Search results for: unscented kalman filter
579 Evolution of Nettlespurge Oil Mud for Drilling Mud System: A Comparative Study of Diesel Oil and Nettlespurge Oil as Oil-Based Drilling Mud
Authors: Harsh Agarwal, Pratikkumar Patel, Maharshi Pathak
Abstract:
Recently the low prices of Crude oil and increase in strict environmental regulations limit limits the use of diesel based muds as these muds are relatively costlier and toxic, as a result disposal of cuttings into the eco-system is a major issue faced by the drilling industries. To overcome these issues faced by the Oil Industry, an attempt has been made to develop oil-in-water emulsion mud system using nettlespurge oil. Nettlespurge oil could be easily available and its cost is around ₹30/litre which is about half the price of diesel in India. Oil-based mud (OBM) was formulated with Nettlespurge oil extracted from Nettlespurge seeds using the Soxhlet extraction method. The formulated nettlespurge oil mud properties were analysed with diesel oil mud properties. The compared properties were rheological properties, yield point and gel strength, and mud density and filtration loss properties, fluid loss and filter cake. The mud density measurement showed that nettlespurge OBM was slightly higher than diesel OBM with mud density values of 9.175 lb/gal and 8.5 lb/gal, respectively, at barite content of 70 g. Thus it has a higher lubricating property. Additionally, the filtration loss test results showed that nettlespurge mud fluid loss volumes, oil was 11 ml, compared to diesel oil mud volume of 15 ml. The filtration loss test indicated that the nettlespurge oil mud with filter cake thickness of 2.2 mm had a cake characteristic of thin and squashy while the diesel oil mud resulted in filter cake thickness of 2.7 mm with cake characteristic of tenacious, rubbery and resilient. The filtration loss test results showed that nettlespurge oil mud fluid loss volumes was much less than the diesel based oil mud. The filtration loss test indicated that the nettlespurge oil mud filter cake thickness less than the diesel oil mud filter cake thickness. So Low formation damage and the emulsion stability effect was analysed with this experiment. The nettlespurge oil-in-water mud system had lower coefficient of friction than the diesel oil based mud system. All the rheological properties have shown better results relative to the diesel based oil mud. Therefore, with all the above mentioned factors and with the data of the conducted experiment we could conclude that the Nettlespurge oil based mud is economically and well as eco-logically much more feasible than the worn out and shabby diesel-based oil mud in the Drilling Industry.Keywords: economical feasible, ecological feasible, emulsion stability, nettle spurge oil, rheological properties, soxhlet extraction method
Procedia PDF Downloads 203578 Pilot Scale Investigation on the Removal of Pollutants from Secondary Effluent to Meet Botswana Irrigation Standards Using Roughing and Slow Sand Filters
Authors: Moatlhodi Wise Letshwenyo, Lesedi Lebogang
Abstract:
Botswana is an arid country that needs to start reusing wastewater as part of its water security plan. Pilot scale slow sand filtration in combination with roughing filter was investigated for the treatment of effluent from Botswana International University of Science and Technology to meet Botswana irrigation standards. The system was operated at hydraulic loading rates of 0.04 m/hr and 0.12 m/hr. The results show that the system was able to reduce turbidity from 262 Nephelometric Turbidity Units to a range between 18 and 0 Nephelometric Turbidity Units which was below 30 Nephelometric Turbidity Units threshold limit. The overall efficacy ranged between 61% and 100%. Suspended solids, Biochemical Oxygen Demand, and Chemical Oxygen Demand removal efficiency averaged 42.6%, 45.5%, and 77% respectively and all within irrigation standards. Other physio-chemical parameters were within irrigation standards except for bicarbonate ion which averaged 297.7±44 mg L-1 in the influent and 196.22±50 mg L-1 in the effluent which was above the limit of 92 mg L-1, therefore averaging a reduction of 34.1% by the system. Total coliforms, fecal coliforms, and Escherichia coli in the effluent were initially averaging 1.1 log counts, 0.5 log counts, and 1.3 log counts respectively compared to corresponding influent log counts of 3.4, 2.7 and 4.1, respectively. As time passed, it was observed that only roughing filter was able to reach reductions of 97.5%, 86% and 100% respectively for faecal coliforms, Escherichia coli, and total coliforms. These organism numbers were observed to have increased in slow sand filter effluent suggesting multiplication in the tank. Water quality index value of 22.79 for the physio-chemical parameters suggests that the effluent is of excellent quality and can be used for irrigation purposes. However, the water quality index value for the microbial parameters (1820) renders the quality unsuitable for irrigation. It is concluded that slow sand filtration in combination with roughing filter is a viable option for the treatment of secondary effluent for reuse purposes. However, further studies should be conducted especially for the removal of microbial parameters using the system.Keywords: irrigation, slow sand filter, turbidity, wastewater reuse
Procedia PDF Downloads 153577 Numerical Analysis of a Strainer Using Porous Media Technique
Authors: Ji-Hoon Byeon, Kwon-Hee Lee
Abstract:
Strainer filter serves to block the inflow of impurities while mixed fluid is entering or exiting the piping. The filter of the strainer has a perforated structure, so that the pressure drop and the velocity change necessarily occur when the mixed fluid passes through the filter. It is possible to predict the pressure drop and velocity change of the strainer by numerical analysis by implementing all the perforated plates. However, if the size of the perforated plate exceeds a certain size, it is difficult to perform the numerical analysis, and sometimes we cannot guarantee its accuracy. In this study, we tried to predict the pressure drop and velocity change by using the porous media technique to obtain the equivalent resistance without actual implementation of the perforation shape of the strainer. Ansys-CFX, a commercial software, is used to perform the numerical analysis. The analysis procedure is as follows. Firstly, the unit pattern of the perforated plate is modeled, and the pressure drop is analyzed by varying the velocity by symmetry of the wall surface. Secondly, since the equation for obtaining resistance is a quadratic equation of pressure having unknown velocity, the viscous resistance and the inertia resistance of the perforated plate are obtained from the relationship between pressure and speed. Thirdly, by using the calculated resistance values, the values are substituted into the flat plate implemented as a two-dimensional porous media, and the accuracy is verified by comparing the pressure drop and the velocity change. Fourthly, the pressure drop and velocity change in the whole strainer are analyzed by using the resistance values obtained on the perforated plate in the actual whole strainer model. Using the porous media technique, it is found that pressure drop and velocity change can be predicted in relatively short time without modeling the overall shape of the filter. Acknowledgements: This work was supported by the Valve Center from the Regional Innovation Center(RIC) Program of Ministry of Trade, Industry & Energy (MOTIE).Keywords: strainer, porous media, CFD, numerical analysis
Procedia PDF Downloads 371576 Characterization of Atmospheric Aerosols by Developing a Cascade Impactor
Authors: Sapan Bhatnagar
Abstract:
Micron size particles emitted from different sources and produced by combustion have serious negative effects on human health and environment. They can penetrate deep into our lungs through the respiratory system. Determination of the amount of particulates present in the atmosphere per cubic meter is necessary to monitor, regulate and model atmospheric particulate levels. Cascade impactor is used to collect the atmospheric particulates and by gravimetric analysis, their concentration in the atmosphere of different size ranges can be determined. Cascade impactors have been used for the classification of particles by aerodynamic size. They operate on the principle of inertial impaction. It consists of a number of stages each having an impaction plate and a nozzle. Collection plates are connected in series with smaller and smaller cutoff diameter. Air stream passes through the nozzle and the plates. Particles in the stream having large enough inertia impact upon the plate and smaller particles pass onto the next stage. By designing each successive stage with higher air stream velocity in the nozzle, smaller diameter particles will be collected at each stage. Particles too small to be impacted on the last collection plate will be collected on a backup filter. Impactor consists of 4 stages each made of steel, having its cut-off diameters less than 10 microns. Each stage is having collection plates, soaked with oil to prevent bounce and allows the impactor to function at high mass concentrations. Even after the plate is coated with particles, the incoming particle will still have a wet surface which significantly reduces particle bounce. The particles that are too small to be impacted on the last collection plate are then collected on a backup filter (microglass fiber filter), fibers provide larger surface area to which particles may adhere and voids in filter media aid in reducing particle re-entrainment.Keywords: aerodynamic diameter, cascade, environment, particulates, re-entrainment
Procedia PDF Downloads 320575 Effective Scheduling of Hybrid Reconfigurable Microgrids Considering High Penetration of Renewable Sources
Authors: Abdollah Kavousi Fard
Abstract:
This paper addresses the optimal scheduling of hybrid reconfigurable microgrids considering hybrid electric vehicle charging demands. A stochastic framework based on unscented transform to model the high uncertainties of renewable energy sources including wind turbine and photovoltaic panels, as well as the hybrid electric vehicles’ charging demand. In order to get to the optimal scheduling, the network reconfiguration is employed as an effective tool for changing the power supply path and avoiding possible congestions. The simulation results are analyzed and discussed in three different scenarios including coordinated, uncoordinated and smart charging demand of hybrid electric vehicles. A typical grid-connected microgrid is employed to show the satisfying performance of the proposed method.Keywords: microgrid, renewable energy sources, reconfiguration, optimization
Procedia PDF Downloads 272574 Gene Prediction in DNA Sequences Using an Ensemble Algorithm Based on Goertzel Algorithm and Anti-Notch Filter
Authors: Hamidreza Saberkari, Mousa Shamsi, Hossein Ahmadi, Saeed Vaali, , MohammadHossein Sedaaghi
Abstract:
In the recent years, using signal processing tools for accurate identification of the protein coding regions has become a challenge in bioinformatics. Most of the genomic signal processing methods is based on the period-3 characteristics of the nucleoids in DNA strands and consequently, spectral analysis is applied to the numerical sequences of DNA to find the location of periodical components. In this paper, a novel ensemble algorithm for gene selection in DNA sequences has been presented which is based on the combination of Goertzel algorithm and anti-notch filter (ANF). The proposed algorithm has many advantages when compared to other conventional methods. Firstly, it leads to identify the coding protein regions more accurate due to using the Goertzel algorithm which is tuned at the desired frequency. Secondly, faster detection time is achieved. The proposed algorithm is applied on several genes, including genes available in databases BG570 and HMR195 and their results are compared to other methods based on the nucleotide level evaluation criteria. Implementation results show the excellent performance of the proposed algorithm in identifying protein coding regions, specifically in identification of small-scale gene areas.Keywords: protein coding regions, period-3, anti-notch filter, Goertzel algorithm
Procedia PDF Downloads 387573 Graph Similarity: Algebraic Model and Its Application to Nonuniform Signal Processing
Authors: Nileshkumar Vishnav, Aditya Tatu
Abstract:
A recent approach of representing graph signals and graph filters as polynomials is useful for graph signal processing. In this approach, the adjacency matrix plays pivotal role; instead of the more common approach involving graph-Laplacian. In this work, we follow the adjacency matrix based approach and corresponding algebraic signal model. We further expand the theory and introduce the concept of similarity of two graphs. The similarity of graphs is useful in that key properties (such as filter-response, algebra related to graph) get transferred from one graph to another. We demonstrate potential applications of the relation between two similar graphs, such as nonuniform filter design, DTMF detection and signal reconstruction.Keywords: graph signal processing, algebraic signal processing, graph similarity, isospectral graphs, nonuniform signal processing
Procedia PDF Downloads 352572 Simplified INS\GPS Integration Algorithm in Land Vehicle Navigation
Authors: Othman Maklouf, Abdunnaser Tresh
Abstract:
Land vehicle navigation is subject of great interest today. Global Positioning System (GPS) is the main navigation system for positioning in such systems. GPS alone is incapable of providing continuous and reliable positioning, because of its inherent dependency on external electromagnetic signals. Inertial Navigation (INS) is the implementation of inertial sensors to determine the position and orientation of a vehicle. The availability of low-cost Micro-Electro-Mechanical-System (MEMS) inertial sensors is now making it feasible to develop INS using an inertial measurement unit (IMU). INS has unbounded error growth since the error accumulates at each step. Usually, GPS and INS are integrated with a loosely coupled scheme. With the development of low-cost, MEMS inertial sensors and GPS technology, integrated INS/GPS systems are beginning to meet the growing demands of lower cost, smaller size, and seamless navigation solutions for land vehicles. Although MEMS inertial sensors are very inexpensive compared to conventional sensors, their cost (especially MEMS gyros) is still not acceptable for many low-end civilian applications (for example, commercial car navigation or personal location systems). An efficient way to reduce the expense of these systems is to reduce the number of gyros and accelerometers, therefore, to use a partial IMU (ParIMU) configuration. For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a field experiment for a low-cost strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach, we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost IMU (Inertial Measurement Unit) and because of the relatively small area of the trajectory.Keywords: GPS, IMU, Kalman filter, materials engineering
Procedia PDF Downloads 421571 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour
Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani
Abstract:
In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.Keywords: video tracking, particle filter, greedy snake, neural network
Procedia PDF Downloads 342570 Acoustic Echo Cancellation Using Different Adaptive Algorithms
Authors: Hamid Sharif, Nazish Saleem Abbas, Muhammad Haris Jamil
Abstract:
An adaptive filter is a filter that self-adjusts its transfer function according to an optimization algorithm driven by an error signal. Because of the complexity of the optimization algorithms, most adaptive filters are digital filters. Adaptive filtering constitutes one of the core technologies in digital signal processing and finds numerous application areas in science as well as in industry. Adaptive filtering techniques are used in a wide range of applications, including adaptive noise cancellation and echo cancellation. Acoustic echo cancellation is a common occurrence in today’s telecommunication systems. The signal interference caused by acoustic echo is distracting to both users and causes a reduction in the quality of the communication. In this paper, we review different techniques of adaptive filtering to reduce this unwanted echo. In this paper, we see the behavior of techniques and algorithms of adaptive filtering like Least Mean Square (LMS), Normalized Least Mean Square (NLMS), Variable Step-Size Least Mean Square (VSLMS), Variable Step-Size Normalized Least Mean Square (VSNLMS), New Varying Step Size LMS Algorithm (NVSSLMS) and Recursive Least Square (RLS) algorithms to reduce this unwanted echo, to increase communication quality.Keywords: adaptive acoustic, echo cancellation, LMS algorithm, adaptive filter, normalized least mean square (NLMS), variable step-size least mean square (VSLMS)
Procedia PDF Downloads 80569 Comparative Study between Classical P-Q Method and Modern Fuzzy Controller Method to Improve the Power Quality of an Electrical Network
Authors: A. Morsli, A. Tlemçani, N. Ould Cherchali, M. S. Boucherit
Abstract:
This article presents two methods for the compensation of harmonics generated by a nonlinear load. The first is the classic method P-Q. The second is the controller by modern method of artificial intelligence specifically fuzzy logic. Both methods are applied to an Active Power Filter shunt (APFs) based on a three-phase voltage converter at five levels NPC topology. In calculating the harmonic currents of reference, we use the algorithm P-Q and pulse generation, we use the intersective PWM. For flexibility and dynamics, we use fuzzy logic. The results give us clear that the rate of Harmonic Distortion issued by fuzzy logic is better than P-Q.Keywords: fuzzy logic controller, P-Q method, pulse width modulation (PWM), shunt active power filter (sAPF), total harmonic distortion (THD)
Procedia PDF Downloads 548568 Standardized Testing of Filter Systems regarding Their Separation Efficiency in Terms of Allergenic Particles and Airborne Germs
Authors: Johannes Mertl
Abstract:
Our surrounding air contains various particles. Besides typical representatives of inorganic dust, such as soot and ash, also particles originating from animals, microorganisms or plants are floating through the air, so-called bioaerosols. The group of bioaerosols consists of a broad spectrum of particles of different size, including fungi, bacteria, viruses, spores, or tree, flower and grass pollen that are of high relevance for allergy sufferers. In dependence of the environmental climate and the actual season, these allergenic particles can be found in enormous numbers in the air and are inhaled by humans via the respiration tract, with a potential for inflammatory diseases of the airways, such as asthma or allergic rhinitis. As a consequence air filter systems of ventilation and air conditioning devices are required to meet very high standards to prevent, or at least lower the number of allergens and airborne germs entering the indoor air. Still, filter systems are merely classified for their separation rates using well-defined mineral test dust, while no appropriate sufficiently standardized test methods for bioaerosols exist. However, determined separation rates for mineral test particles of a certain size cannot simply be transferred to bioaerosols, as separation efficiency of particularly fine and respirable particles (< 10 microns) is dependent not only on their shape and particle diameter, but also defined by their density and physicochemical properties. For this reason, the OFI developed a test method, which directly enables a testing of filters and filter media for their separation rates on bioaerosols, as well as a classification of filters. Besides allergens from an intact or fractured tree or grass pollen, allergenic proteins bound to particulates, as well as allergenic fungal spores (e.g. Cladosporium cladosporioides), or bacteria can be used to classify filters regarding their separation rates. Allergens passing through the filter can then be detected by highly sensitive immunological assays (ELISA) or in the case of fungal spores by microbiological methods, which allow for the detection of even one single spore passing the filter. The test procedure, which is carried out in laboratory scale, was furthermore validated regarding its sufficiency to cover real life situations by upscaling using air conditioning devices showing great conformity in terms of separation rates. Additionally, a clinical study with allergy sufferers was performed to verify analytical results. Several different air conditioning filters from the car industry have been tested, showing significant differences in their separation rates.Keywords: airborne germs, allergens, classification of filters, fine dust
Procedia PDF Downloads 253567 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images
Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez
Abstract:
The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning
Procedia PDF Downloads 73566 Analysis of the Volatile Organic Compounds of Tillandsia Flowers by HS-SPME/GC-MS
Authors: Alexandre Gonzalez, Zohra Benfodda, David Bénimélis, Jean-Xavier Fontaine, Roland Molinié, Patrick Meffre
Abstract:
Volatile organic compounds (VOCs) emitted by flowers play an important role in plant ecology. However, the Tillandsia genus has been scarcely studied according to the VOCs emitted by flowers. Tillandsia are epiphytic flowering plants belonging to the Bromeliaceae family. The VOCs composition of twelve unscented and two faint-scented Tillandsia species was studied. The headspace solid phase microextraction coupled with gas chromatography combined with mass spectrometry method was used to explore the chemical diversity of the VOCs. This study allowed the identification of 65 VOCs among the fourteen species, and between six to twenty-five compounds were identified in each of the species.Keywords: tillandsia, headspace solid phase microextraction (HS-SPME), gas chromatography-mass spectrometry (GC-MS), scentless flowers, volatile organic compounds (VOCs), PCA analysis, heatmap
Procedia PDF Downloads 124565 Active Filtration of Phosphorus in Ca-Rich Hydrated Oil Shale Ash Filters: The Effect of Organic Loading and Form of Precipitated Phosphatic Material
Authors: Päärn Paiste, Margit Kõiv, Riho Mõtlep, Kalle Kirsimäe
Abstract:
For small-scale wastewater management, the treatment wetlands (TWs) as a low cost alternative to conventional treatment facilities, can be used. However, P removal capacity of TW systems is usually problematic. P removal in TWs is mainly dependent on the physico–chemical and hydrological properties of the filter material. Highest P removal efficiency has been shown trough Ca-phosphate precipitation (i.e. active filtration) in Ca-rich alkaline filter materials, e.g. industrial by-products like hydrated oil shale ash (HOSA), metallurgical slags. In this contribution we report preliminary results of a full-scale TW system using HOSA material for P removal for a municipal wastewater at Nõo site, Estonia. The main goals of this ongoing project are to evaluate: a) the long-term P removal efficiency of HOSA using real waste water; b) the effect of high organic loading rate; c) variable P-loading effects on the P removal mechanism (adsorption/direct precipitation); and d) the form and composition of phosphate precipitates. Onsite full-scale experiment with two concurrent filter systems for treatment of municipal wastewater was established in September 2013. System’s pretreatment steps include septic tank (2 m2) and vertical down-flow LECA filters (3 m2 each), followed by horizontal subsurface HOSA filters (effective volume 8 m3 each). Overall organic and hydraulic loading rates of both systems are the same. However, the first system is operated in a stable hydraulic loading regime and the second in variable loading regime that imitates the wastewater production in an average household. Piezometers for water and perforated sample containers for filter material sampling were incorporated inside the filter beds to allow for continuous in-situ monitoring. During the 18 months of operation the median removal efficiency (inflow to outflow) of both systems were over 99% for TP, 93% for COD and 57% for TN. However, we observed significant differences in the samples collected in different points inside the filter systems. In both systems, we observed development of preferred flow paths and zones with high and low loadings. The filters show formation and a gradual advance of a “dead” zone along the flow path (zone with saturated filter material characterized by ineffective removal rates), which develops more rapidly in the system working under variable loading regime. The formation of the “dead” zone is accompanied by the growth of organic substances on the filter material particles that evidently inhibit the P removal. Phase analysis of used filter materials using X-ray diffraction method reveals formation of minor amounts of amorphous Ca-phosphate precipitates. This finding is supported by ATR-FTIR and SEM-EDS measurements, which also reveal Ca-phosphate and authigenic carbonate precipitation. Our first experimental results demonstrate that organic pollution and loading regime significantly affect the performance of hydrated ash filters. The material analyses also show that P is incorporated into a carbonate substituted hydroxyapatite phase.Keywords: active filtration, apatite, hydrated oil shale ash, organic pollution, phosphorus
Procedia PDF Downloads 274564 Fluoride Removal from Groundwater in the East Nile Area (Sudan) Using Locally Available Charcoal
Authors: Motwkel M. Alhaj, Bashir M. Elhassan
Abstract:
The East Nile area is located in Khartoum state. The main source of drinking water in the East Nile Area (Sudan) is groundwater. However, fluoride concentration in the water is more than the maximum allowable dose, which is 1.5 mg/l. This study aims to demonstrate and innovative, affordable, and efficient filter to remove fluoride from drinking water. Many researchers have found that aluminum oxide-coated adsorbent is the most affordable technology for fluoride removal. However, adsorption is pH-dependent, and the water pH in the East Nile area is relatively high (around 8), which is hindering the adsorption process. Locally available charcoal was crushed, sieved, and coated with aluminum oxide. Then, different coating configurations were tested in order to produce an adsorbent with a high pH point of zero charge pH PZC in order to overcome the effect of high pH of water. Moreover, different methods were used to characterize the adsorbent, including: Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), Brunauer - Emmett - Teller (BET) method, and pH point of zero charge pH PZC. The produced adsorbent has pH PZC of 8.5, which is essential in enhancing the fluoride adsorption process. A pilot household fluoride filter was also designed and installed in a house that has water with 4.34 mg/l F- and pH of 8.4. The filter was operated at a flow rate 250 cm³/min. The total cost of treating one cubic meter was about 0.63$, while the cost for the same water before adsorbent coating modification was 2.33$⁄cm³.Keywords: water treatment, fluoride, adsorption, charcoal, Sudan
Procedia PDF Downloads 116563 Integration of UPQC Based on Fuzzy Controller for Power Quality Enhancement in Distributed Network
Authors: M. Habab, C. Benachaiba, B. Mazari, H. Madi, C. Benoudjafer
Abstract:
The use of Distributed Generation (DG) has been increasing in recent years to fill the gap between energy supply and demand. This paper presents the grid connected wind energy system with UPQC based on fuzzy controller to compensate for voltage and current disturbances. The proposed system can improve power quality at the point of installation on power distribution systems. Simulation results show the capability of the DG-UPQC intelligent system to compensate sags voltage and current harmonics at the Point of Common Coupling (PCC).Keywords: shunt active filter, series active filter, UPQC, power quality, sags voltage, distributed generation, wind turbine
Procedia PDF Downloads 407562 Investigation of Soot Regeneration Behavior in the DPF Cleaning Device
Authors: Won Jun Jo, Man Young Kim
Abstract:
To meet stringent diesel particulate matter regulations, DPF system is essential after treatment technology providing exceptional reliability and filtration performance. At low load driving conditions, the passive type of DPF system is ineffective for regeneration method due to the inadequate of engine exhaust heat in removing accumulated soot from the filter. Therefore, DPF cleaning device is necessary to remove the soot particles. In this work, the numerical analysis on the active regeneration of DPF in DPF cleaning device is performed to find the optimum operating conditions. In order to find the DPF regeneration characteristics during active regeneration, 5 different initial soot loading condition are investigated. As the initial soot mass increases, the maximum temperature of DPF and regeneration rate also increase.Keywords: active regeneration, DPF cleaning device, pressure drop, Diesel Particulate Filter, particulate matters, computational fluid dynamics
Procedia PDF Downloads 293561 Facebook Spam and Spam Filter Using Artificial Neural Networks
Authors: A. Fahim, Mutahira N. Naseem
Abstract:
SPAM is any unwanted electronic message or material in any form posted to many people. As the world is growing as global world, social networking sites play an important role in making world global providing people from different parts of the world a platform to meet and express their views. Among different social networking sites facebook become the leading one. With increase in usage different users start abusive use of facebook by posting or creating ways to post spam. This paper highlights the potential spam types nowadays facebook users faces. This paper also provide the reason how user become victim to spam attack. A methodology is proposed in the end discusses how to handle different types of spam.Keywords: artificial neural networks, facebook spam, social networking sites, spam filter
Procedia PDF Downloads 372560 Dynamic Gabor Filter Facial Features-Based Recognition of Emotion in Video Sequences
Authors: T. Hari Prasath, P. Ithaya Rani
Abstract:
In the world of visual technology, recognizing emotions from the face images is a challenging task. Several related methods have not utilized the dynamic facial features effectively for high performance. This paper proposes a method for emotions recognition using dynamic facial features with high performance. Initially, local features are captured by Gabor filter with different scale and orientations in each frame for finding the position and scale of face part from different backgrounds. The Gabor features are sent to the ensemble classifier for detecting Gabor facial features. The region of dynamic features is captured from the Gabor facial features in the consecutive frames which represent the dynamic variations of facial appearances. In each region of dynamic features is normalized using Z-score normalization method which is further encoded into binary pattern features with the help of threshold values. The binary features are passed to Multi-class AdaBoost classifier algorithm with the well-trained database contain happiness, sadness, surprise, fear, anger, disgust, and neutral expressions to classify the discriminative dynamic features for emotions recognition. The developed method is deployed on the Ryerson Multimedia Research Lab and Cohn-Kanade databases and they show significant performance improvement owing to their dynamic features when compared with the existing methods.Keywords: detecting face, Gabor filter, multi-class AdaBoost classifier, Z-score normalization
Procedia PDF Downloads 278559 Experimental Investigation of Powder Holding Capacities of H13 and H14 Class Activated Carbon Filters Based on En 779 Standard
Authors: Abdullah Işıktaş, Kevser Dincer
Abstract:
The use of HEPA filters for air conditioning systems in clean rooms tends to increase progressively in pharmaceutical, food stuff industries and in hospitals. There are two standards widely used for HEPA filters; the EN 1822 standards published by the European Union, CEN (European Committee for Standardization) and the US based IEST standard (Institute of Environmental Sciences and Technology. Both standards exhibit some differences in the definitions of efficiency and its measurement methods. While IEST standard defines efficiency at the grit diameter of 0.3 µm, the EN 1822 standard takes MPPS (Most Penetrating Particle Size) as the basis of its definition. That is, the most difficult grit size to catch up. On the other hand, while IEST suggests that photometer and grit counters be used for filter testing, in EN 1822 standard, only the grit (grain) counters are recommended for that purpose. In this study, powder holding capacities of H13 and H14 grade materials under the EN 779 standard are investigated experimentally by using activated carbon. Measurements were taken on an experimental set up based on the TS 932 standard. Filter efficiency was measured by injecting test powder at amounts predetermined in the standards into the filters at certain intervals. The data obtained showed that the powder holding capacities of the activated carbon filter are high enough to yield efficiency of around 90% and that the H13 and H14 filters exhibit high efficiency suitable for the standard used.Keywords: activated carbon filters, HEPA filters, powder holding capacities, air conditioning systems
Procedia PDF Downloads 244558 Enhancement of Underwater Haze Image with Edge Reveal Using Pixel Normalization
Authors: M. Dhana Lakshmi, S. Sakthivel Murugan
Abstract:
As light passes from source to observer in the water medium, it is scattered by the suspended particulate matter. This scattering effect will plague the captured images with non-uniform illumination, blurring details, halo artefacts, weak edges, etc. To overcome this, pixel normalization with an Amended Unsharp Mask (AUM) filter is proposed to enhance the degraded image. To validate the robustness of the proposed technique irrespective of atmospheric light, the considered datasets are collected on dual locations. For those images, the maxima and minima pixel intensity value is computed and normalized; then the AUM filter is applied to strengthen the blurred edges. Finally, the enhanced image is obtained with good illumination and contrast. Thus, the proposed technique removes the effect of scattering called de-hazing and restores the perceptual information with enhanced edge detail. Both qualitative and quantitative analyses are done on considering the standard non-reference metric called underwater image sharpness measure (UISM), and underwater image quality measure (UIQM) is used to measure color, sharpness, and contrast for both of the location images. It is observed that the proposed technique has shown overwhelming performance compared to other deep-based enhancement networks and traditional techniques in an adaptive manner.Keywords: underwater drone imagery, pixel normalization, thresholding, masking, unsharp mask filter
Procedia PDF Downloads 194557 Computer-Aided Detection of Simultaneous Abdominal Organ CT Images by Iterative Watershed Transform
Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid
Abstract:
Interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Segmentation of liver, spleen and kidneys is regarded as a major primary step in the computer-aided diagnosis of abdominal organ diseases. In this paper, a semi-automated method for medical image data is presented for the abdominal organ segmentation data using mathematical morphology. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. Our algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter, we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, simultaneous organ segmentation, the watershed algorithm
Procedia PDF Downloads 440556 Adaptive Filtering in Subbands for Supervised Source Separation
Authors: Bruna Luisa Ramos Prado Vasques, Mariane Rembold Petraglia, Antonio Petraglia
Abstract:
This paper investigates MIMO (Multiple-Input Multiple-Output) adaptive filtering techniques for the application of supervised source separation in the context of convolutive mixtures. From the observation that there is correlation among the signals of the different mixtures, an improvement in the NSAF (Normalized Subband Adaptive Filter) algorithm is proposed in order to accelerate its convergence rate. Simulation results with mixtures of speech signals in reverberant environments show the superior performance of the proposed algorithm with respect to the performances of the NLMS (Normalized Least-Mean-Square) and conventional NSAF, considering both the convergence speed and SIR (Signal-to-Interference Ratio) after convergence.Keywords: adaptive filtering, multi-rate processing, normalized subband adaptive filter, source separation
Procedia PDF Downloads 435555 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery
Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas
Abstract:
The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition
Procedia PDF Downloads 150554 Depth Camera Aided Dead-Reckoning Localization of Autonomous Mobile Robots in Unstructured GNSS-Denied Environments
Authors: David L. Olson, Stephen B. H. Bruder, Adam S. Watkins, Cleon E. Davis
Abstract:
In global navigation satellite systems (GNSS), denied settings such as indoor environments, autonomous mobile robots are often limited to dead-reckoning navigation techniques to determine their position, velocity, and attitude (PVA). Localization is typically accomplished by employing an inertial measurement unit (IMU), which, while precise in nature, accumulates errors rapidly and severely degrades the localization solution. Standard sensor fusion methods, such as Kalman filtering, aim to fuse precise IMU measurements with accurate aiding sensors to establish a precise and accurate solution. In indoor environments, where GNSS and no other a priori information is known about the environment, effective sensor fusion is difficult to achieve, as accurate aiding sensor choices are sparse. However, an opportunity arises by employing a depth camera in the indoor environment. A depth camera can capture point clouds of the surrounding floors and walls. Extracting attitude from these surfaces can serve as an accurate aiding source, which directly combats errors that arise due to gyroscope imperfections. This configuration for sensor fusion leads to a dramatic reduction of PVA error compared to traditional aiding sensor configurations. This paper provides the theoretical basis for the depth camera aiding sensor method, initial expectations of performance benefit via simulation, and hardware implementation, thus verifying its veracity. Hardware implementation is performed on the Quanser Qbot 2™ mobile robot, with a Vector-Nav VN-200™ IMU and Kinect™ camera from Microsoft.Keywords: autonomous mobile robotics, dead reckoning, depth camera, inertial navigation, Kalman filtering, localization, sensor fusion
Procedia PDF Downloads 207553 Multi-Walled Carbon Nanotube Based Water Filter for Virus Pathogen Removal
Authors: K. Domagala, D. Kata, T. Graule
Abstract:
Diseases caused by contaminated drinking water are the worldwide problem, which leads to the death and severe illnesses for hundreds of millions million people each year. There is an urgent need for efficient water treatment techniques for virus pathogens removal. The aim of the research was to develop safe and economic solution, which help with the water treatment. In this study, the synthesis of copper-based multi-walled carbon nanotube composites is described. Proposed solution utilize combination of a low-cost material with a high active surface area and copper antiviral properties. Removal of viruses from water was possible by adsorption based on electrostatic interactions of negatively charged virus with a positively charged filter material.Keywords: multi walled carbon nanotubes, water purification, virus removal, water treatment
Procedia PDF Downloads 131552 The Cleaning Equipment to Prevents Dust Diffusion of Bus Air Filters
Authors: Jiraphorn Satechan, Thanaphon Khamthieng, Warunee Phanwong
Abstract:
This action research aimed at designing and developing the cleaning equipment to preventing dust diffusion of bus air filter. Quantitative and qualitative data collection methods were used to conduct data from October 1st, 2018 to September 30th, 2019. All of participants were male (100.0%) with aged 40- 49 years and 57.15%, of them finish bachelor degree. 71.43% of them was a driver and 57.15% of them had the working experience between 10 and 15 years. Research revealed that the participants assessed the quality of the bus air filter cleaning equipment for preventing dust diffusion at a moderate level (σ= 0.29), and 71.43 of them also suggested the development methods in order to improve the quality of bus air filters cleaning equipment as follows: 1) to install the circuit breaker for cutting the electricity and controlling the on-off of the equipment and to change the motor to the DC system, 2) should install the display monitor for wind pressure and electricity system as well as to install the air pressure gauge, 3) should install the tank lid lock for preventing air leakage and dust diffusion by increasing the blowing force and sucking power, 4) to stabilize the holding points for preventing the filter shaking while rotating and blowing for cleaning and to reduce the rotation speed in order to allow the filters to move slowly for the air system to blow for cleaning more thoroughly, 5) the amount of dust should be measured before and after cleaning and should be designed the cleaning equipment to be able to clean with a variety of filters, and sizes. Moreover, the light-weight materials should be used to build the cleaning equipment and the wheels should be installed at the base of the equipment in order to make it easier to move.Keywords: Cleaning Equipment, Bus Air Filters, Preventing Dust Diffusion, Innovation
Procedia PDF Downloads 110551 Multi-Scaled Non-Local Means Filter for Medical Images Denoising: Empirical Mode Decomposition vs. Wavelet Transform
Authors: Hana Rabbouch
Abstract:
In recent years, there has been considerable growth of denoising techniques mainly devoted to medical imaging. This important evolution is not only due to the progress of computing techniques, but also to the emergence of multi-resolution analysis (MRA) on both mathematical and algorithmic bases. In this paper, a comparative study is conducted between the two best-known MRA-based decomposition techniques: the Empirical Mode Decomposition (EMD) and the Discrete Wavelet Transform (DWT). The comparison is carried out in a framework of multi-scale denoising, where a Non-Local Means (NLM) filter is performed scale-by-scale to a sample of benchmark medical images. The results prove the effectiveness of the multiscaled denoising, especially when the NLM filtering is coupled with the EMD.Keywords: medical imaging, non local means, denoising, multiscaled analysis, empirical mode decomposition, wavelets
Procedia PDF Downloads 141550 2.5D Face Recognition Using Gabor Discrete Cosine Transform
Authors: Ali Cheraghian, Farshid Hajati, Soheila Gheisari, Yongsheng Gao
Abstract:
In this paper, we present a novel 2.5D face recognition method based on Gabor Discrete Cosine Transform (GDCT). In the proposed method, the Gabor filter is applied to extract feature vectors from the texture and the depth information. Then, Discrete Cosine Transform (DCT) is used for dimensionality and redundancy reduction to improve computational efficiency. The system is combined texture and depth information in the decision level, which presents higher performance compared to methods, which use texture and depth information, separately. The proposed algorithm is examined on publically available Bosphorus database including models with pose variation. The experimental results show that the proposed method has a higher performance compared to the benchmark.Keywords: Gabor filter, discrete cosine transform, 2.5d face recognition, pose
Procedia PDF Downloads 328