Search results for: process optimization
17203 Optimization of Multistage Extractor for the Butanol Separation from Aqueous Solution Using Ionic Liquids
Authors: Dharamashi Rabari, Anand Patel
Abstract:
n-Butanol can be regarded as a potential biofuel. Being resistive to corrosion and having high calorific value, butanol is a very attractive energy source as opposed to ethanol. By fermentation process called ABE (acetone, butanol, ethanol), bio-butanol can be produced. ABE carried out mostly by bacteria Clostridium acetobutylicum. The major drawback of the process is the butanol concentration higher than 10 g/L, delays the growth of microbes resulting in a low yield. It indicates the simultaneous separation of butanol from the fermentation broth. Two hydrophobic Ionic Liquids (ILs) 1-butyl-1-methylpiperidinium bis (trifluoromethylsulfonyl)imide [bmPIP][Tf₂N] and 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [hmim][Tf₂N] were chosen. The binary interaction parameters for both ternary systems i.e. [bmPIP][Tf₂N] + water + n-butanol and [hmim][Tf₂N] + water +n-butanol were taken from the literature that was generated by NRTL model. Particle swarm optimization (PSO) with the isothermal sum rate (ISR) method was used to optimize the cost of liquid-liquid extractor. For [hmim][Tf₂N] + water +n-butanol system, PSO shows 84% success rate with the number of stages equal to eight and solvent flow rate equal to 461 kmol/hr. The number of stages was three with 269.95 kmol/hr solvent flow rate for [bmPIP][Tf₂N] + water + n-butanol system. Moreover, both ILs were very efficient as the loss of ILs in raffinate phase was negligible.Keywords: particle swarm optimization, isothermal sum rate method, success rate, extraction
Procedia PDF Downloads 12117202 Production Plan and Technological Variants Optimization by Goal Programming Methods
Authors: Tunjo Perić, Franjo Bratić
Abstract:
In this paper the goal programming methodology for solving multiple objective problem of the technological variants and production plan optimization has been applied. The optimization criteria are determined and the multiple objective linear programming model for solving a problem of the technological variants and production plan optimization is formed and solved. Then the obtained results are analysed. The obtained results point out to the possibility of efficient application of the goal programming methodology in solving the problem of the technological variants and production plan optimization. The paper points out on the advantages of the application of the goal programming methodolohy compare to the Surrogat Worth Trade-off method in solving this problem.Keywords: goal programming, multi objective programming, production plan, SWT method, technological variants
Procedia PDF Downloads 37917201 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint
Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang
Abstract:
This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.Keywords: topology optimization, BESO method, p-norm, fatigue constraint
Procedia PDF Downloads 29417200 Integration of Agile Philosophy and Scrum Framework to Missile System Design Processes
Authors: Misra Ayse Adsiz, Selim Selvi
Abstract:
In today's world, technology is competing with time. In order to catch up with the world's companies and adapt quickly to the changes, it is necessary to speed up the processes and keep pace with the rate of change of the technology. The missile system design processes, which are handled with classical methods, keep behind in this race. Because customer requirements are not clear, and demands are changing again and again in the design process. Therefore, in the system design process, a methodology suitable for the missile system design dynamics has been investigated and the processes used for catching up the era are examined. When commonly used design processes are analyzed, it is seen that any one of them is dynamic enough for today’s conditions. So a hybrid design process is established. After a detailed review of the existing processes, it is decided to focus on the Scrum Framework and Agile Philosophy. Scrum is a process framework. It is focused on to develop software and handling change management with rapid methods. In addition, agile philosophy is intended to respond quickly to changes. In this study, it is aimed to integrate Scrum framework and agile philosophy, which are the most appropriate ways for rapid production and change adaptation, into the missile system design process. With this approach, it is aimed that the design team, involved in the system design processes, is in communication with the customer and provide an iterative approach in change management. These methods, which are currently being used in the software industry, have been integrated with the product design process. A team is created for system design process. The roles of Scrum Team are realized with including the customer. A scrum team consists of the product owner, development team and scrum master. Scrum events, which are short, purposeful and time-limited, are organized to serve for coordination rather than long meetings. Instead of the classic system design methods used in product development studies, a missile design is made with this blended method. With the help of this design approach, it is become easier to anticipate changing customer demands, produce quick solutions to demands and combat uncertainties in the product development process. With the feedback of the customer who included in the process, it is worked towards marketing optimization, design and financial optimization.Keywords: agile, design, missile, scrum
Procedia PDF Downloads 16717199 Cloud Monitoring and Performance Optimization Ensuring High Availability
Authors: Inayat Ur Rehman, Georgia Sakellari
Abstract:
Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.Keywords: cloud computing, cloud monitoring, performance optimization, high availability, scalability, resource allocation, load balancing, auto-scaling, data security, data privacy
Procedia PDF Downloads 5817198 Speed Optimization Model for Reducing Fuel Consumption Based on Shipping Log Data
Authors: Ayudhia P. Gusti, Semin
Abstract:
It is known that total operating cost of a vessel is dominated by the cost of fuel consumption. How to reduce the fuel cost of ship so that the operational costs of fuel can be minimized is the question that arises. As the basis of these kinds of problem, sailing speed determination is an important factor to be considered by a shipping company. Optimal speed determination will give a significant influence on the route and berth schedule of ships, which also affect vessel operating costs. The purpose of this paper is to clarify some important issues about ship speed optimization. Sailing speed, displacement, sailing time, and specific fuel consumption were obtained from shipping log data to be further analyzed for modeling the speed optimization. The presented speed optimization model is expected to affect the fuel consumption and to reduce the cost of fuel consumption.Keywords: maritime transportation, reducing fuel, shipping log data, speed optimization
Procedia PDF Downloads 56817197 Reverse Supply Chain Analysis of Lithium-Ion Batteries Considering Economic and Environmental Aspects
Authors: Aravind G., Arshinder Kaur, Pushpavanam S.
Abstract:
There is a strong emphasis on shifting to electric vehicles (EVs) throughout the globe for reducing the impact on global warming following the Paris climate accord. Lithium-ion batteries (LIBs) are predominantly used in EVs, and these can be a significant threat to the environment if not disposed of safely. Lithium is also a valuable resource not widely available. There are several research groups working on developing an efficient recycling process for LIBs. Two routes - pyrometallurgical and hydrometallurgical processes have been proposed for recycling LIBs. In this paper, we focus on life cycle assessment (LCA) as a tool to quantify the environmental impact of these recycling processes. We have defined the boundary of the LCA to include only the recycling phase of the end-of-life (EoL) of the battery life cycle. The analysis is done assuming ideal conditions for the hydrometallurgical and a combined hydrometallurgical and pyrometallurgical process in the inventory analysis. CML-IA method is used for quantifying the impact assessment across eleven indicators. Our results show that cathode, anode, and foil contribute significantly to the impact. The environmental impacts of both hydrometallurgical and combined recycling processes are similar across all the indicators. Further, the results of LCA are used in developing a multi-objective optimization model for the design of lithium-ion battery recycling network. Greenhouse gas emissions and cost are the two parameters minimized for the optimization study.Keywords: life cycle assessment, lithium-ion battery recycling, multi-objective optimization, network design, reverse supply chain
Procedia PDF Downloads 15517196 Optimization of Photocatalytic Degradation of Para-Nitrophenol in Visible Light by Nitrogen and Phosphorus Co-Doped Zinc Oxide Using Factorial Design of Experimental
Authors: Friday Godwin Okibe, Elaoyi David Paul, Oladayo Thomas Ojekunle
Abstract:
In this study, Nitrogen and Phosphorous co-doped Zinc Oxide (NPZ) was prepared through a solvent-free reaction. The NPZ was characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy. The photocatalytic activity of the catalyst was investigated by monitoring the degradation of para-nitrophenol (PNP) under visible light irradiation and the process was optimized using factorial design of experiment. The factors investigated were initial concentration of para-nitrophenol, catalyst loading, pH and irradiation time. The characterization results revealed a successful doping of ZnO by nitrogen and phosphorus and an improvement in the surface morphology of the catalyst. The photo-catalyst exhibited improved photocatalytic activity under visible light by 73.8%. The statistical analysis of the optimization result showed that the model terms were significant at 95% confidence level. Interactions plots revealed that irradiation time was the most significant factor affecting the degradation process. The cube plots of the interactions of the variables showed that an optimum degradation efficiency of 66.9% was achieved at 10mg/L initial PNP concentration, 0.5g catalyst loading, pH 7 and 150 minutes irradiation time.Keywords: nitrogen and phosphorous co-doped Zno, p-nitrophenol, photocatalytic degradation, optimization, factorial design of experimental
Procedia PDF Downloads 52117195 Optimization of Processing Parameters of Acrylonitrile–Butadiene–Styrene Sheets Integrated by Taguchi Method
Authors: Fatemeh Sadat Miri, Morteza Ehsani, Seyed Farshid Hosseini
Abstract:
The present research is concerned with the optimization of extrusion parameters of ABS sheets by the Taguchi experimental design method. In this design method, three parameters of % recycling ABS, processing temperature and degassing time on mechanical properties, hardness, HDT, and color matching of ABS sheets were investigated. The variations of this research are the dosage of recycling ABS, processing temperature, and degassing time. According to experimental test data, the highest level of tensile strength and HDT belongs to the sample with 5% recycling ABS, processing temperature of 230°C, and degassing time of 3 hours. Additionally, the minimum level of MFI and color matching belongs to this sample, too. The present results are in good agreement with the Taguchi method. Based on the outcomes of the Taguchi design method, degassing time has the most effect on the mechanical properties of ABS sheets.Keywords: ABS, process optimization, Taguchi, mechanical properties
Procedia PDF Downloads 7217194 Optimization of Coefficients of Fractional Order Proportional-Integrator-Derivative Controller on Permanent Magnet Synchronous Motors Using Particle Swarm Optimization
Authors: Ali Motalebi Saraji, Reza Zarei Lamuki
Abstract:
Speed control and behavior improvement of permanent magnet synchronous motors (PMSM) that have reliable performance, low loss, and high power density, especially in industrial drives, are of great importance for researchers. Because of its importance in this paper, coefficients optimization of proportional-integrator-derivative fractional order controller is presented using Particle Swarm Optimization (PSO) algorithm in order to improve the behavior of PMSM in its speed control loop. This improvement is simulated in MATLAB software for the proposed optimized proportional-integrator-derivative fractional order controller with a Genetic algorithm and compared with a full order controller with a classic optimization method. Simulation results show the performance improvement of the proposed controller with respect to two other controllers in terms of rising time, overshoot, and settling time.Keywords: speed control loop of permanent magnet synchronous motor, fractional and full order proportional-integrator-derivative controller, coefficients optimization, particle swarm optimization, improvement of behavior
Procedia PDF Downloads 14617193 A New Approach for Generalized First Derivative of Nonsmooth Functions Using Optimization
Authors: Mohammad Mehdi Mazarei, Ali Asghar Behroozpoor
Abstract:
In this paper, we define an optimization problem corresponding to smooth and nonsmooth functions which its optimal solution is the first derivative of these functions in a domain. For this purpose, a linear programming problem corresponding to optimization problem is obtained. The optimal solution of this linear programming problem is the approximate generalized first derivative. In fact, we approximate generalized first derivative of nonsmooth functions as tailor series. We show the efficiency of our approach by some smooth and nonsmooth functions in some examples.Keywords: general derivative, linear programming, optimization problem, smooth and nonsmooth functions
Procedia PDF Downloads 55717192 Optimization of Structures with Mixed Integer Non-linear Programming (MINLP)
Authors: Stojan Kravanja, Andrej Ivanič, Tomaž Žula
Abstract:
This contribution focuses on structural optimization in civil engineering using mixed integer non-linear programming (MINLP). MINLP is characterized as a versatile method that can handle both continuous and discrete optimization variables simultaneously. Continuous variables are used to optimize parameters such as dimensions, stresses, masses, or costs, while discrete variables represent binary decisions to determine the presence or absence of structural elements within a structure while also calculating discrete materials and standard sections. The optimization process is divided into three main steps. First, a mechanical superstructure with a variety of different topology-, material- and dimensional alternatives. Next, a MINLP model is formulated to encapsulate the optimization problem. Finally, an optimal solution is searched in the direction of the defined objective function while respecting the structural constraints. The economic or mass objective function of the material and labor costs of a structure is subjected to the constraints known from structural analysis. These constraints include equations for the calculation of internal forces and deflections, as well as equations for the dimensioning of structural components (in accordance with the Eurocode standards). Given the complex, non-convex and highly non-linear nature of optimization problems in civil engineering, the Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm is applied. This algorithm alternately solves subproblems of non-linear programming (NLP) and main problems of mixed-integer linear programming (MILP), in this way gradually refines the solution space up to the optimal solution. The NLP corresponds to the continuous optimization of parameters (with fixed topology, discrete materials and standard dimensions, all determined in the previous MILP), while the MILP involves a global approximation to the superstructure of alternatives, where a new topology, materials, standard dimensions are determined. The optimization of a convex problem is stopped when the MILP solution becomes better than the best NLP solution. Otherwise, it is terminated when the NLP solution can no longer be improved. While the OA/ER algorithm, like all other algorithms, does not guarantee global optimality due to the presence of non-convex functions, various modifications, including convexity tests, are implemented in OA/ER to mitigate these difficulties. The effectiveness of the proposed MINLP approach is demonstrated by its application to various structural optimization tasks, such as mass optimization of steel buildings, cost optimization of timber halls, composite floor systems, etc. Special optimization models have been developed for the optimization of these structures. The MINLP optimizations, facilitated by the user-friendly software package MIPSYN, provide insights into a mass or cost-optimal solutions, optimal structural topologies, optimal material and standard cross-section choices, confirming MINLP as a valuable method for the optimization of structures in civil engineering.Keywords: MINLP, mixed-integer non-linear programming, optimization, structures
Procedia PDF Downloads 4617191 Optimization of Real Time Measured Data Transmission, Given the Amount of Data Transmitted
Authors: Michal Kopcek, Tomas Skulavik, Michal Kebisek, Gabriela Krizanova
Abstract:
The operation of nuclear power plants involves continuous monitoring of the environment in their area. This monitoring is performed using a complex data acquisition system, which collects status information about the system itself and values of many important physical variables e.g. temperature, humidity, dose rate etc. This paper describes a proposal and optimization of communication that takes place in teledosimetric system between the central control server responsible for the data processing and storing and the decentralized measuring stations, which are measuring the physical variables. Analyzes of ongoing communication were performed and consequently the optimization of the system architecture and communication was done.Keywords: communication protocol, transmission optimization, data acquisition, system architecture
Procedia PDF Downloads 51717190 Modeling of Coagulation Process for the Removal of Carbofuran in Aqueous Solution
Authors: Roli Saini, Pradeep Kumar
Abstract:
A coagulation/flocculation process was adopted for the reduction of carbamate insecticide (carbofuran) from aqueous solution. Ferric chloride (FeCl3) was used as a coagulant to treat the carbofuran. To exploit the reduction efficiency of pesticide concentration and COD, the jar-test experiments were carried out and process was optimized through response surface methodology (RSM). The effects of two independent factors; i.e., FeCl3 dosage and pH on the reduction efficiency were estimated by using central composite design (CCD). The initial COD of the 30 mg/L concentrated solution was found to be 510 mg/L. Results exposed that the maximum reduction occurred at an optimal condition of FeCl3 = 80 mg/L, and pH = 5.0, from which the reduction of concentration and COD 75.13% and 65.34%, respectively. The present study also predicted that the obtained regression equations could be helpful as the theoretical basis for the coagulation process of pesticide wastewater.Keywords: carbofuran, coagulation, optimization, response surface methodology
Procedia PDF Downloads 32317189 Modeling, Analysis, and Optimization of Process Parameters of Metal Spinning
Authors: B. Ravi Kumar, S. Gajanana, K. Hemachandra Reddy, K. Udayani
Abstract:
Physically into various derived shapes and sizes under the effect of externally applied forces. The spinning process is an advanced plastic working technology and is frequently used for manufacturing axisymmetric shapes. Over the last few decades, Sheet metal spinning has developed significantly and spun products have widely used in various industries. Nowadays the process has been expanded to new horizons in industries, since tendency to use minimum tool and equipment costs and also using lower forces with the output of excellent surface quality and good mechanical properties. The automation of the process is of greater importance, due to its wider applications like decorative household goods, rocket nose cones, gas cylinders, etc. This paper aims to gain insight into the conventional spinning process by employing experimental and numerical methods. The present work proposes an approach for optimizing process parameters are mandrel speed (rpm), roller nose radius (mm), thickness of the sheet (mm). Forming force, surface roughness and strain are the responses.in spinning of Aluminum (2024-T3) using DOE-Response Surface Methodology (RSM) and Analysis of variance (ANOVA). The FEA software is used for modeling and analysis. The process parameters considered in the experimentation.Keywords: FEA, RSM, process parameters, sheet metal spinning
Procedia PDF Downloads 31917188 SOUL Framework in Theology and Islamic Philosophy
Authors: Khan Shahid, Shahid Zakia
Abstract:
This article explores the fields of Theology and Islamic Philosophy in alignment with the SOUL (Sincere act, Optimization efforts, Ultimate goal, Law compliance) framework. It examines their historical development and demonstrates how embracing sincerity, optimization, ultimate goals, and law compliance enhances these disciplines within the Islamic context. By emphasizing the importance of Sincere acts, Optimization efforts, Ultimate goal, and Law compliance, this article provides a framework for enriching Theology and Islamic Philosophy.Keywords: SOUL framework, Theology, Islamic Philosophy, Sincerity act, Optimization effort, Ultimate goal, Law compliance
Procedia PDF Downloads 8517187 A Conjugate Gradient Method for Large Scale Unconstrained Optimization
Authors: Mohammed Belloufi, Rachid Benzine, Badreddine Sellami
Abstract:
Conjugate gradient methods is useful for solving large scale optimization problems in scientific and engineering computation, characterized by the simplicity of their iteration and their low memory requirements. It is well known that the search direction plays a main role in the line search method. In this paper, we propose a search direction with the Wolfe line search technique for solving unconstrained optimization problems. Under the above line searches and some assumptions, the global convergence properties of the given methods are discussed. Numerical results and comparisons with other CG methods are given.Keywords: unconstrained optimization, conjugate gradient method, strong Wolfe line search, global convergence
Procedia PDF Downloads 42017186 Clustering Based Level Set Evaluation for Low Contrast Images
Authors: Bikshalu Kalagadda, Srikanth Rangu
Abstract:
The important object of images segmentation is to extract objects with respect to some input features. One of the important methods for image segmentation is Level set method. Generally medical images and synthetic images with low contrast of pixel profile, for such images difficult to locate interested features in images. In conventional level set function, develops irregularity during its process of evaluation of contour of objects, this destroy the stability of evolution process. For this problem a remedy is proposed, a new hybrid algorithm is Clustering Level Set Evolution. Kernel fuzzy particles swarm optimization clustering with the Distance Regularized Level Set (DRLS) and Selective Binary, and Gaussian Filtering Regularized Level Set (SBGFRLS) methods are used. The ability of identifying different regions becomes easy with improved speed. Efficiency of the modified method can be evaluated by comparing with the previous method for similar specifications. Comparison can be carried out by considering medical and synthetic images.Keywords: segmentation, clustering, level set function, re-initialization, Kernel fuzzy, swarm optimization
Procedia PDF Downloads 35217185 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization
Authors: Yihao Kuang, Bowen Ding
Abstract:
With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graphs and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improved strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain a better and more efficient inference effect by introducing PPO into knowledge inference technology.Keywords: reinforcement learning, PPO, knowledge inference
Procedia PDF Downloads 24117184 Finite Volume Method Simulations of GaN Growth Process in MOVPE Reactor
Authors: J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski
Abstract:
In the present study, numerical simulations of heat and mass transfer during gallium nitride growth process in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Existing knowledge about phenomena occurring in the MOVPE process allows to produce high quality nitride based semiconductors. However, process parameters of MOVPE reactors can vary in certain ranges. Main goal of this study is optimization of the process and improvement of the quality of obtained crystal. In order to investigate this subject a series of computer simulations have been performed. Numerical simulations of heat and mass transfer in GaN epitaxial growth process have been performed to determine growth rate for various mass flow rates and pressures of reagents. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during the process, modeling is the only solution to understand the process precisely. Main heat transfer mechanisms during MOVPE process are convection and radiation. Correlation of modeling results with the experiment allows to determine optimal process parameters for obtaining crystals of highest quality.Keywords: Finite Volume Method, semiconductors, epitaxial growth, metalorganic vapor phase epitaxy, gallium nitride
Procedia PDF Downloads 39617183 Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming
Authors: Rohit Mittal, Bright Keswani, Amit Mithal
Abstract:
This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track.Keywords: evolution algorithm, genetic, optimization, imitation, racing, innovation, gaming
Procedia PDF Downloads 64517182 Binary Programming for Manufacturing Material and Manufacturing Process Selection Using Genetic Algorithms
Authors: Saleem Z. Ramadan
Abstract:
The material selection problem is concerned with the determination of the right material for a certain product to optimize certain performance indices in that product such as mass, energy density, and power-to-weight ratio. This paper is concerned about optimizing the selection of the manufacturing process along with the material used in the product under performance indices and availability constraints. In this paper, the material selection problem is formulated using binary programming and solved by genetic algorithm. The objective function of the model is to minimize the total manufacturing cost under performance indices and material and manufacturing process availability constraints.Keywords: optimization, material selection, process selection, genetic algorithm
Procedia PDF Downloads 41917181 Methodology of Construction Equipment Optimization for Earthwork
Authors: Jaehyun Choi, Hyunjung Kim, Namho Kim
Abstract:
Earthwork is one of the critical civil construction operations that require large-quantities of resources due to its intensive dependency upon construction equipment. Therefore, efficient construction equipment management can highly contribute to productivity improvements and cost savings. Earthwork operation utilizes various combinations of construction equipment in order to meet project requirements such as time and cost. Identification of site condition and construction methods should be performed in advance in order to develop a proper execution plan. The factors to be considered include capacity of equipment assigned, the method of construction, the size of the site, and the surrounding condition. In addition, optimal combination of various construction equipment should be selected. However, in real world practice, equipment utilization plan is performed based on experience and intuition of management. The researchers evaluated the efficiency of various alternatives of construction equipment combinations by utilizing the process simulation model, validated the model from a case study project, and presented a methodology to find optimized plan among alternatives.Keywords: earthwork operation, construction equipment, process simulation, optimization
Procedia PDF Downloads 42517180 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks
Authors: Reza Sirjani, Nobosse Tafem Bolan
Abstract:
Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.Keywords: cuckoo search algorithm, optimization, power system, var compensators, voltage stability
Procedia PDF Downloads 55017179 Exergetic Optimization on Solid Oxide Fuel Cell Systems
Authors: George N. Prodromidis, Frank A. Coutelieris
Abstract:
Biogas can be currently considered as an alternative option for electricity production, mainly due to its high energy content (hydrocarbon-rich source), its renewable status and its relatively low utilization cost. Solid Oxide Fuel Cell (SOFC) stacks convert fuel’s chemical energy to electricity with high efficiencies and reveal significant advantages on fuel flexibility combined with lower emissions rate, especially when utilize biogas. Electricity production by biogas constitutes a composite problem which incorporates an extensive parametric analysis on numerous dynamic variables. The main scope of the presented study is to propose a detailed thermodynamic model on the optimization of SOFC-based power plants’ operation based on fundamental thermodynamics, energy and exergy balances. This model named THERMAS (THERmodynamic MAthematical Simulation model) incorporates each individual process, during electricity production, mathematically simulated for different case studies that represent real life operational conditions. Also, THERMAS offers the opportunity to choose a great variety of different values for each operational parameter individually, thus allowing for studies within unexplored and experimentally impossible operational ranges. Finally, THERMAS innovatively incorporates a specific criterion concluded by the extensive energy analysis to identify the most optimal scenario per simulated system in exergy terms. Therefore, several dynamical parameters as well as several biogas mixture compositions have been taken into account, to cover all the possible incidents. Towards the optimization process in terms of an innovative OPF (OPtimization Factor), presented here, this research study reveals that systems supplied by low methane fuels can be comparable to these supplied by pure methane. To conclude, such an innovative simulation model indicates a perspective on the optimal design of a SOFC stack based system, in the direction of the commercialization of systems utilizing biogas.Keywords: biogas, exergy, efficiency, optimization
Procedia PDF Downloads 36817178 Optimal Design of Shape for Increasing the Bonding Pressure Drawing of Hot Clad Pipes by Finite Element Method Analysis
Authors: Seok-Hyeon Park, Joon-Hong Park, Mok-Tan-Ahn, Seong-Hun Ha
Abstract:
Clad Pipe is made of a different kind of material, which is different from the internal and external materials, for the corrosive crude oil transportation tube. Most of the clad pipes are produced by hot rolling. However, problems arise due to high product prices and excessive process numbers. Therefore, in this study, the hot drawing process with excellent product cost, process number and productivity is applied. Due to the nature of the drawing process, the shape of the mold greatly influences the formability of the material and the bonding pressure of the two materials because it is a process of drawing the material to the die and reducing the cross-sectional area. Also, in case of hot drawing, if the mold shape is not suitable due to the increased fluidity of the material, it may cause problems such as tearing and stretching. Therefore, in this study, we try to find the shape of the mold which suppresses the occurrence of defects in the hot drawing process and maximizes the bonding pressure between the two materials through the mold shape optimization design by FEM analysis.Keywords: clad pipe, hot drawing, bonding pressure, mold shape
Procedia PDF Downloads 30317177 A Cognitive Approach to the Optimization of Power Distribution across an Educational Campus
Authors: Mrinmoy Majumder, Apu Kumar Saha
Abstract:
The ever-increasing human population and its demand for energy is placing stress upon conventional energy sources; and as demand for power continues to outstrip supply, the need to optimize energy distribution and utilization is emerging as an important focus for various stakeholders. The distribution of available energy must be achieved in such a way that the needs of the consumer are satisfied. However, if the availability of resources is not sufficient to satisfy consumer demand, it is necessary to find a method to select consumers based on factors such as their socio-economic or environmental impacts. Weighting consumer types in this way can help separate them based on their relative importance, and cognitive optimization of the allocation process can then be carried out so that, even on days of particularly scarce supply, the socio-economic impacts of not satisfying the needs of consumers can be minimized. In this context, the present study utilized fuzzy logic to assign weightage to different types of consumers based at an educational campus in India, and then established optimal allocation by applying the non-linear mapping capability of neuro-genetic algorithms. The outputs of the algorithms were compared with similar outputs from particle swarm optimization and differential evolution algorithms. The results of the study demonstrate an option for the optimal utilization of available energy based on the socio-economic importance of consumers.Keywords: power allocation, optimization problem, neural networks, environmental and ecological engineering
Procedia PDF Downloads 47817176 An Ant Colony Optimization Approach for the Pollution Routing Problem
Authors: P. Parthiban, Sonu Rajak, N. Kannan, R. Dhanalakshmi
Abstract:
This paper deals with the Vehicle Routing Problem (VRP) with environmental considerations which is called Pollution Routing Problem (PRP). The objective is to minimize the operational and environmental costs. It consists of routing a number of vehicles to serve a set of customers, and determining fuel consumption, driver wages and their speed on each route segment, while respecting the capacity constraints and time windows. In this context, we presented an Ant Colony Optimization (ACO) approach, combined with a Speed Optimization Algorithm (SOA) to solve the PRP. The proposed solution method consists of two stages. Stage one is to solve a Vehicle Routing Problem with Time Window (VRPTW) using ACO and in the second stage a SOA is run on the resulting VRPTW solutions. Given a vehicle route, the SOA consists of finding the optimal speed on each arc of the route in order to minimize an objective function comprising fuel consumption costs and driver wages. The proposed algorithm tested on benchmark problem, the preliminary results show that the proposed algorithm is able to provide good solutions.Keywords: ant colony optimization, CO2 emissions, combinatorial optimization, speed optimization, vehicle routing
Procedia PDF Downloads 32217175 A Study on Optimum Shape in According to Equivalent Stress Distributions at the Die and Plug in the Multi-Pass Drawing Process
Authors: Yeon-Jong Jeong, Mok-Tan Ahn, Seok-Hyeon Park, Seong-Hun Ha, Joon-Hong Park, Jong-Bae Park
Abstract:
Multi-stage drawing process is an important technique for forming a shape that cannot be molded in a single process. multi-stage drawing process in number of passes and the shape of the die are an important factors influencing the productivity and formability of the product. The number and shape of the multi-path in the mold of the drawing process is very influencing the productivity and formability of the product. Half angle of the die and mandrel affects the drawing force and it also affects the completion of the final shape. Thus reducing the number of pass and the die shape optimization are necessary to improve the formability of the billet. Analyzing the load on the die through the FEM analysis and in consideration of the formability of the material presents a die model.Keywords: multi-pass shape drawing, equivalent stress, FEM, finite element method, optimum shape
Procedia PDF Downloads 47817174 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization
Authors: Yihao Kuang, Bowen Ding
Abstract:
With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graph and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improve strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain better and more efficient inference effect by introducing PPO into knowledge inference technology.Keywords: reinforcement learning, PPO, knowledge inference, supervised learning
Procedia PDF Downloads 66