Search results for: two dimensional van der Waals crystal
2583 Temperature Field Measurement of Premixed Landfill Gas Laminar Flame in a Cylindrical Slot Burner Using Mach-Zehnder Interferometry
Authors: Bahareh Najafian Ashrafi, Hossein Zeidabadinejad, Mehdi Ashjaee
Abstract:
The temperature field is a key factor of flame heat transfer rate and therefore should be measured accurately. In this study, the Mach-Zehnder Interferometry method is applied to measure the temperature field of premixed air/landfill gas (LFG60:60% CH4+40% CO2) laminar flame. The three-dimensional flame of cylindrical slot burner can assume to be two-dimensional due to the high aspect ratio (L/W=10) of the rectangular slot. So, the method converts two-dimensional flame to closed isothermal curves called fringes and the outer fringes temperature is measured by thermocouples. The experiments are carried out for Reynolds numbers and equivalence ratios ranging from 100 to 400 and 1.0 to 1.4, respectively. Results show that by increasing the equivalence ratio or Reynolds number, the flame height increases. The maximum flame temperature decreases by increasing the equivalence ratio but does not change considerably by changing the Reynolds number.Keywords: landfill gas, Mach-Zehender interferometry, premix flame, slot burner, temperature filed
Procedia PDF Downloads 1502582 Inverse Scattering of Two-Dimensional Objects Using an Enhancement Method
Authors: A.R. Eskandari, M.R. Eskandari
Abstract:
A 2D complete identification algorithm for dielectric and multiple objects immersed in air is presented. The employed technique consists of initially retrieving the shape and position of the scattering object using a linear sampling method and then determining the electric permittivity and conductivity of the scatterer using adjoint sensitivity analysis. This inversion algorithm results in high computational speed and efficiency, and it can be generalized for any scatterer structure. Also, this method is robust with respect to noise. The numerical results clearly show that this hybrid approach provides accurate reconstructions of various objects.Keywords: inverse scattering, microwave imaging, two-dimensional objects, Linear Sampling Method (LSM)
Procedia PDF Downloads 3872581 Cocrystals of Etodolac: A Crystal Engineering Approach with an Endeavor to Enhance Its Biopharmaceutical Assets
Authors: Sakshi Tomar, Renu Chadha
Abstract:
Cocrystallization comprises a selective route to the intensive design of pharmaceutical products with desired physiochemical and pharmacokinetic properties. The present study is focused on the preparation, characterization, and evaluation of etodolac (ET) co-crystals with coformers nicotinamide (ETNI) and Glutaric acid (ETGA), using cocrystallization approach. Preliminarily examination of the prepared co-crystal was done by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD). DSC thermographs of ETNI and ETGA cocrystals showed single sharp melting endotherms at 144°C and 135°C, respectively, which were different from the melting of drugs and coformers. FT-IR study points towards carbonyl-acid interaction sandwiched between the involving molecules. The emergence of new peaks in the PXRD pattern confirms the formation of new crystalline solid forms. Both the cocrystals exhibited better apparent solubility, and 3.8-5.0 folds increase in IDR were established, as compared to pure etodolac. Evaluations of these solid forms were done using anti-osteoarthritic activities. All the results indicate that etodolac cocrystals possess better anti-osteoarthritic efficacy than free drug. Thus loom of cocrystallization has been found to be a viable approach to resolve the solubility and bioavailability issues that circumvent the use of potential antiosteoarthritic molecules.Keywords: bioavailability, etodolac, nicotinamide, osteoarthritis
Procedia PDF Downloads 2002580 Synthesis of Rare-Earth Pyrazolate Compounds
Authors: Nazli Eslamirad, Peter C. Junk, Jun Wang, Glen B. Deacon
Abstract:
Since coordination behavior of pyrazoles and pyrazolate ions are widely versatile towards a great range of metals such as d-block, f-block as well as main group elements; they attract interest as ligands for preparing compounds. A variety of rare-earth pyrazolate complexes have been synthesized by redox transmetalation/protolysis (RTP) previously, therefore, a variety of rare-earth pyrazolate complexes using two pyrazoles, 3,5-dimethylpyrazole (Me₂pzH) and 3,5-di-tert -butylpyrazolate (t-Bu₂pzH), in which the structures span the whole La-Lu array beside Sc and Y has been synthesized by RTP reaction. There have been further developments in this study: Synthesizing structure of [Tb(Me₂pz)₃(thf)]₂ which is isomorphous with those of the previously reported [Dy(Me₂pz)₃(thf)]₂ and [Lu(Me₂pz)₃(thf)]₂ analogous that has two µ-1(N):2(Nʹ)-Me2pz ligands (the most common pyrazolate ligation for non-rare-earth complexes). Previously most of the reported compounds using t-Bu2pzH were monomeric compounds however the lanthanum derivative [La(Me₂pz)₃thf₂] ,which has been reported previously without crystal structure, has now been structurally characterized, along with cerium and lutetium analogue. Also a polymeric structure with samarium has now been synthesized which the neodymium analogue has been reported previously and comparing these polymeric structures can support the idea that the geometry of Sm(tBu₂pz)₃ affect the coordination of the solvent. Also, by using 1,2-dimethoxyethane (DME) instead of tetrahydrofuran (THF) new [Er(tBu₂pz)₃ (dme)₂] has now been reported.Keywords: lanthanoid complexes, pyrazolate, redox transmetalation/protolysis, x-ray crystal structures
Procedia PDF Downloads 2202579 Total Thermal Resistance of Graphene-Oxide-Substrate Stack: Role of Interfacial Thermal Resistance in Heat Flow of 2D Material Based Devices
Authors: Roisul H. Galib, Prabhakar R. Bandaru
Abstract:
In 2D material based device, an interface between 2D materials and substrates often limits the heat flow through the device. In this paper, we quantify the total thermal resistance of a graphene-based device by series resistance model and show that the thermal resistance at the interface of graphene and substrate contributes to more than 50% of the total resistance. Weak Van der Waals interactions at the interface and dissimilar phonon vibrational modes create this thermal resistance, allowing less heat to flow across the interface. We compare our results with commonly used materials and interfaces, demonstrating the role of the interface as a potential application for heat guide or block in a 2D material-based device.Keywords: 2D material, graphene, thermal conductivity, thermal conductance, thermal resistance
Procedia PDF Downloads 1542578 The Effect of Three-Dimensional Morphology on Vulnerability Assessment of Atherosclerotic Plaque
Authors: M. Zareh, H. Mohammadi, B. Naser
Abstract:
Atherosclerotic plaque rupture is the main trigger of heart attack and brain stroke which are the leading cause of death in developed countries. Better understanding of rupture-prone plaque can help clinicians detect vulnerable plaques- rupture prone or instable plaques- and apply immediate medical treatment to prevent these life-threatening cardiovascular events. Therefore, there are plenty of studies addressing disclosure of vulnerable plaques properties. Necrotic core and fibrous tissue are two major tissues constituting atherosclerotic plaque; using histopathological and numerical approaches, many studies have demonstrated that plaque rupture is strongly associated with a large necrotic core and a thin fibrous cap, two morphological characteristic which can be acquired by two-dimensional imaging of atherosclerotic plaque present in coronary and carotid arteries. Plaque rupture is widely considered as a mechanical failure inside plaque tissue; this failure occurs when the stress within plaque excesses the strength of tissue material; hence, finite element method, a strong numerical approach, has been extensively applied to estimate stress distribution within plaques with different compositions which is then used for assessment of various vulnerability characteristics including plaque morphology, material properties and blood pressure. This study aims to evaluate significance of three-dimensional morphology on vulnerability degree of atherosclerotic plaque. To reach this end, different two-dimensional geometrical models of atherosclerotic plaques are considered based on available data and named Main 2D Models (M2M). Then, for each of these M2Ms, two three-dimensional idealistic models are created. These two 3D models represent two possible three-dimensional morphologies which might exist for a plaque with similar 2D morphology to one of M2Ms. Finite element method is employed to estimate stress, von-Mises stress, within each 3D models. Results indicate that for each M2Ms stress can significantly varies due to possible 3D morphological changes in that plaque. Also, our results show that an atherosclerotic plaque with thick cap may experience rupture if it has a critical 3D morphology. This study highlights the effect of 3D geometry of plaque on its instability degree and suggests that 3D morphology of plaque might be necessary to more effectively and accurately assess atherosclerotic plaque vulnerability.Keywords: atherosclerotic plaque, plaque rupture, finite element method, 3D model
Procedia PDF Downloads 3082577 Effect of Constant and Variable Temperature on the Morphology of TiO₂ Nanotubes Prepared by Two-Step Anodization Method
Authors: Tayyaba Ghani, Mazhar Mehmood, Mohammad Mujahid
Abstract:
TiO₂ nanotubes are receiving immense attraction in the field of dye-sensitized solar cells due to their well-defined nanostructures, efficient electron transport and large surface area as compared to other one dimensional structures. In the present work, we have investigated the influence of temperature on the morphology of anodically produced self-organized Titanium oxide nanotubes (TiNTs). TiNTs are synthesized by two-step anodization method in an ethylene glycol based electrolytes containing ammonium fluoride. Experiments are performed at constant anodization voltage for two hours. An investigation by the SEM images reveals that if the temperature is kept constant during the anodizing experiment, variation in the average tube diameter is significantly reduced. However, if the temperature is not controlled then due to the exothermic nature of reactions for the formation of TiNTs, the temperature of electrolyte keep on increasing. This variation in electrolyte bath temperature introduced strong variations in tube diameter (20 nm to 160 nm) along the length of tubes. Current profiles, recorded during the anodization experiment, predict the effect of constant and varying experimental temperatures as well. In both cases, XRD results show the complete anatase crystal structure of nanotube upon annealing at 450 °C. Present work highlights the importance of constant temperature during the anodization experiments in order to develop an ordered array of nanotubes with a uniform tube diameter.Keywords: anodization, ordering, temperature, TiO₂ nanotubes
Procedia PDF Downloads 1712576 Multi-dimensional Approach to Resilience and Support in Advanced School-based Mental Health Service Delivery (MARS-SMHSD) Framework Development for Low-Resource Areas
Authors: Wan You Ning
Abstract:
Addressing the rising prevalence of mental health issues among youths, the Multi-dimensional Approach to Resilience and Support in Advanced School-based Mental Health Service Delivery (MARS-ASMHSD) framework proposes the implementation of advanced mental health services in low-resource areas to further instil mental health resilience among students in a school-based setting. Recognizing the unsustainability of direct service delivery due to rapidly growing demands and costs, the MARS-ASMHSD framework endorses the deinstitutionalization of mental healthcare and explores a tiered, multi-dimensional approach in mental healthcare provision, establishing advanced school-based mental health service delivery. The framework is developed based on sustainable and credible evidence-based practices and modifications of existing mental health service deliveries in Asia, including Singapore, Thailand, Malaysia, Japan, and Taiwan. Dissemination of the framework model for implementation will enable a more progressive and advanced school-based mental health service delivery in low-resource areas. Through the evaluation of the mental health landscape and the role of stakeholders in the respective countries, the paper concludes with a multi-dimensional framework model for implementation in low-resource areas. A mixed-method independent research study is conducted to facilitate the framework's development.Keywords: mental health, youths, school-based services, framework development
Procedia PDF Downloads 462575 High-Fidelity 1D Dynamic Model of a Hydraulic Servo Valve Using 3D Computational Fluid Dynamics and Electromagnetic Finite Element Analysis
Authors: D. Henninger, A. Zopey, T. Ihde, C. Mehring
Abstract:
The dynamic performance of a 4-way solenoid operated hydraulic spool valve has been analyzed by means of a one-dimensional modeling approach capturing flow, magnetic and fluid forces, valve inertia forces, fluid compressibility, and damping. Increased model accuracy was achieved by analyzing the detailed three-dimensional electromagnetic behavior of the solenoids and flow behavior through the spool valve body for a set of relevant operating conditions, thereby allowing the accurate mapping of flow and magnetic forces on the moving valve body, in lieu of representing the respective forces by lower-order models or by means of simplistic textbook correlations. The resulting high-fidelity one-dimensional model provided the basis for specific and timely design modification eliminating experimentally observed valve oscillations.Keywords: dynamic performance model, high-fidelity model, 1D-3D decoupled analysis, solenoid-operated hydraulic servo valve, CFD and electromagnetic FEA
Procedia PDF Downloads 1772574 Intensified Electrochemical H₂O₂ Synthesis and Highly Efficient Pollutant Removal Enabled by Nickel Oxides with Surface Engineered Facets and Vacancies
Authors: Wenjun Zhang, Thao Thi Le, Dongyup Shin, Jong Min Kim
Abstract:
Electrochemical hydrogen peroxide (H₂O₂) synthesis holds significant promise for decentralized environmental remediation through the electro-Fenton process. However, challenges persist, such as the absence of robust electrocatalysts for the selective two-electron oxygen reduction reaction (2e⁻ ORR) and the high cost and sluggish kinetics of conventional electro-Fenton systems in treating highly concentrated wastewater. This study introduces an efficient water treatment system for removing substantial quantities of organic pollutants using an advanced electro-Fenton system coupled with a high-valent NiO catalyst. By employing a precipitation method involving crystal facet and cation vacancy engineering, a trivalent Ni (Ni³⁺)-rich NiO catalyst with a (111)-domain-exposed crystal facet, named {111}-NivO, was synthesized. This catalyst exhibited a remarkable 96% selectivity and a high mass activity of 59 A g⁻¹ for H₂O₂ production, outperforming all previously reported Ni-based catalysts. Furthermore, an advanced electro-Fenton system, integrated with a flow cell for electrochemical H₂O₂ production, was utilized to achieve 100% removal of 50 ppm bisphenol A (BPA) in 200 mL of wastewater under heavy-duty conditions, reaching a superior rapid degradation rate (4 min, k = 1.125 min⁻¹), approximately 102 times faster than the conventional electro-Fenton system. The hyper-efficiency is attributed to the continuous and appropriate supply of H₂O₂, the provision of O₂, and the timely recycling of the electrolyte under high current density operation. This catalyst also demonstrated a 93% removal of total organic carbon after 2 hours of operation and can be applied for efficient removal of highly concentrated phenol pollutants from aqueous systems, which opens new avenues for wastewater treatment.Keywords: hydrogen peroxide production, nickel oxides, crystal facet and cation vacancy engineering, wastewater treatment, flow cell, electro-Fenton
Procedia PDF Downloads 592573 Neck Thinning Dynamics of Janus Droplets under Multiphase Interface Coupling in Cross Junction Microchannels
Authors: Jiahe Ru, Yan Pang, Zhaomiao Liu
Abstract:
Necking processes of the Janus droplet generation in the cross-junction microchannels are experimentally and theoretically investigated. The two dispersed phases that are simultaneously shear by continuous phases are liquid paraffin wax and 100cs silicone oil, in which 80% glycerin aqueous solution is used as continuous phases. According to the variation of minimum neck width and thinning rate, the necking process is divided into two stages, including the two-dimensional extrusion and the three-dimensional extrusion. In the two-dimensional extrusion stage, the evolutions of the tip extension length for the two discrete phases begin with the same trend, and then the length of liquid paraffin is larger than silicone oil. The upper and lower neck interface profiles in Janus necking process are asymmetrical when the tip extension velocity of paraffin oil is greater than that of silicone oil. In the three-dimensional extrusion stage, the neck of the liquid paraffin lags behind that of the silicone oil because of the higher surface tension, and finally, the necking fracture position gradually synchronizes. When the Janus droplets pinch off, the interfacial tension becomes positive to drive the neck thinning. The interface coupling of the three phases can cause asymmetric necking of the neck interface, which affects the necking time and, ultimately, the droplet volume. This paper mainly investigates the thinning dynamics of the liquid-liquid interface in confined microchannels. The revealed results could help to enhance the physical understanding of the droplet generation phenomenon.Keywords: neck interface, interface coupling, janus droplets, multiphase flow
Procedia PDF Downloads 1282572 An Atomistic Approach to Define Continuum Mechanical Quantities in One Dimensional Nanostructures at Finite Temperature
Authors: Smriti, Ajeet Kumar
Abstract:
We present a variant of the Irving-Kirkwood procedure to obtain the microscopic expressions of the cross-section averaged continuum fields such as internal force and moment in one-dimensional nanostructures in the non-equilibrium setting. In one-dimensional continuum theories for slender bodies, we deal with quantities such as mass, linear momentum, angular momentum, and strain energy densities, all defined per unit length. These quantities are obtained by integrating the corresponding pointwise (per unit volume) quantities over the cross-section of the slender body. However, no well-defined cross-section exists for these nanostructures at finite temperature. We thus define the cross-section of a nanorod to be an infinite plane which is fixed in space even when time progresses and defines the above continuum quantities by integrating the pointwise microscopic quantities over this infinite plane. The method yields explicit expressions of both the potential and kinetic parts of the above quantities. We further specialize in these expressions for helically repeating one-dimensional nanostructures in order to use them in molecular dynamics study of extension, torsion, and bending of such nanostructures. As, the Irving-Kirkwood procedure does not yield expressions of stiffnesses, we resort to a thermodynamic equilibrium approach to obtain the expressions of axial force, twisting moment, bending moment, and the associated stiffnesses by taking the first and second derivatives of the Helmholtz free energy with respect to conjugate strain measures. The equilibrium approach yields expressions independent of kinetic terms. We then establish the equivalence of the expressions obtained using the two approaches. The derived expressions are used to understand the extension, torsion, and bending of single-walled carbon nanotubes at non-zero temperatures.Keywords: thermoelasticity, molecular dynamics, one dimensional nanostructures, nanotube buckling
Procedia PDF Downloads 1252571 Generalized Approach to Linear Data Transformation
Authors: Abhijith Asok
Abstract:
This paper presents a generalized approach for the simple linear data transformation, Y=bX, through an integration of multidimensional coordinate geometry, vector space theory and polygonal geometry. The scaling is performed by adding an additional ’Dummy Dimension’ to the n-dimensional data, which helps plot two dimensional component-wise straight lines on pairs of dimensions. The end result is a set of scaled extensions of observations in any of the 2n spatial divisions, where n is the total number of applicable dimensions/dataset variables, created by shifting the n-dimensional plane along the ’Dummy Axis’. The derived scaling factor was found to be dependent on the coordinates of the common point of origin for diverging straight lines and the plane of extension, chosen on and perpendicular to the ’Dummy Axis’, respectively. This result indicates the geometrical interpretation of a linear data transformation and hence, opportunities for a more informed choice of the factor ’b’, based on a better choice of these coordinate values. The paper follows on to identify the effect of this transformation on certain popular distance metrics, wherein for many, the distance metric retained the same scaling factor as that of the features.Keywords: data transformation, dummy dimension, linear transformation, scaling
Procedia PDF Downloads 2972570 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models
Authors: Yoonsuh Jung
Abstract:
As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an "optimal" value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.Keywords: cross validation, parameter averaging, parameter selection, regularization parameter search
Procedia PDF Downloads 4152569 Growth and Characterization of Bis-Thiourea Nickel Barium Chloride Single Crystals
Authors: Rakesh Hajiyani, Chetan Chauhan, Harshkant Jethva, Mihir Joshi
Abstract:
Metal bis-thiourea type organo-metallic crystals are popular as non-linear optical materials. Bis-thiourea nickel barium chloride was synthesized and crystals were grown by slow aqueous solvent evaporation technique. The transparent and colorless crystals having maximum dimensions of 13 mm x 8 mm x 2.2 mm were obtained. The EDAX was carried out to estimate the content of nickel and barium in the grown crystals. The powder XRD analysis suggested orthorhombic crystal structure with unit cell parameters as: a= 9.70 Å, b= 10.68 Å and c= 17.95 Å. The FTIR spectroscopy study confirmed the presence of various functional groups. The UV-vis spectroscopy study indicated that the crystals were transparent in the visible region with 90% transmittance level further optical parameters were studied. From the TGA it was found that the crystals remained stable up to 170 0C and then decomposed through two decomposition stages. The dielectric study was carried out in the frequency range of applied field from 500 Hz to 1 MHz. The variations of dielectric constant, dielectric loss were studied with frequency. It was found that the dielectric constant and the dielectric loss decreased as the frequency of applied field increased. The results are discussed.Keywords: crystal growth, dielectric study, optical parameters, organo-metallic crystals, powder xrd, slow evaporation technique, TGA
Procedia PDF Downloads 4492568 Investigating the Effects of Data Transformations on a Bi-Dimensional Chi-Square Test
Authors: Alexandru George Vaduva, Adriana Vlad, Bogdan Badea
Abstract:
In this research, we conduct a Monte Carlo analysis on a two-dimensional χ2 test, which is used to determine the minimum distance required for independent sampling in the context of chaotic signals. We investigate the impact of transforming initial data sets from any probability distribution to new signals with a uniform distribution using the Spearman rank correlation on the χ2 test. This transformation removes the randomness of the data pairs, and as a result, the observed distribution of χ2 test values differs from the expected distribution. We propose a solution to this problem and evaluate it using another chaotic signal.Keywords: chaotic signals, logistic map, Pearson’s test, Chi Square test, bivariate distribution, statistical independence
Procedia PDF Downloads 972567 Hydraulics of 3D Aerators with Lateral Enlargements
Authors: Nirmala Lama
Abstract:
The construction of high dams has led to significant challenges in managing flow rates discharging over spillways, resulting in cavitation damages on hydraulic surfaces. To address this, aerator devices were designed and installed to promote fore aeration, thereby controlling and mitigating damages caused by cavitation. Consequently, these aerator types, three-dimensional aerators (3DAEs), have demonstrated superior efficiency in introducing forced air into the flow.This research focuses on the installation and evaluation of three-dimensional aerator devices at the high discharge spillway surface. In the laboratory, the air concentration downstream of the hydraulic structures was extensively measured, and the data were analyzed in details.Multiple flow scenarios and structural arrangements of the aerators were adopted for the study. The outcomes of these experiments are listed as In terms of air concentration value, the comparison between 3 DAE (three-dimensional aerator) with offset only and offset with ramp reveals significant differences. The concentration value on the side wall was justified. The side cavity length was found to increase with higher approach Froude numbers and lateral enlargement widths. Furthermore, 3DAE exhibited shorter side cavity lengths compared to three-dimensional aerator devices without ramps (3DAD), a beneficial features for controlling water fins. An empirical formula to express the side cavity length was derived from the measured data. Also, the comparison were made on the basis of water fin formation between the different arrangements of 3D aerators. In conclusion, this research provides valuable insights into the performance of three-dimensional aerators in mitigating cavitation damages and controlling water fins in high dam spillways. The findings offer practical implications for designers and engineers seeking to enhance the efficiency and safety of hydraulic structures subjected to high flow rates.Keywords: three-dimension aerator, cavity, water fin, air entrainment
Procedia PDF Downloads 682566 Purification and Pre-Crystallization of Recombinant PhoR Cytoplasmic Domain Protein from Mycobacterium Tuberculosis H37Rv
Authors: Oktira Roka Aji, Maelita R. Moeis, Ihsanawati, Ernawati A. Giri-Rachman
Abstract:
Globally, tuberculosis (TB) remains a leading cause of death. The emergence of multidrug-resistant strains and extensively drug-resistant strains have become a major public concern. One of the potential candidates for drug target is the cytoplasmic domain of PhoR Histidine Kinase, a part of the Two Component System (TCS) PhoR-PhoP in Mycobacterium tuberculosis (Mtb). TCS PhoR-PhoP relay extracellular signal to control the expression of 114 virulent associated genes in Mtb. The 3D structure of PhoR cytoplasmic domain is needed to screen novel drugs using structure based drug discovery. The PhoR cytoplasmic domain from Mtb H37Rv was overexpressed in E. coli BL21(DE3), then purified using IMAC Ni-NTA Agarose his-tag affinity column and DEAE-ion exchange column chromatography. The molecular weight of the purified protein was estimated to be 37 kDa after SDS-PAGE analysis. This sample was used for pre-crystallization screening by applying sitting drop vapor diffusion method using Natrix (HR2-116) 48 solutions crystal screen kit at 25ºC. Needle-like crystals were observed after the seventh day of incubation in test solution No.47 (0.1 M KCl, 0.01 M MgCl2.6H2O, 0.05 M Tris-Cl pH 8.5, 30% v/v PEG 4000). Further testing is required for confirming the crystal.Keywords: tuberculosis, two component system, histidine kinase, needle-like crystals
Procedia PDF Downloads 4322565 Multi-Objective Four-Dimensional Traveling Salesman Problem in an IoT-Based Transport System
Authors: Arindam Roy, Madhushree Das, Apurba Manna, Samir Maity
Abstract:
In this research paper, an algorithmic approach is developed to solve a novel multi-objective four-dimensional traveling salesman problem (MO4DTSP) where different paths with various numbers of conveyances are available to travel between two cities. NSGA-II and Decomposition algorithms are modified to solve MO4DTSP in an IoT-based transport system. This IoT-based transport system can be widely observed, analyzed, and controlled by an extensive distribution of traffic networks consisting of various types of sensors and actuators. Due to urbanization, most of the cities are connected using an intelligent traffic management system. Practically, for a traveler, multiple routes and vehicles are available to travel between any two cities. Thus, the classical TSP is reformulated as multi-route and multi-vehicle i.e., 4DTSP. The proposed MO4DTSP is designed with traveling cost, time, and customer satisfaction as objectives. In reality, customer satisfaction is an important parameter that depends on travel costs and time reflects in the present model.Keywords: multi-objective four-dimensional traveling salesman problem (MO4DTSP), decomposition, NSGA-II, IoT-based transport system, customer satisfaction
Procedia PDF Downloads 1102564 Analysis of Thermal Damage Characteristics of High Pressure Turbine Blade According to Off-Design Operating Conditions
Authors: Seon Ho Kim, Minho Bang, Seok Min Choi, Young Moon Lee, Dong Kwan Kim, Hyung Hee Cho
Abstract:
Gas turbines are heat engines that convert chemical energy into electrical energy through mechanical energy. Since their high energy density per unit volume and low pollutant emissions, gas turbines are classified as clean energy. In order to obtain better performance, the turbine inlet temperature of the current gas turbine is operated at about 1600℃, and thermal damage is a very serious problem. Especially, these thermal damages are more prominent in off-design conditions than in design conditions. In this study, the thermal damage characteristics of high temperature components of a gas turbine made of a single crystal material are studied numerically for the off-design operating conditions. The target gas turbine is configured as a reheat cycle and is operated in peak load operation mode, not normal operation. In particular, the target gas turbine features a lot of low-load operation. In this study, a commercial code, ANSYS 18.2, was used for analyzing the thermal-flow coupling problems. As a result, the flow separation phenomenon on the pressure side due to the flow reduction was remarkable at the off-design condition, and the high heat transfer coefficient at the upper end of the suction surface due to the tip leakage flow was appeared.Keywords: gas turbine, single crystal blade, off-design, thermal analysis
Procedia PDF Downloads 2132563 Using Surface Entropy Reduction to Improve the Crystallization Properties of a Recombinant Antibody Fragment RNA Crystallization Chaperone
Authors: Christina Roman, Deepak Koirala, Joseph A. Piccirilli
Abstract:
Phage displaying synthetic Fab libraries have been used to obtain Fabs that bind to specific RNA targets with high affinity and specificity. These Fabs have been demonstrated to facilitate RNA crystallization. However, the antibody framework used in the construction of these phage display libraries contains numerous bulky, flexible, and charged residues, which facilitate solubility and hinder aggregation. These residues can interfere with crystallization due to the entropic cost associated with burying them within crystal contacts. To systematically reduce the surface entropy of the Fabs and improve their crystallization properties, a protein engineering strategy termed surface entropy reduction (SER) is being applied to the Fab framework. In this approach, high entropy residues are mutated to smaller ones such as alanine or serine. Focusing initially on Fab BL3-6, which binds an RNA AAACA pentaloop with 20nM affinity, the SER P server (http://services.mbi.ucla.edu/SER/) was used and analysis was performed on existing RNA-Fab BL3-6 co-crystal structures. From this analysis twelve surface entropy reduced mutants were designed. These SER mutants were expressed and are now being measured for their crystallization and diffraction performance with various RNA targets. So far, one mutant has generated 3.02 angstrom diffraction with the yjdF riboswitch RNA. Ultimately, the most productive mutations will be combined into a new Fab framework to be used in a optimized phage displayed Fab library.Keywords: antibody fragment, crystallography, RNA, surface entropy reduction
Procedia PDF Downloads 1932562 Applicability of Soybean as Bio-Catalyst in Calcite Precipitated Method for Soil Improvement
Authors: Heriansyah Putra, Erizal Erizal, Sutoyo Sutoyo, Hideaki Yasuhara
Abstract:
This paper discusses the possibility of organic waste material, i.e., soybean, as the bio-catalyst agent on the calcite precipitation method. Several combinations of soybean powder and jack bean extract are used as the bio-catalyst and mixed with the reagent composed of calcium chloride and urea. Its productivity in promoting calcite crystal is evaluated through a transparent test-tube experiment. The morphological and mineralogical aspects of precipitated calcite are also investigated using scanning electromagnetic (SEM) and X-ray diffraction (XRD), respectively. The applicability of this material to improve the engineering properties of soil are examined using the direct shear and unconfined compressive test. The result of this study shows that the utilization of soybean powder brings about a significant effect on soil strength. In addition, the use of soybean powder as a substitution material of urease enzyme also increases the efficacy of calcite crystal as the binder materials. The low calcite content promotes the high strength of the soil. The strength of 300 kPa is obtained in the presence of 2% of calcite content within the soil. The result of this study elucidated that substitution of soybean to jack bean extract is the potential and valuable alternative to improve the applicability of calcite precipitation method as soil improvement technique.Keywords: calcite precipitation, jack bean, soil improvement, soybean
Procedia PDF Downloads 1272561 A Perspective on Teaching Mathematical Concepts to Freshman Economics Students Using 3D-Visualisations
Authors: Muhammad Saqib Manzoor, Camille Dickson-Deane, Prashan Karunaratne
Abstract:
Cobb-Douglas production (utility) function is a fundamental function widely used in economics teaching and research. The key reason is the function's characteristics to describe the actual production using inputs like labour and capital. The characteristics of the function like returns to scale, marginal, and diminishing marginal productivities are covered in the introductory units in both microeconomics and macroeconomics with a 2-dimensional static visualisation of the function. However, less insight is provided regarding three-dimensional surface, changes in the curvature properties due to returns to scale, the linkage of the short-run production function with its long-run counterpart and marginal productivities, the level curves, and the constraint optimisation. Since (freshman) learners have diverse prior knowledge and cognitive skills, the existing “one size fits all” approach is not very helpful. The aim of this study is to bridge this gap by introducing technological intervention with interactive animations of the three-dimensional surface and sequential unveiling of the characteristics mentioned above using Python software. A small classroom intervention has helped students enhance their analytical and visualisation skills towards active and authentic learning of this topic. However, to authenticate the strength of our approach, a quasi-Delphi study will be conducted to ask domain-specific experts, “What value to the learning process in economics is there using a 2-dimensional static visualisation compared to using a 3-dimensional dynamic visualisation?’ Here three perspectives of the intervention were reviewed by a panel comprising of novice students, experienced students, novice instructors, and experienced instructors in an effort to determine the learnings from each type of visualisations within a specific domain of knowledge. The value of this approach is key to suggesting different pedagogical methods which can enhance learning outcomes.Keywords: cobb-douglas production function, quasi-Delphi method, effective teaching and learning, 3D-visualisations
Procedia PDF Downloads 1452560 Method to Find a ε-Optimal Control of Stochastic Differential Equation Driven by a Brownian Motion
Authors: Francys Souza, Alberto Ohashi, Dorival Leao
Abstract:
We present a general solution for finding the ε-optimal controls for non-Markovian stochastic systems as stochastic differential equations driven by Brownian motion, which is a problem recognized as a difficult solution. The contribution appears in the development of mathematical tools to deal with modeling and control of non-Markovian systems, whose applicability in different areas is well known. The methodology used consists to discretize the problem through a random discretization. In this way, we transform an infinite dimensional problem in a finite dimensional, thereafter we use measurable selection arguments, to find a control on an explicit form for the discretized problem. Then, we prove the control found for the discretized problem is a ε-optimal control for the original problem. Our theory provides a concrete description of a rather general class, among the principals, we can highlight financial problems such as portfolio control, hedging, super-hedging, pairs-trading and others. Therefore, our main contribution is the development of a tool to explicitly the ε-optimal control for non-Markovian stochastic systems. The pathwise analysis was made through a random discretization jointly with measurable selection arguments, has provided us with a structure to transform an infinite dimensional problem into a finite dimensional. The theory is applied to stochastic control problems based on path-dependent stochastic differential equations, where both drift and diffusion components are controlled. We are able to explicitly show optimal control with our method.Keywords: dynamic programming equation, optimal control, stochastic control, stochastic differential equation
Procedia PDF Downloads 1882559 Alloy Design of Single Crystal Ni-base Superalloys by Combined Method of Neural Network and CALPHAD
Authors: Mehdi Montakhabrazlighi, Ercan Balikci
Abstract:
The neural network (NN) method is applied to alloy development of single crystal Ni-base Superalloys with low density and improved mechanical strength. A set of 1200 dataset which includes chemical composition of the alloys, applied stress and temperature as inputs and density and time to rupture as outputs is used for training and testing the network. Thermodynamic phase diagram modeling of the screened alloys is performed with Thermocalc software to model the equilibrium phases and also microsegregation in solidification processing. The model is first trained by 80% of the data and the 20% rest is used to test it. Comparing the predicted values and the experimental ones showed that a well-trained network is capable of accurately predicting the density and time to rupture strength of the Ni-base superalloys. Modeling results is used to determine the effect of alloying elements, stress, temperature and gamma-prime phase volume fraction on rupture strength of the Ni-base superalloys. This approach is in line with the materials genome initiative and integrated computed materials engineering approaches promoted recently with the aim of reducing the cost and time for development of new alloys for critical aerospace components. This work has been funded by TUBITAK under grant number 112M783.Keywords: neural network, rupture strength, superalloy, thermocalc
Procedia PDF Downloads 3132558 Determination of Cyclic Citrullinated Peptide Antibodies on Quartz Crystal Microbalance Based Nanosensors
Authors: Y. Saylan, F. Yılmaz, A. Denizli
Abstract:
Rheumatoid arthritis (RA) which is the most common autoimmune disorder of the body's own immune system attacking healthy cells. RA has both articular and systemic effects.Until now romatiod factor (RF) assay is used the most commonly diagnosed RA but it is not specific. Anti-cyclic citrullinated peptide (anti-CCP) antibodies are IgG autoantibodies which recognize citrullinated peptides and offer improved specificity in early diagnosis of RA compared to RF. Anti-CCP antibodies have specificity for the diagnosis of RA from 91 to 98% and the sensitivity rate of 41-68%. Molecularly imprinted polymers (MIP) are materials that are easy to prepare, less expensive, stable have a talent for molecular recognition and also can be manufactured in large quantities with good reproducibility. Molecular recognition-based adsorption techniques have received much attention in several fields because of their high selectivity for target molecules. Quartz crystal microbalance (QCM) is an effective, simple, inexpensive approach mass changes that can be converted into an electrical signal. The applications for specific determination of chemical substances or biomolecules, crystal electrodes, cover by the thin films for bind or adsorption of molecules. In this study, we have focused our attention on combining of molecular imprinting into nanofilms and QCM nanosensor approaches and producing QCM nanosensor for anti-CCP, chosen as a model protein, using anti-CCP imprinted nanofilms. For this aim, anti-CCP imprinted QCM nanosensor was characterized by Fourier transform infrared spectroscopy, atomic force microscopy, contact angle measurements and ellipsometry. The non-imprinted nanosensor was also prepared to evaluate the selectivity of the imprinted nanosensor. Anti-CCP imprinted QCM nanosensor was tested for real-time detection of anti-CCP from aqueous solution. The kinetic and affinity studies were determined by using anti-CCP solutions with different concentrations. The responses related with mass shifts (Δm) and frequency shifts (Δf) were used to evaluate adsorption properties and to calculate binding (Ka) and dissociation (Kd) constants. To show the selectivity of the anti-CCP imprinted QCM nanosensor, competitive adsorption of anti-CCP and IgM was investigated.The results indicate that anti-CCP imprinted QCM nanosensor has a higher adsorption capabilities for anti-CCP than for IgM, due to selective cavities in the polymer structure.Keywords: anti-CCP, molecular imprinting, nanosensor, rheumatoid arthritis, QCM
Procedia PDF Downloads 3622557 FLC with 3DSVM for 4LEG 4WIRE Shunt Active Power Filter
Authors: Abdelhalim Kessal, Ali Chebabhi
Abstract:
In this paper, a controller based on fuzzy logic control (FLC) associated to Three Dimensional Space Vector Modulation (3DSVM) is applied for shunt active filter in αβo axes domain. The main goals are to improve power quality under disturbed loads, minimize source currents harmonics and reduce neutral current magnitude in the four-wire structure. FLC is used to obtain the reference current and control the DC-bus voltage at the inverter output. The switching signals of the four-leg inverter are generating through a Three Dimensional Space Vector Modulation (3DSVM). Selected simulation results have been shown to validate the proposed system.Keywords: flc, 3dsvm, sapf, harmonic, inverter
Procedia PDF Downloads 4952556 Retrofitting Measures for Existing Housing Stock in Kazakhstan
Authors: S. Yessengabulov, A. Uyzbayeva
Abstract:
Residential buildings fund of Kazakhstan was built in the Soviet time about 35-60 years ago without considering energy efficiency measures. Currently, most of these buildings are in a rundown condition and fail to meet the minimum of hygienic, sanitary and comfortable living requirements. The paper aims to examine the reports of recent building energy survey activities in the country and provide a possible solution for retrofitting existing housing stock built before 1989 which could be applicable for building envelope in cold climate. Methodology also includes two-dimensional modeling of possible practical solutions and further recommendations.Keywords: energy audit, energy efficient buildings in Kazakhstan, retrofit, two-dimensional conduction heat transfer analysis
Procedia PDF Downloads 2472555 A Trapezoidal-Like Integrator for the Numerical Solution of One-Dimensional Time Dependent Schrödinger Equation
Authors: Johnson Oladele Fatokun, I. P. Akpan
Abstract:
In this paper, the one-dimensional time dependent Schrödinger equation is discretized by the method of lines using a second order finite difference approximation to replace the second order spatial derivative. The evolving system of stiff ordinary differential equation (ODE) in time is solved numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10-4 in the interval of consideration. The performance of the method as compared to an existing scheme is considered favorable.Keywords: Schrodinger’s equation, partial differential equations, method of lines (MOL), stiff ODE, trapezoidal-like integrator
Procedia PDF Downloads 4172554 One Dimensional Reactor Modeling for Methanol Steam Reforming to Hydrogen
Authors: Hongfang Ma, Mingchuan Zhou, Haitao Zhang, Weiyong Ying
Abstract:
One dimensional pseudo-homogenous modeling has been performed for methanol steam reforming reactor. The results show that the models can well predict the industrial data. The reactor had minimum temperature along axial because of endothermic reaction. Hydrogen productions and temperature profiles along axial were investigated regarding operation conditions such as inlet mass flow rate and mass fraction of methanol, inlet temperature of external thermal oil. Low inlet mass flow rate of methanol, low inlet temperature, and high mass fraction of methanol decreased minimum temperature along axial. Low inlet mass flow rate of methanol, high mass fraction of methanol, and high inlet temperature of thermal oil made cold point forward. Low mass fraction, high mass flow rate, and high inlet temperature of thermal oil increased hydrogen production. One dimensional models can be a guide for industrial operation.Keywords: reactor, modeling, methanol, steam reforming
Procedia PDF Downloads 298