Search results for: cognitive radio network
3938 The Impact of Artificial Intelligence on Legislations and Laws
Authors: Keroles Akram Saed Ghatas
Abstract:
The near future will bring significant changes in modern organizations and management due to the growing role of intangible assets and knowledge workers. The area of copyright, intellectual property, digital (intangible) assets and media redistribution appears to be one of the greatest challenges facing business and society in general and management sciences and organizations in particular. The proposed article examines the views and perceptions of fairness in digital media sharing among Harvard Law School's LL.M.s. Students, based on 50 qualitative interviews and 100 surveys. The researcher took an ethnographic approach to her research and entered the Harvard LL.M. in 2016. at, a Face book group that allows people to connect naturally and attend in-person and private events more easily. After listening to numerous students, the researcher conducted a quantitative survey among 100 respondents to assess respondents' perceptions of fairness in digital file sharing in various contexts (based on media price, its availability, regional licenses, copyright holder status, etc.). to understand better . .). Based on the survey results, the researcher conducted long-term, open-ended and loosely structured ethnographic interviews (50 interviews) to further deepen the understanding of the results. The most important finding of the study is that Harvard lawyers generally support digital piracy in certain contexts, despite having the best possible legal and professional knowledge. Interestingly, they are also more accepting of working for the government than the private sector. The results of this study provide a better understanding of how “fairness” is perceived by the younger generation of lawyers and pave the way for a more rational application of licensing laws.Keywords: cognitive impairments, communication disorders, death penalty, executive function communication disorders, cognitive disorders, capital murder, executive function death penalty, egyptian law absence, justice, political cases piracy, digital sharing, perception of fairness, legal profession
Procedia PDF Downloads 643937 Duality of Leagility and Governance: A New Normal Demand Network Management Paradigm under Pandemic
Authors: Jacky Hau
Abstract:
The prevalence of emerging technologies disrupts various industries as well as consumer behavior. Data collection has been in the fingertip and inherited through enabled Internet-of-things (IOT) devices. Big data analytics (BDA) becomes possible and allows real-time demand network management (DNM) through leagile supply chain. To enhance further on its resilience and predictability, governance is going to be examined to promote supply chain transparency and trust in an efficient manner. Leagility combines lean thinking and agile techniques in supply chain management. It aims at reducing costs and waste, as well as maintaining responsiveness to any volatile consumer demand by means of adjusting the decoupling point where the product flow changes from push to pull. Leagility would only be successful when collaborative planning, forecasting, and replenishment (CPFR) process or alike is in place throughout the supply chain business entities. Governance and procurement of the supply chain, however, is crucial and challenging for the execution of CPFR as every entity has to walk-the-talk generously for the sake of overall benefits of supply chain performance, not to mention the complexity of exercising the polices at both of within across various supply chain business entities on account of organizational behavior and mutual trust. Empirical survey results showed that the effective timespan on demand forecasting had been drastically shortening in the magnitude of months to weeks planning horizon, thus agility shall come first and preferably following by lean approach in a timely manner.Keywords: governance, leagility, procure-to-pay, source-to-contract
Procedia PDF Downloads 1113936 Effect of Classroom Acoustic Factors on Language and Cognition in Bilinguals and Children with Mild to Moderate Hearing Loss
Authors: Douglas MacCutcheon, Florian Pausch, Robert Ljung, Lorna Halliday, Stuart Rosen
Abstract:
Contemporary classrooms are increasingly inclusive of children with mild to moderate disabilities and children from different language backgrounds (bilinguals, multilinguals), but classroom environments and standards have not yet been adapted adequately to meet these challenges brought about by this inclusivity. Additionally, classrooms are becoming noisier as a learner-centered as opposed to teacher-centered teaching paradigm is adopted, which prioritizes group work and peer-to-peer learning. Challenging listening conditions with distracting sound sources and background noise are known to have potentially negative effects on children, particularly those that are prone to struggle with speech perception in noise. Therefore, this research investigates two groups vulnerable to these environmental effects, namely children with a mild to moderate hearing loss (MMHLs) and sequential bilinguals learning in their second language. In the MMHL study, this group was assessed on speech-in-noise perception, and a number of receptive language and cognitive measures (auditory working memory, auditory attention) and correlations were evaluated. Speech reception thresholds were found to be predictive of language and cognitive ability, and the nature of correlations is discussed. In the bilinguals study, sequential bilingual children’s listening comprehension, speech-in-noise perception, listening effort and release from masking was evaluated under a number of different ecologically valid acoustic scenarios in order to pinpoint the extent of the ‘native language benefit’ for Swedish children learning in English, their second language. Scene manipulations included target-to-distractor ratios and introducing spatially separated noise. This research will contribute to the body of findings from which educational institutions can draw when designing or adapting educational environments in inclusive schools.Keywords: sequential bilinguals, classroom acoustics, mild to moderate hearing loss, speech-in-noise, release from masking
Procedia PDF Downloads 3263935 State Estimator Performance Enhancement: Methods for Identifying Errors in Modelling and Telemetry
Authors: M. Ananthakrishnan, Sunil K Patil, Koti Naveen, Inuganti Hemanth Kumar
Abstract:
State estimation output of EMS forms the base case for all other advanced applications used in real time by a power system operator. Ensuring tuning of state estimator is a repeated process and cannot be left once a good solution is obtained. This paper attempts to demonstrate methods to improve state estimator solution by identifying incorrect modelling and telemetry inputs to the application. In this work, identification of database topology modelling error by plotting static network using node-to-node connection details is demonstrated with examples. Analytical methods to identify wrong transmission parameters, incorrect limits and mistakes in pseudo load and generator modelling are explained with various cases observed. Further, methods used for active and reactive power tuning using bus summation display, reactive power absorption summary, and transformer tap correction are also described. In a large power system, verifying all network static data and modelling parameter on regular basis is difficult .The proposed tuning methods can be easily used by operators to quickly identify errors to obtain the best possible state estimation performance. This, in turn, can lead to improved decision-support capabilities, ultimately enhancing the safety and reliability of the power grid.Keywords: active power tuning, database modelling, reactive power, state estimator
Procedia PDF Downloads 73934 Didactic Suitability and Mathematics Through Robotics and 3D Printing
Authors: Blanco T. F., Fernández-López A.
Abstract:
Nowadays, education, motivated by the new demands of the 21st century, acquires a dimension that converts the skills that new generations may need into a huge and uncertain set of knowledge too broad to be entirety covered. Within this set, and as tools to reach them, we find Learning and Knowledge Technologies (LKT). Thus, in order to prepare students for an everchanging society in which the technological boom involves everything, it is essential to develop digital competence. Nevertheless LKT seems not to have found their place in the educational system. This work is aimed to go a step further in the research of the most appropriate procedures and resources for technological integration in the classroom. The main objective of this exploratory study is to analyze the didactic suitability (epistemic, cognitive, affective, interactional, mediational and ecological) for teaching and learning processes of mathematics with robotics and 3D printing. The analysis carried out is drawn from a STEAM (Science, Technology, Engineering, Art and Mathematics) project that has the Pilgrimage way to Santiago de Compostela as a common thread. The sample is made up of 25 Primary Education students (10 and 11 years old). A qualitative design research methodology has been followed, the sessions have been distributed according to the type of technology applied. Robotics has been focused towards learning two-dimensional mathematical notions while 3D design and printing have been oriented towards three-dimensional concepts. The data collection instruments used are evaluation rubrics, recordings, field notebooks and participant observation. Indicators of didactic suitability proposed by Godino (2013) have been used for the analysis of the data. In general, the results show a medium-high level of didactic suitability. Above these, a high mediational and cognitive suitability stands out, which led to a better understanding of the positions and relationships of three-dimensional bodies in space and the concept of angle. With regard to the other indicators of the didactic suitability, it should be noted that the interactional suitability would require more attention and the affective suitability a deeper study. In conclusion, the research has revealed great expectations around the combination of teaching-learning processes of mathematics and LKT. Although there is still a long way to go in terms of the provision of means and teacher training.Keywords: 3D printing, didactic suitability, educational design, robotics
Procedia PDF Downloads 1043933 Cognitive Models of Health Marketing Communication in the Digital Era: Psychological Factors, Challenges, and Implications
Authors: Panas Gerasimos, Kotidou Varvara, Halkiopoulos Constantinos, Gkintoni Evgenia
Abstract:
As a result of growing technology and briefing by the internet, users resort to the internet and subsequently to the opinion of an expert. In many cases, they take control of their health in their hand and make a decision without the contribution of a doctor. According to that, this essay intends to analyze the confidence of searching health issues on the internet. For the fulfillment of this study, there has been a survey among doctors in order to find out the reasons a patient uses the internet about their health problems and the consequences that health information could lead by searching on the internet, as well. Specifically, the results regarding the research of the users demonstrate: a) the majority of users make use of the internet about health issues once or twice a month, b) individuals that possess chronic disease make health search on the internet more frequently, c) the most important topics that the majority of users usually search are pathological, dietary issues and the search of issues that are associated with doctors and hospitals. However, it observed that topic search varies depending on the users’ age, d) the most common sources of information concern the direct contact with doctors, as there is a huge preference from the majority of users over the use of the electronic form for their briefing and e) it has been observed that there is large lack of knowledge about e-health services. From the doctor's point of view, the following conclusions occur: a) almost all doctors use the internet as their main source of information, b) the internet has great influence over doctors’ relationship with the patients, c) in many cases a patient first makes a visit to the internet and then to the doctor, d) the internet significantly has a psychological impact on patients in order to for them to reach a decision, e) the most important reason users choose the internet instead of the health professional is economic, f) the negative consequence that emerges is inaccurate information, g) and the positive consequences are about the possibility of online contact with the doctor and contributes to the easy comprehension of the doctor, as well. Generally, it’s observed from both sides that the use of the internet in health issues is intense, which declares that the new means the doctors have at their disposal, produce the conditions for radical changes in the way of providing services and in the doctor-patient relationship.Keywords: cognitive models, health marketing, e-health, psychological factors, digital marketing, e-health services
Procedia PDF Downloads 2063932 The Effects of Billboard Content and Visible Distance on Driver Behavior
Authors: Arsalan Hassan Pour, Mansoureh Jeihani, Samira Ahangari
Abstract:
Distracted driving has been one of the most integral concerns surrounding our daily use of vehicles since the invention of the automobile. While much attention has been recently given to cell phones related distraction, commercial billboards along roads are also candidates for drivers' visual and cognitive distractions, as they may take drivers’ eyes from the road and their minds off the driving task to see, perceive and think about the billboard’s content. Using a driving simulator and a head-mounted eye-tracking system, speed change, acceleration, deceleration, throttle response, collision, lane changing, and offset from the center of the lane data along with gaze fixation duration and frequency data were collected in this study. Some 92 participants from a fairly diverse sociodemographic background drove on a simulated freeway in Baltimore, Maryland area and were exposed to three different billboards to investigate the effects of billboards on drivers’ behavior. Participants glanced at the billboards several times with different frequencies, the maximum of which occurred on the billboard with the highest cognitive load. About 74% of the participants didn’t look at billboards for more than two seconds at each glance except for the billboard with a short visible area. Analysis of variance (ANOVA) was performed to find the variations in driving behavior when they are invisible, readable, and post billboards area. The results show a slight difference in speed, throttle, brake, steering velocity, and lane changing, among different areas. Brake force and deviation from the center of the lane increased in the readable area in comparison with the visible area, and speed increased right after each billboard. The results indicated that billboards have a significant effect on driving performance and visual attention based on their content and visibility status. Generalized linear model (GLM) analysis showed no connection between participants’ age and driving experience with gaze duration. However, the visible distance of the billboard, gender, and billboard content had a significant effect on gaze duration.Keywords: ANOVA, billboards, distracted driving, drivers' behavior, driving simulator, eye-Tracking system, GLM
Procedia PDF Downloads 1283931 Influence of Branding and Consultancy Services on the Performance of Coaches, Athletes and Sports Managers in Nigeria
Authors: Yakubu Nkom Bityong, A. I. Kabido, K. Venkateswarlu
Abstract:
The influence of branding and consultancy services on sports development and marketing mix has been a matter of interest among coaches athletes and sports managers in Nigeria. Marketers use sports as a promotional vehicle towards attracting customers to their products and services. The use of images, names, and photographs of sports personalities to advertise beverages, cars, and a whole range of other products and services as it is clearly noticed all over the television, radio and print media has generated a lot of argument among consumers who have vested interest and are more drawn to their favorite teams and sports personalities than they are to many company products This paper examines the influence of branding and consultancy services on sports Performance of coaches, athletes and sports managers in Nigeria. From a population of 7,441 made up of coaches, athletes and sports managers, 372 respondents were sampled for the study. A self developed and standardized questionnaire was the instrument used for data collection. One-tailed t-test was used to test the hypothesis. Results revealed that branding and consultancy services influence the performances of coaches, athletes and sports managers in Nigeria. It was concluded that the establishment of the National Institute of Sports (NIS) in Lagos with affiliated sports training programmes in Nigerian Universities is responsible for boosting the performance of sports personalities in Nigeria. It was recommended that National Policy on Sports should be reviewed in order to inculcate new methods and strategies towards enhancing sports development initiatives in the country while stakeholders should intensify regular training and retraining programmes for coaches, athletes and sports managers to update their knowledge and skills.Keywords: branding, consultancy, sports performance, sports development
Procedia PDF Downloads 3873930 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem
Authors: Feng Yang
Abstract:
Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics
Procedia PDF Downloads 1503929 A Conceptual Model of Preparing School Counseling Students as Related Service Providers in the Transition Process
Authors: LaRon A. Scott, Donna M. Gibson
Abstract:
Data indicate that counselor education programs in the United States do not prepare their students adequately to serve students with disabilities nor provide counseling as a related service. There is a need to train more school counselors to provide related services to students with disabilities, for many reasons, but specifically, school counselors are participating in Individualized Education Programs (IEP) and transition planning meetings for students with disabilities where important academic, mental health and post-secondary education decisions are made. While school counselors input is perceived very important to the process, they may not have the knowledge or training in this area to feel confident in offering required input in these meetings. Using a conceptual research design, a model that can be used to prepare school counseling students as related service providers and effective supports to address transition for students with disabilities was developed as a component of this research. The authors developed the Collaborative Model of Preparing School Counseling Students as Related Service Providers to Students with Disabilities, based on a conceptual framework that involves an integration of Social Cognitive Career Theory (SCCT) and evidenced-based practices based on Self-Determination Theory (SDT) to provide related and transition services and planning with students with disabilities. The authors’ conclude that with five overarching competencies, (1) knowledge and understanding of disabilities, (2) knowledge and expertise in group counseling to students with disabilities, (3), knowledge and experience in specific related service components, (4) knowledge and experience in evidence-based counseling interventions, (5) knowledge and experiencing in evidenced-based transition and career planning services, that school counselors can enter the field with the necessary expertise to adequately serve all students. Other examples and strategies are suggested, and recommendations for preparation programs seeking to integrate a model to prepare school counselors to implement evidenced-based transition strategies in supporting students with disabilities are includedKeywords: transition education, social cognitive career theory, self-determination, counseling
Procedia PDF Downloads 2433928 A Network Economic Analysis of Friendship, Cultural Activity, and Homophily
Authors: Siming Xie
Abstract:
In social networks, the term homophily refers to the tendency of agents with similar characteristics to link with one another and is so robustly observed across many contexts and dimensions. The starting point of my research is the observation that the “type” of agents is not a single exogenous variable. Agents, despite their differences in race, religion, and other hard to alter characteristics, may share interests and engage in activities that cut across those predetermined lines. This research aims to capture the interactions of homophily effects in a model where agents have two-dimension characteristics (i.e., race and personal hobbies such as basketball, which one either likes or dislikes) and with biases in meeting opportunities and in favor of same-type friendships. A novel feature of my model is providing a matching process with biased meeting probability on different dimensions, which could help to understand the structuring process in multidimensional networks without missing layer interdependencies. The main contribution of this study is providing a welfare based matching process for agents with multi-dimensional characteristics. In particular, this research shows that the biases in meeting opportunities on one dimension would lead to the emergence of homophily on the other dimension. The objective of this research is to determine the pattern of homophily in network formations, which will shed light on our understanding of segregation and its remedies. By constructing a two-dimension matching process, this study explores a method to describe agents’ homophilous behavior in a social network with multidimension and construct a game in which the minorities and majorities play different strategies in a society. It also shows that the optimal strategy is determined by the relative group size, where society would suffer more from social segregation if the two racial groups have a similar size. The research also has political implications—cultivating the same characteristics among agents helps diminishing social segregation, but only if the minority group is small enough. This research includes both theoretical models and empirical analysis. Providing the friendship formation model, the author first uses MATLAB to perform iteration calculations, then derives corresponding mathematical proof on previous results, and last shows that the model is consistent with empirical evidence from high school friendships. The anonymous data comes from The National Longitudinal Study of Adolescent Health (Add Health).Keywords: homophily, multidimension, social networks, friendships
Procedia PDF Downloads 1703927 From Ride-Hailing App to Diversified and Sustainable Platform Business Model
Authors: Ridwan Dewayanto Rusli
Abstract:
We show how prisoner's dilemma-type competition problems can be mitigated through rapid platform diversification and ecosystem expansion. We analyze a ride-hailing company in Southeast Asia, Gojek, whose network grew to more than 170 million users comprising consumers, partner drivers, merchants, and complementors within a few years and has already achieved higher contribution margins than ride-hailing peers Uber and Lyft. Its ecosystem integrates ride-hailing, food delivery and logistics, merchant solutions, e-commerce, marketplace and advertising, payments, and fintech offerings. The company continues growing its network of complementors and App developers, expanding content and gaining critical mass in consumer data analytics and advertising. We compare the company's growth and diversification trajectory with those of its main international rivals and peers. The company's rapid growth and future potential are analyzed using Cusumano's (2012) Staying Power and Six Principles, Hax and Wilde's (2003) and Hax's (2010) The Delta Model as well as Santos' (2016) home-market advantages frameworks. The recently announced multi-billion-dollar merger with one of Southeast Asia's largest e-commerce majors lends additional support to the above arguments.Keywords: ride-hailing, prisoner's dilemma, platform and ecosystem strategy, digital applications, diversification, home market advantages, e-commerce
Procedia PDF Downloads 943926 Assessing Climate-Induced Species Range Shifts and Their Impacts on the Protected Seascape on Canada’s East Coast Using Species Distribution Models and Future Projections
Authors: Amy L. Irvine, Gabriel Reygondeau, Derek P. Tittensor
Abstract:
Marine protected areas (MPAs) within Canada’s exclusive economic zone help ensure the conservation and sustainability of marine ecosystems and the continued provision of ecosystem services to society (e.g., food, carbon sequestration). With ongoing and accelerating climate change, however, MPAs may become undermined in terms of their effectiveness at fulfilling these outcomes. Many populations of species, especially those at their thermal range limits, may shift to cooler waters or become extirpated due to climate change, resulting in new species compositions and ecological interactions within static MPA boundaries. While Canadian MPA management follows international guidelines for marine conservation, no consistent approach exists for adapting MPA networks to climate change and the resulting altered ecosystem conditions. To fill this gap, projected climate-driven shifts in species distributions on Canada’s east coast were analyzed to identify when native species emigrate and novel species immigrate within the network and how high mitigation and carbon emission scenarios influence these timelines. Indicators of the ecological changes caused by these species' shifts in the biological community were also developed. Overall, our research provides projections of climate change impacts and helps to guide adaptive management responses within the Canadian east coast MPA network.Keywords: climate change, ecosystem modeling, marine protected areas, management
Procedia PDF Downloads 1003925 Mode of Suicide and Alcohol Use Pattern among Female Commercial Sex Workers
Authors: G. V. Vaniprabha, S. Madhusudhan, S. G. Jadhav
Abstract:
The purpose of this study was to explore the pattern of alcohol use, mode of suicide and extent of depression among 150 female commercial sex workers (CSWs) in Bangalore, India. After going through a short detoxification programme of two weeks, Karma yoga principles of Shrimad Bhagavad Gita were used as a tool for cognitive behavioural therapy (CBT) for a period of four weeks to maintain abstinence and help with their depression. A six month follow up indicated that they had maintained abstinence over that period and had not attempted suicide, either.Keywords: alcohol dependence, depression, commercial sex workers, suicide
Procedia PDF Downloads 3733924 Investigating Visual Statistical Learning during Aging Using the Eye-Tracking Method
Authors: Zahra Kazemi Saleh, Bénédicte Poulin-Charronnat, Annie Vinter
Abstract:
This study examines the effects of aging on visual statistical learning, using eye-tracking techniques to investigate this cognitive phenomenon. Visual statistical learning is a fundamental brain function that enables the automatic and implicit recognition, processing, and internalization of environmental patterns over time. Some previous research has suggested the robustness of this learning mechanism throughout the aging process, underscoring its importance in the context of education and rehabilitation for the elderly. The study included three distinct groups of participants, including 21 young adults (Mage: 19.73), 20 young-old adults (Mage: 67.22), and 17 old-old adults (Mage: 79.34). Participants were exposed to a series of 12 arbitrary black shapes organized into 6 pairs, each with different spatial configurations and orientations (horizontal, vertical, and oblique). These pairs were not explicitly revealed to the participants, who were instructed to passively observe 144 grids presented sequentially on the screen for a total duration of 7 min. In the subsequent test phase, participants performed a two-alternative forced-choice task in which they had to identify the most familiar pair from 48 trials, each consisting of a base pair and a non-base pair. Behavioral analysis using t-tests revealed notable findings. The mean score for the first group was significantly above chance, indicating the presence of visual statistical learning. Similarly, the second group also performed significantly above chance, confirming the persistence of visual statistical learning in young-old adults. Conversely, the third group, consisting of old-old adults, showed a mean score that was not significantly above chance. This lack of statistical learning in the old-old adult group suggests a decline in this cognitive ability with age. Preliminary eye-tracking results showed a decrease in the number and duration of fixations during the exposure phase for all groups. The main difference was that older participants focused more often on empty cases than younger participants, likely due to a decline in the ability to ignore irrelevant information, resulting in a decrease in statistical learning performance.Keywords: aging, eye tracking, implicit learning, visual statistical learning
Procedia PDF Downloads 773923 Thermal Vacuum Chamber Test Result for CubeSat Transmitter
Authors: Fitri D. Jaswar, Tharek A. Rahman, Yasser A. Ahmad
Abstract:
CubeSat in low earth orbit (LEO) mainly uses ultra high frequency (UHF) transmitter with fixed radio frequency (RF) output power to download the telemetry and the payload data. The transmitter consumes large amount of electrical energy during the transmission considering the limited satellite size of a CubeSat. A transmitter with power control ability is designed to achieve optimize the signal to noise ratio (SNR) and efficient power consumption. In this paper, the thermal vacuum chamber (TVAC) test is performed to validate the performance of the UHF band transmitter with power control capability. The TVAC is used to simulate the satellite condition in the outer space environment. The TVAC test was conducted at the Laboratory of Spacecraft Environment Interaction Engineering, Kyushu Institute of Technology, Japan. The TVAC test used 4 thermal cycles starting from +60°C to -20°C for the temperature setting. The pressure condition inside chamber was less than 10-5Pa. During the test, the UHF transmitter is integrated in a CubeSat configuration with other CubeSat subsystem such as on board computer (OBC), power module, and satellite structure. The system is validated and verified through its performance in terms of its frequency stability and the RF output power. The UHF band transmitter output power is tested from 0.5W to 2W according the satellite mode of operations and the satellite power limitations. The frequency stability is measured and the performance obtained is less than 2 ppm in the tested operating temperature range. The test demonstrates the RF output power is adjustable in a thermal vacuum condition.Keywords: communication system, CubeSat, SNR, UHF transmitter
Procedia PDF Downloads 2643922 Orbit Determination Modeling with Graphical Demonstration
Authors: Assem M. F. Sallam, Ah. El-S. Makled
Abstract:
In this paper, there is an implementation, verification, and graphical demonstration of a software application, which can be used swiftly over different preliminary orbit determination methods. A passive orbit determination method is used in this study to determine the location of a satellite or a flying body. It is named a passive orbit determination because it depends on observation without the use of any aids (radio and laser) installed on satellite. In order to understand how these methods work and how their output is accurate when compared with available verification data, the built models help in knowing the different inputs used with each method. Output from the different orbit determination methods (Gibbs, Lambert, and Gauss) will be compared with each other and verified by the data obtained from Satellite Tool Kit (STK) application. A modified model including all of the orbit determination methods using the same input will be introduced to investigate different models output (orbital parameters) for the same input (azimuth, elevation, and time). Simulation software is implemented using MATLAB. A Graphical User Interface (GUI) application named OrDet is produced using the GUI of MATLAB. It includes all the available used inputs and it outputs the current Classical Orbital Elements (COE) of satellite under observation. Produced COE are then used to propagate for a complete revolution and plotted on a 3-D view. Modified model which uses an adapter to allow same input parameters, passes these parameters to the preliminary orbit determination methods under study. Result from all orbit determination methods yield exactly the same COE output, which shows the equality of concept in determination of satellite’s location, but with different numerical methods.Keywords: orbit determination, STK, Matlab-GUI, satellite tracking
Procedia PDF Downloads 2813921 “A Watched Pot Never Boils.” Exploring the Impact of Job Autonomy on Organizational Commitment among New Employees: A Comprehensive Study of How Empowerment and Independence Influence Workplace Loyalty and Engagement in Early Career Stages
Authors: Atnafu Ashenef Wondim
Abstract:
In today’s highly competitive business environment, employees are considered a source of competitive advantage. Researchers have looked into job autonomy's effect on organizational commitment and declared superior organizational performance strongly depends on the effort and commitment of employees. The purpose of this study was to explore the relationship between job autonomy and organizational commitment from newcomer’s point of view. The mediation role of employee engagement (physical, emotional, and cognitive) was also examined in the case of Ethiopian Commercial Banks. An exploratory survey research design with mixed-method approach that included partial least squares structural equation modeling and Fuzzy-Set Qualitative Comparative Analysis technique were using to address the sample size of 348 new employees. In-depth interviews with purposive and convenientsampling techniques are conducted with new employees (n=43). The results confirmed that job autonomy had positive, significant direct effects on physical engagement, emotional engagement, and cognitive engagement (path coeffs. = 0.874, 0.931, and 0.893).The results showed thatthe employee engagement driver, physical engagement, had a positive significant influence on affective commitment (path coeff. = 0.187) and normative commitment (path coeff. = 0.512) but no significant effect on continuance commitment. Employee engagement partially mediates the relationship between job autonomy and organizational commitment, which means supporting the indirect effects of job autonomy on affective, continuance, and normative commitment through physical engagement. The findings of this study add new perspectives by positioning it within a complex organizational African setting and by expanding the job autonomy and organizational commitment literature, which will benefit future research. Much of the literature on job autonomy and organizational commitment has been conducted within a well-established organizational business context in Western developed countries.The findings lead to fresh information on job autonomy and organizational commitment implementation enablers that can assist in the formulation of a better policy/strategy to efficiently adopt job autonomy and organizational commitment.Keywords: employee engagement, job autonomy, organizational commitment, social exchange theory
Procedia PDF Downloads 293920 Scoring Approach to Identify High-Risk Corridors for Winter Safety Measures in the Iranian Roads Network
Authors: M. Mokhber, J. Hedayati
Abstract:
From the managerial perspective, it is important to devise an operational plan based on top priorities due to limited resources, diversity of measures and high costs needed to improve safety in infrastructure. Dealing with the high-risk corridors across Iran, this study prioritized the corridors according to statistical data on accidents involving fatalities, injury or damage over three consecutive years. In collaboration with the Iranian Police Department, data were collected and modified. Then, the prioritization criteria were specified based on the expertise opinions and international standards. In this study, the prioritization criteria included accident severity and accident density. Finally, the criteria were standardized and weighted (equal weights) to score each high-risk corridor. The prioritization phase involved the scoring and weighting procedure. The high-risk corridors were divided into twelve groups out of 50. The results of data analysis for a three-year span suggested that the first three groups (150 corridors) along with a quarter of Iranian road network length account for nearly 60% of traffic accidents. In the next step, according to variables including weather conditions particular roads for the purpose of winter safety measures were extracted from the abovementioned categories. According to the results ranking, 9 roads with the overall length of about 1000 Km of high-risk corridors are considered as preferences of safety measures.Keywords: high-risk corridors, HRCs, road safety rating, road scoring, winter safety measures
Procedia PDF Downloads 1783919 Understanding Ambivalent Behaviors of Social Media Users toward the 'Like' Function: A Social Capital Perspective
Abstract:
The 'Like' function in social media platforms represents the immediate responses of social media users to postings and other users. A large number of 'likes' is often attributed to fame, agreement, and support from others that many users are proud of and happy with. However, what 'like' implies exactly in social media context is still in discussion. Some argue that it is an accurate parameter of the preferences of social media users, whereas others refute that it is merely an instant reaction that is volatile and vague. To address this gap, this study investigates how social media users perceive the 'like' function and behave differently based on their perceptions. This study posits the following arguments. First, 'like' is interpreted as a quantified form of social capital that resides in social media platforms. This incarnated social capital rationalizes the attraction of people to social media and belief that social media platforms bring benefits to their relationships with others. This social capital is then conceptualized into cognitive and emotive dimensions, where social capital in the cognitive dimension represents the awareness of the 'likes' quantitatively, whereas social capital in the emotive dimension represents the receptions of the 'likes' qualitatively. Finally, the ambivalent perspective of the social media users on 'like' (i.e., social capital) is applied. This view rationalizes why social media users appreciate the reception of 'likes' from others but are aware that those 'likes' can distort the actual responses of other users by sending erroneous signals. The rationale on this ambivalence is based on whether users perceive social media as private or public spheres. When social media is more publicized, the ambivalence is more strongly observed. By combining the ambivalence and dimensionalities of the social capital, four types of social media users with different mechanisms on liking behaviors are identified. To validate this work, a survey with 300 social media users is conducted. The analysis results support most of the hypotheses and confirm that people have ambivalent perceptions on 'like' as a social capital and that perceptions influence behavioral patterns. The implication of the study is clear. First, this study explains why social media users exhibit different behaviors toward 'likes' in social media. Although most of the people believe that the number of 'likes' is the simplest and most frank measure of supports from other social media users, this study introduces the users who do not trust the 'likes' as a stable and reliable parameter of social media. In addition, this study links the concept of social media openness to explain the different behaviors of social media users. Social media openness has theoretical significance because it defines the psychological boundaries of social media from the perspective of users.Keywords: ambivalent attitude, like function, social capital, social media
Procedia PDF Downloads 2413918 Transformation and Integration: Iranian Women Migrants and the Use of Social Media in Australia
Authors: Azadeh Davachi
Abstract:
Although there is a growing interest in Iranian female migration and gender roles, little attention has been paid to how Iranian migrant women in Australia access and sustain social networks, both locally and spatially dispersed over time. Social network theories have much to offer an analysis of migrant’s social ties and interpersonal relationships. Thus, it is important to note that social media are not only new communication channels in a migration network but also that they actively transform the nature of these networks and thereby facilitate migration for migrants. Drawing on that, this article will focus on Iranian women migrants and the use of social media in migration in Australia. Based on the case of main social networks such as Facebook and Instagram; this paper will investigate that how women migrants use these networks to facilitate the process of migration and integration. In addition, with the use of social networks, they could promote their home business and as a result become more engaged economically in Australian society. This paper will focus on three main Iranian pages in Instagram and Facebook, they will contend that compared to men, women are more active in these social networks. Consequently, as this article will discuss with the use of these social media Iranian migrant women can become more engaged and overcome post migration hardships, thus, gender plays a key role in using social media in migrant communities. Based on these findings from these social media pages, this paper will conclude that social media are transforming migration networks and thereby lowering the threshold for migration. It also will be demonstrated that these networks boost Iranian women’s confidence and lead them to become more visible in Iranian migrant communities comparing to men.Keywords: integration, gender, migration, women migrants
Procedia PDF Downloads 1613917 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning
Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim
Abstract:
Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation
Procedia PDF Downloads 933916 Multimodal Deep Learning for Human Activity Recognition
Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja
Abstract:
In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness
Procedia PDF Downloads 1013915 Causal-Explanatory Model of Academic Performance in Social Anxious Adolescents
Authors: Beatriz Delgado
Abstract:
Although social anxiety is one of the most prevalent disorders in adolescents and causes considerable difficulties and social distress in those with the disorder, to date very few studies have explored the impact of social anxiety on academic adjustment in student populations. The aim of this study was analyze the effect of social anxiety on school functioning in Secondary Education. Specifically, we examined the relationship between social anxiety and self-concept, academic goals, causal attributions, intellectual aptitudes, and learning strategies, personality traits, and academic performance, with the purpose of creating a causal-explanatory model of academic performance. The sample consisted of 2,022 students in the seven to ten grades of Compulsory Secondary Education in Spain (M = 13.18; SD = 1.35; 51.1% boys). We found that: (a) social anxiety has a direct positive effect on internal attributional style, and a direct negative effect on self-concept. Social anxiety also has an indirect negative effect on internal causal attributions; (b) prior performance (first academic trimester) exerts a direct positive effect on intelligence, achievement goals, academic self-concept, and final academic performance (third academic trimester), and a direct negative effect on internal causal attributions. It also has an indirect positive effect on causal attributions (internal and external), learning goals, achievement goals, and study strategies; (c) intelligence has a direct positive effect on learning goals and academic performance (third academic trimester); (d) academic self-concept has a direct positive effect on internal and external attributional style. Also, has an indirect effect on learning goals, achievement goals, and learning strategies; (e) internal attributional style has a direct positive effect on learning strategies and learning goals. Has a positive but indirect effect on achievement goals and learning strategies; (f) external attributional style has a direct negative effect on learning strategies and learning goals and a direct positive effect on internal causal attributions; (g) learning goals have direct positive effect on learning strategies and achievement goals. The structural equation model fit the data well (CFI = .91; RMSEA = .04), explaining 93.8% of the variance in academic performance. Finally, we emphasize that the new causal-explanatory model proposed in the present study represents a significant contribution in that it includes social anxiety as an explanatory variable of cognitive-motivational constructs.Keywords: academic performance, adolescence, cognitive-motivational variables, social anxiety
Procedia PDF Downloads 3323914 Improving Learning Abilities and Inclusion through Movement: The Movi-Mente© Method
Authors: Ivan Traina, Luigi Sangalli, Fabio Tognon, Angelo Lascioli
Abstract:
Currently, challenges regarding preschooler children are mainly focused on a sedentary lifestyle. Also, motor activity in infancy is seen as a tool for the separate acquisition of cognitive and socio-emotional skills rather than considering neuromotor development as a tool for improving learning abilities. The paper utilized an observational research method to shed light on the results of practicing neuromotor exercises in preschool children with disability as well as provide implications for practice.Keywords: children with disability, learning abilities, inclusion, neuromotor development
Procedia PDF Downloads 1553913 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen
Abstract:
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.Keywords: AIS, ANN, ECG, hybrid classifiers, PSO
Procedia PDF Downloads 4423912 Reduction of the Number of Traffic Accidents by Function of Driver's Anger Detection
Authors: Masahiro Miyaji
Abstract:
When a driver happens to be involved in some traffic congestion or after traffic incidents, the driver may fall in a state of anger. State of anger may encounter decisive risk resulting in severer traffic accidents. Preventive safety function using driver’s psychosomatic state with regard to anger may be one of solutions which would avoid that kind of risks. Identifying driver’s anger state is important to create countermeasures to prevent the risk of traffic accidents. As a first step, this research figured out root cause of traffic incidents by means of using Internet survey. From statistical analysis of the survey, dominant psychosomatic states immediately before traffic incidents were haste, distraction, drowsiness and anger. Then, we replicated anger state of a driver while driving, and then, replicated it by means of using driving simulator on bench test basis. Six types of facial expressions including anger were introduced as alternative characteristics. Kohonen neural network was adopted to classify anger state. Then, we created a methodology to detect anger state of a driver in high accuracy. We presented a driving support safety function. The function adapts driver’s anger state in cooperation with an autonomous driving unit to reduce the number of traffic accidents. Consequently, e evaluated reduction rate of driver’s anger in the traffic accident. To validate the estimation results, we referred the reduction rate of Advanced Safety Vehicle (ASV) as well as Intelligent Transportation Systems (ITS).Keywords: Kohonen neural network, driver’s anger state, reduction of traffic accidents, driver’s state adaptive driving support safety
Procedia PDF Downloads 3593911 Pistacia Lentiscus: A Plant With Multiple Virtues for Human Health
Authors: Djebbar Atmani, Aghiles Karim Aissat, Nadjet Debbache-Benaida, Nassima Chaher-Bazizi, Dina Atmani-Kilani, Meriem Rahmani-Berboucha, Naima Saidene, Malika Benloukil, Lila Azib
Abstract:
Medicinal plants are believed to be an important source for the discovery of potential antioxidant, anti-inflammatory and anti-diabetic substances. The present study was designed to investigate the neuroprotective, anti-inflammatory, anti-diabetic and anti-hyperuricemic potential of Pistacia lentiscus, as well as the identification of active compounds. The antioxidant potential of plant extracts against known radicals was measured using various standard in vitro methods. Anti-inflammatory activity was determined using the paw edema model in mice and by measuring the secretion of the pro-inflammatory cytokine, whereas the anti-diabetic effect was assessed in vivo on streptozotocin-induced diabetic rats and in vitro by inhibition of alpha-amylase. The anti-hyperuricemic activity was evaluated using the xanthine oxidase assay, whereas neuroprotective activity was investigated using an Aluminum-induced toxicity test. Pistacia lentiscus extracts and fractions exhibited high scavenging capacity against DPPH, NO. and ABTS+ radicals in a dose-dependent manner and restored blood glucose levels, in vivo, to normal values, in agreement with the in vitro anti-diabetic effect. Oral administration of plant extracts significantly decreased carrageenan-induced mice paw oedema, similar to the standard drug, diclofenac, was effective in reducing IL-1β levels in cell culture and induced a significant increase in urinary volume in mice, associated to a promising anti-hyperuricemic activity. Plant extracts showed good neuroprotection and restoration of cognitive functions in mice. HPLC-MS and NMR analyses allowed the identification of known and new phenolic compounds that could be responsible for the observed activities. Therefore, Pistacia lentiscus could be beneficial in the treatment of inflammatory conditions and diabetes complications and the enhancement of cognitive functions.Keywords: Pistacia lentiscus, anti-inflammatory, antidiabetic, flavanols, neuroprotective
Procedia PDF Downloads 1363910 A Location-based Authentication and Key Management Scheme for Border Surveillance Wireless Sensor Networks
Authors: Walid Abdallah, Noureddine Boudriga
Abstract:
Wireless sensor networks have shown their effectiveness in the deployment of many critical applications especially in the military domain. Border surveillance is one of these applications where a set of wireless sensors are deployed along a country border line to detect illegal intrusion attempts to the national territory and report this to a control center to undergo the necessary measures. Regarding its nature, this wireless sensor network can be the target of many security attacks trying to compromise its normal operation. Particularly, in this application the deployment and location of sensor nodes are of great importance for detecting and tracking intruders. This paper proposes a location-based authentication and key distribution mechanism to secure wireless sensor networks intended for border surveillance where the key establishment is performed using elliptic curve cryptography and identity-based public key scheme. In this scheme, the public key of each sensor node will be authenticated by keys that depend on its position in the monitored area. Before establishing a pairwise key between two nodes, each one of them must verify the neighborhood location of the other node using a message authentication code (MAC) calculated on the corresponding public key and keys derived from encrypted beacon messages broadcast by anchor nodes. We show that our proposed public key authentication and key distribution scheme is more resilient to node capture and node replication attacks than currently available schemes. Also, the achievement of the key distribution between nodes in our scheme generates less communication overhead and hence increases network performances.Keywords: wireless sensor networks, border surveillance, security, key distribution, location-based
Procedia PDF Downloads 6603909 Modelling Biological Treatment of Dye Wastewater in SBR Systems Inoculated with Bacteria by Artificial Neural Network
Authors: Yasaman Sanayei, Alireza Bahiraie
Abstract:
This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR). The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. Employing reactive dye by Sphingomonas paucimobilis bacteria at sequence batch reactor is a novel approach of dye removal. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was a= 0.44. In orderto adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2> 0.99 and a low mean absolute error (MAE). The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics. Note that SBR are normally operated with constant predefined duration of the stages, thus, resulting in low efficient operation. Data obtained from the on-line electronic sensors installed in the SBR and from the control quality laboratory analysis have been used to develop the optimal architecture of two different ANN. The results have shown that the developed models can be used as efficient and cost-effective predictive tools for the system analysed.Keywords: artificial neural network, COD removal, SBR, Sphingomonas paucimobilis
Procedia PDF Downloads 413