program will save the tracking path and point it out. On the other hand, when the automation is NFA, the program will change the Automation to DFA so that it is easy to track and it can decide whether the w exists in the regular language or not.Keywords: finite automata, subset construction, DFA, NFA
Procedia PDF Downloads 432Machine Learning in Momentum Strategies
Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu
Abstract:
The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.Keywords: information coefficient, machine learning, momentum, portfolio, return prediction
Procedia PDF Downloads 59Cooperative Learning Mechanism in Intelligent Multi-Agent System
Authors: Ayman M. Mansour, Bilal Hawashin, Mohammed A. Mansour
Abstract:
In this paper, we propose a cooperative learning mechanism in a multi-agent intelligent system. The basic idea is that intelligent agents are capable of collaborating with one another by sharing their knowledge. The agents will start collaboration by providing their knowledge rules to the other agents. This will allow the most important and insightful detection rules produced by the most experienced agent to bubble up for the benefit of the entire agent community. The updated rules will lead to improving the agents’ decision performance. To evaluate our approach, we designed a five–agent system and implemented it using JADE and FuzzyJess software packages. The agents will work with each other to make a decision about a suspicious medical case. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life.Keywords: intelligent, multi-agent system, cooperative, fuzzy, learning
Procedia PDF Downloads 691American Sign Language Recognition System
Authors: Rishabh Nagpal, Riya Uchagaonkar, Venkata Naga Narasimha Ashish Mernedi, Ahmed Hambaba
Abstract:
The rapid evolution of technology in the communication sector continually seeks to bridge the gap between different communities, notably between the deaf community and the hearing world. This project develops a comprehensive American Sign Language (ASL) recognition system, leveraging the advanced capabilities of convolutional neural networks (CNNs) and vision transformers (ViTs) to interpret and translate ASL in real-time. The primary objective of this system is to provide an effective communication tool that enables seamless interaction through accurate sign language interpretation. The architecture of the proposed system integrates dual networks -VGG16 for precise spatial feature extraction and vision transformers for contextual understanding of the sign language gestures. The system processes live input, extracting critical features through these sophisticated neural network models, and combines them to enhance gesture recognition accuracy. This integration facilitates a robust understanding of ASL by capturing detailed nuances and broader gesture dynamics. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing diverse ASL signs, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced ASL recognition system and lays the groundwork for future innovations in assistive communication technologies.Keywords: sign language, computer vision, vision transformer, VGG16, CNN
Procedia PDF Downloads 49Learning Materials for Enhancing Sustainable Colour Fading Process of Fashion Products
Authors: C. W. Kan, H. F. Cheung, Y. S. Lee
Abstract:
This study examines the results of colour fading of cotton fabric by plasma-induced ozone treatment, with an aim to provide learning materials for fashion designers when designing colour fading effects in fashion products. Cotton knitted fabrics were dyed with red reactive dye with a colour depth of 1.5% and were subjected to ozone generated by a commercially available plasma machine for colour fading. The plasma-induced ozone treatment was conducted with different parameters: (i) air concentration = 10%, 30%, 50% and 70%; (ii) water content in fabric = 35% and 45%, and (iii) treatment time = 10 minutes, 20 minutes and 30 minutes. Finally, the colour properties of the plasma–induced ozone treated fabric were measured by spectrophotometer under illuminant D65 to obtain the CIE L*, CIE a* and CIE b* values.Keywords: learning materials, colour fading, colour properties, fashion products
Procedia PDF Downloads 291Expanding Learning Reach: Innovative VR-Enabled Retention Strategies
Authors: Bilal Ahmed, Muhammad Rafiq, Choongjae Im
Abstract:
The tech-savvy Gen Z's transfer towards interactive concept learning is hammering the demand for online collaborative learning environments, renovating conventional education approaches. The authors propose a novel approach to enhance learning outcomes to improve retention in 3D interactive education by connecting virtual reality (VR) and non-VR devices in the classroom and distance learning. The study evaluates students' experiences with VR interconnectivity devices in human anatomy lectures using real-time 3D interactive data visualization. Utilizing the renowned "Guo & Pooles Inventory" and the "Flow for Presence Questionnaires," it used an experimental research design with a control and experimental group to assess this novel connecting strategy's effectiveness and significant potential for in-person and online educational settings during the sessions. The experimental group's interactions, engagement levels, and usability experiences were assessed using the "Guo & Pooles Inventory" and "Flow for Presence Questionnaires," which measure their sense of presence, engagement, and immersion throughout the learning process using a 5-point Likert scale. At the end of the sessions, we used the "Perceived Usability Scale" to find our proposed system's overall efficiency, effectiveness, and satisfaction. By comparing both groups, the students in the experimental group used the integrated VR environment and VR to non-VR devices, and their sense of presence and attentiveness was significantly improved, allowing for increased engagement by giving students diverse technological access. Furthermore, learners' flow states demonstrated increased absorption and focus levels, improving information retention and Perceived Usability. The findings of this study can help educational institutions optimize their technology-enhanced teaching methods for traditional classroom settings as well as distance-based learning, where building a sense of connection among remote learners is critical. This study will give significant insights into educational technology and its ongoing progress by analyzing engagement, interactivity, usability, satisfaction, and presence.Keywords: interactive learning environments, human-computer interaction, virtual reality, computer- supported collaborative learning
Procedia PDF Downloads 68Adaption of the Design Thinking Method for Production Planning in the Meat Industry Using Machine Learning Algorithms
Authors: Alica Höpken, Hergen Pargmann
Abstract:
The resource-efficient planning of the complex production planning processes in the meat industry and the reduction of food waste is a permanent challenge. The complexity of the production planning process occurs in every part of the supply chain, from agriculture to the end consumer. It arises from long and uncertain planning phases. Uncertainties such as stochastic yields, fluctuations in demand, and resource variability are part of this process. In the meat industry, waste mainly relates to incorrect storage, technical causes in production, or overproduction. The high amount of food waste along the complex supply chain in the meat industry could not be reduced by simple solutions until now. Therefore, resource-efficient production planning by conventional methods is currently only partially feasible. The realization of intelligent, automated production planning is basically possible through the application of machine learning algorithms, such as those of reinforcement learning. By applying the adapted design thinking method, machine learning methods (especially reinforcement learning algorithms) are used for the complex production planning process in the meat industry. This method represents a concretization to the application area. A resource-efficient production planning process is made available by adapting the design thinking method. In addition, the complex processes can be planned efficiently by using this method, since this standardized approach offers new possibilities in order to challenge the complexity and the high time consumption. It represents a tool to support the efficient production planning in the meat industry. This paper shows an elegant adaption of the design thinking method to apply the reinforcement learning method for a resource-efficient production planning process in the meat industry. Following, the steps that are necessary to introduce machine learning algorithms into the production planning of the food industry are determined. This is achieved based on a case study which is part of the research project ”REIF - Resource Efficient, Economic and Intelligent Food Chain” supported by the German Federal Ministry for Economic Affairs and Climate Action of Germany and the German Aerospace Center. Through this structured approach, significantly better planning results are achieved, which would be too complex or very time consuming using conventional methods.Keywords: change management, design thinking method, machine learning, meat industry, reinforcement learning, resource-efficient production planning
Procedia PDF Downloads 132The Design Method of Artificial Intelligence Learning Picture: A Case Study of DCAI's New Teaching
Authors: Weichen Chang
Abstract:
To create a guided teaching method for AI generative drawing design, this paper develops a set of teaching models for AI generative drawing (DCAI), which combines learning modes such as problem-solving, thematic inquiry, phenomenon-based, task-oriented, and DFC . Through the information security AI picture book learning guided programs and content, the application of participatory action research (PAR) and interview methods to explore the dual knowledge of Context and ChatGPT (DCAI) for AI to guide the development of students' AI learning skills. In the interviews, the students highlighted five main learning outcomes (self-study, critical thinking, knowledge generation, cognitive development, and presentation of work) as well as the challenges of implementing the model. Through the use of DCAI, students will enhance their consensus awareness of generative mapping analysis and group cooperation, and they will have knowledge that can enhance AI capabilities in DCAI inquiry and future life. From this paper, it is found that the conclusions are (1) The good use of DCAI can assist students in exploring the value of their knowledge through the power of stories and finding the meaning of knowledge communication; (2) Analyze the transformation power of the integrity and coherence of the story through the context so as to achieve the tension of ‘starting and ending’; (3) Use ChatGPT to extract inspiration, arrange story compositions, and make prompts that can communicate with people and convey emotions. Therefore, new knowledge construction methods will be one of the effective methods for AI learning in the face of artificial intelligence, providing new thinking and new expressions for interdisciplinary design and design education practice.Keywords: artificial intelligence, task-oriented, contextualization, design education
Procedia PDF Downloads 39A Theoretical Framework on Using Social Stories with the Creative Arts for Individuals on the Autistic Spectrum
Authors: R. Bawazir, P. Jones
Abstract:
Social Stories are widely used to teach social and communication skills or concepts to individuals on the autistic spectrum. This paper presents a theoretical framework for using Social Stories in conjunction with the creative arts. The paper argues that Bandura’s social learning theory can be used to explain the mechanisms behind Social Stories and the way they influence changes in response, while Gardner’s multiple intelligences theory can be used simultaneously to demonstrate the role of the creative arts in learning. By using Social Stories with the creative arts for individuals on the autistic spectrum, the aim is to meet individual needs and help individuals with autism to develop in different areas of learning and communication.Keywords: individuals on the autistic spectrum, social stories, the creative arts, theoretical framework
Procedia PDF Downloads 328An Event-Related Potentials Study on the Processing of English Subjunctive Mood by Chinese ESL Learners
Authors: Yan Huang
Abstract:
Event-related potentials (ERPs) technique helps researchers to make continuous measures on the whole process of language comprehension, with an excellent temporal resolution at the level of milliseconds. The research on sentence processing has developed from the behavioral level to the neuropsychological level, which brings about a variety of sentence processing theories and models. However, the applicability of these models to L2 learners is still under debate. Therefore, the present study aims to investigate the neural mechanisms underlying English subjunctive mood processing by Chinese ESL learners. To this end, English subject clauses with subjunctive moods are used as the stimuli, all of which follow the same syntactic structure, “It is + adjective + that … + (should) do + …” Besides, in order to examine the role that language proficiency plays on L2 processing, this research deals with two groups of Chinese ESL learners (18 males and 22 females, mean age=21.68), namely, high proficiency group (Group H) and low proficiency group (Group L). Finally, the behavioral and neurophysiological data analysis reveals the following findings: 1) Syntax and semantics interact with each other on the SECOND phase (300-500ms) of sentence processing, which is partially in line with the Three-phase Sentence Model; 2) Language proficiency does affect L2 processing. Specifically, for Group H, it is the syntactic processing that plays the dominant role in sentence processing while for Group L, semantic processing also affects the syntactic parsing during the THIRD phase of sentence processing (500-700ms). Besides, Group H, compared to Group L, demonstrates a richer native-like ERPs pattern, which further demonstrates the role of language proficiency in L2 processing. Based on the research findings, this paper also provides some enlightenment for the L2 pedagogy as well as the L2 proficiency assessment.Keywords: Chinese ESL learners, English subjunctive mood, ERPs, L2 processing
Procedia PDF Downloads 134Perception of Nursing Students’ Engagement With Emergency Remote Learning During COVID 19 Pandemic
Authors: Jansirani Natarajan, Mickael Antoinne Joseph
Abstract:
The COVID-19 pandemic has interrupted face-to-face education and forced universities into an emergency remote teaching curriculum over a short duration. This abrupt transition in the Spring 2020 semester left both faculty and students without proper preparation for continuing higher education in an online environment. Online learning took place in different formats, including fully synchronous, fully asynchronous, and blended in our university through the e-learning platform MOODLE. Studies have shown that students’ engagement, is a critical factor for optimal online teaching. Very few studies have assessed online engagement with ERT during the COVID-19 pandemic. Purpose: Therefore, this study, sought to understand how the sudden transition to emergency remote teaching impacted nursing students’ engagement with online courses in a Middle Eastern public university. Method: A cross-sectional descriptive research design was adopted in this study. Data were collected through a self-reported online survey using Dixon’s online students’ engagement questionnaire from a sample of 177 nursing students after the ERT learning semester. Results The maximum possible engagement score was 95, and the maximum scores in the domains of skills engagement, emotional engagement, participation engagement, and performance engagement were 30, 25, 30, and 10 respectively. Dixson (2010) noted that a mean item score of ≥3.5 (total score of ≥66.5) represents a highly engaged student. The majority of the participants were females (71.8%) and 84.2% were regular BSN students. Most of them (32.2%) were second-year students and 52% had a CGPA between 2 and 3. Most participants (56.5%) had low engagement scores with ERT learning during the COVID lockdown. Among the four engagement domains, 78% had low engagement scores for the participation domain. There was no significant association found between the engagement and the demographic characteristics of the participants. Conclusion The findings supported the importance of engaging students in all four categories skill, emotional, performance, and participation. Based on the results, training sessions were organized for faculty on various strategies for engaging nursing students in all domains by using the facilities available in the MOODLE (online e-learning platform). It added value as a dashboard of information regarding ERT for the administrators and nurse educators to introduce numerous active learning strategies to improve the quality of teaching and learning of nursing students in the University.Keywords: engagement, perception, emergency remote learning, COVID-19
Procedia PDF Downloads 67Authorship Attribution Using Sociolinguistic Profiling When Considering Civil and Criminal Cases
Authors: Diana A. Sokolova
Abstract:
This article is devoted to one of the possibilities for identifying the author of an oral or written text - sociolinguistic profiling. Sociolinguistic profiling is utilized as a forensic linguistics technique to identify individuals through language patterns, particularly in criminal cases. It examines how social factors influence language use. This study aims to showcase the significance of linguistic profiling for attributing authorship in texts and emphasizes the necessity for its continuous enhancement while considering its strengths and weaknesses. The study employs semantic-syntactic, lexical-semantic, linguopragmatic, logical, presupposition, authorization, and content analysis methods to investigate linguistic profiling. The research highlights the relevance of sociolinguistic profiling in authorship attribution and underscores the importance of ongoing refinement of the technique, considering its limitations. This study emphasizes the practical application of linguistic profiling in legal settings and underscores the impact of social factors on language use, contributing to the field of forensic linguistics. Data collection involves collecting oral and written texts from criminal and civil court cases to analyze language patterns for authorship attribution. The collected data is analyzed using various linguistic analysis methods to identify individual characteristics and patterns that can aid in authorship attribution. The study addresses the effectiveness of sociolinguistic profiling in identifying authors of texts and explores the impact of social factors on language use in legal contexts. In spite of advantages challenges in linguistics profiling have spurred debates and controversies in academic circles, legal environments, and the public sphere. So, this research highlights the significance of sociolinguistic profiling in authorship attribution and emphasizes the need for further development of this method, considering its strengths and weaknesses.Keywords: authorship attribution, detection of identifying, dialect, features, forensic linguistics, social influence, sociolinguistics, unique speech characteristics
Procedia PDF Downloads 45The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia
Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba
Abstract:
Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of the acquisition of new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used, is the analysis of the dynamics of different areas of the brain during a cognitive activity to find the relationships between the different areas analyzed in order to better understand the functioning of neural networks. Also, the latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neuro-developmental difficulties for their subsequent assessment and cure. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho pedagogical plans that allow obtaining an optimal integral development of the affected people.Keywords: dyscalculia, neurodevelopment, evoked potentials, Learning disabilities, neural networks
Procedia PDF Downloads 147Online Yoga Asana Trainer Using Deep Learning
Authors: Venkata Narayana Chejarla, Nafisa Parvez Shaik, Gopi Vara Prasad Marabathula, Deva Kumar Bejjam
Abstract:
Yoga is an advanced, well-recognized method with roots in Indian philosophy. Yoga benefits both the body and the psyche. Yoga is a regular exercise that helps people relax and sleep better while also enhancing their balance, endurance, and concentration. Yoga can be learned in a variety of settings, including at home with the aid of books and the internet as well as in yoga studios with the guidance of an instructor. Self-learning does not teach the proper yoga poses, and doing them without the right instruction could result in significant injuries. We developed "Online Yoga Asana Trainer using Deep Learning" so that people could practice yoga without a teacher. Our project is developed using Tensorflow, Movenet, and Keras models. The system makes use of data from Kaggle that includes 25 different yoga poses. The first part of the process involves applying the movement model for extracting the 17 key points of the body from the dataset, and the next part involves preprocessing, which includes building a pose classification model using neural networks. The system scores a 98.3% accuracy rate. The system is developed to work with live videos.Keywords: yoga, deep learning, movenet, tensorflow, keras, CNN
Procedia PDF Downloads 248Machine Learning Approach to Project Control Threshold Reliability Evaluation
Authors: Y. Kim, H. Lee, M. Park, B. Lee
Abstract:
Planning is understood as the determination of what has to be performed, how, in which sequence, when, what resources are needed, and their cost within the organization before execution. In most construction project, it is evident that the inherent nature of planning is dynamic, and initial planning is subject to be changed due to various uncertain conditions of construction project. Planners take a continuous revision process during the course of a project and until the very end of project. However, current practice lacks reliable, systematic tool for setting variance thresholds to determine when and what corrective actions to be taken. Rather it is heavily dependent on the level of experience and knowledge of the planner. Thus, this paper introduces a machine learning approach to evaluate project control threshold reliability incorporating project-specific data and presents a method to automate the process. The results have shown that the model improves the efficiency and accuracy of the monitoring process as an early warning.Keywords: machine learning, project control, project progress monitoring, schedule
Procedia PDF Downloads 248Learning a Bayesian Network for Situation-Aware Smart Home Service: A Case Study with a Robot Vacuum Cleaner
Authors: Eu Tteum Ha, Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
The smart home environment backed up by IoT (internet of things) technologies enables intelligent services based on the awareness of the situation a user is currently in. One of the convenient sensors for recognizing the situations within a home is the smart meter that can monitor the status of each electrical appliance in real time. This paper aims at learning a Bayesian network that models the causal relationship between the user situations and the status of the electrical appliances. Using such a network, we can infer the current situation based on the observed status of the appliances. However, learning the conditional probability tables (CPTs) of the network requires many training examples that cannot be obtained unless the user situations are closely monitored by any means. This paper proposes a method for learning the CPT entries of the network relying only on the user feedbacks generated occasionally. In our case study with a robot vacuum cleaner, the feedback comes in whenever the user gives an order to the robot adversely from its preprogrammed setting. Given a network with randomly initialized CPT entries, our proposed method uses this feedback information to adjust relevant CPT entries in the direction of increasing the probability of recognizing the desired situations. Simulation experiments show that our method can rapidly improve the recognition performance of the Bayesian network using a relatively small number of feedbacks.Keywords: Bayesian network, IoT, learning, situation -awareness, smart home
Procedia PDF Downloads 529