Search results for: orchard robots
72 Autonomous Landing of UAV on Moving Platform: A Mathematical Approach
Authors: Mortez Alijani, Anas Osman
Abstract:
Recently, the popularity of Unmanned aerial vehicles (UAVs) has skyrocketed amidst the unprecedented events and the global pandemic, as they play a key role in both the security and health sectors, through surveillance, taking test samples, transportation of crucial goods and spreading awareness among civilians. However, the process of designing and producing such aerial robots is suppressed by the internal and external constraints that pose serious challenges. Landing is one of the key operations during flight, especially, the autonomous landing of UAVs on a moving platform is a scientifically complex engineering problem. Typically having a successful automatic landing of UAV on a moving platform requires accurate localization of landing, fast trajectory planning, and robust control planning. To achieve these goals, the information about the autonomous landing process such as the intersection point, the position of platform/UAV and inclination angle are more necessary. In this study, the mathematical approach to this problem in the X-Y axis based on the inclination angle and position of UAV in the landing process have been presented. The experimental results depict the accurate position of the UAV, intersection between UAV and moving platform and inclination angle in the landing process, allowing prediction of the intersection point.Keywords: autonomous landing, inclination angle, unmanned aerial vehicles, moving platform, X-Y axis, intersection point
Procedia PDF Downloads 16471 Embedded Hardware and Software Design of Omnidirectional Autonomous Robotic Platform Suitable for Advanced Driver Assistance Systems Testing with Focus on Modularity and Safety
Authors: Ondrej Lufinka, Jan Kaderabek, Juraj Prstek, Jiri Skala, Kamil Kosturik
Abstract:
This paper deals with the problem of using Autonomous Robotic Platforms (ARP) for the ADAS (Advanced Driver Assistance Systems) testing in automotive. There are different possibilities of the testing already in development, and lately, the autonomous robotic platforms are beginning to be used more and more widely. Autonomous Robotic Platform discussed in this paper explores the hardware and software design possibilities related to the field of embedded systems. The paper focuses on its chapters on the introduction of the problem in general; then, it describes the proposed prototype concept and its principles from the embedded HW and SW point of view. It talks about the key features that can be used for the innovation of these platforms (e.g., modularity, omnidirectional movement, common and non-traditional sensors used for localization, synchronization of more platforms and cars together, or safety mechanisms). In the end, the future possible development of the project is discussed as well.Keywords: advanced driver assistance systems, ADAS, autonomous robotic platform, embedded systems, hardware, localization, modularity, multiple robots synchronization, omnidirectional movement, safety mechanisms, software
Procedia PDF Downloads 14370 Telecontrolled Service Robots for Increasing the Quality of Life of Elderly and Disabled
Authors: Nayden Chivarov, Denis Chikurtev, Kaloyan Yovchev, Nedko Shivarov
Abstract:
This paper represents methods for improving the efficiency and precision of service mobile robot. This robot is used for increasing the quality of life of elderly and disabled people. The key concept of the proposed Intelligent Service Mobile Robot is its easier adaptability to achieve services for a wide range of Elderly or Disabled Person’s needs, by performing different tasks for supporting Elderly or Disabled Persons care. We developed robot autonomous navigation and computer vision systems in order to recognize different objects and bring them to the people. Web based user interface is developed to provide easy access and tele-control of the robot by any device through the internet. In this study algorithms for object recognition and localization are proposed for providing successful object recognition and accuracy in the positioning. Different methods for sending movement commands to the mobile robot system are proposed and evaluated. After executing some experiments to show the results of the research, we can summarize that these systems and algorithms provide good control of the service mobile robot and it will be more useful to help the elderly and disabled persons.Keywords: service robot, mobile robot, autonomous navigation, computer vision, web user interface, ROS
Procedia PDF Downloads 33969 Multi-Tooled Robotic Hand for Tele-Operation of Explosive Devices
Authors: Faik Derya Ince, Ugur Topgul, Alp Gunay, Can Bayoglu, Dante J. Dorantes-Gonzalez
Abstract:
Explosive attacks are arguably the most lethal threat that may occur in terrorist attacks. In order to counteract this issue, explosive ordnance disposal operators put their lives on the line to dispose of a possible improvised explosive device. Robots can make the disposal process more accurately and saving human lives. For this purpose, there is a demand for more accurate and dexterous manipulating robotic hands that can be teleoperated from a distance. The aim of this project is to design a robotic hand that contains two active and two passive DOF for each finger, as well as a minimum set of tools for mechanical cutting and screw driving within the same robotic hand. Both hand and toolset, are teleoperated from a distance from a haptic robotic glove in order to manipulate dangerous objects such as improvised explosive devices. SolidWorks® Computer-Aided Design, computerized dynamic simulation, and MATLAB® kinematic and static analysis were used for the robotic hand and toolset design. Novel, dexterous and robust solutions for the fingers were obtained, and six servo motors are used in total to remotely control the multi-tooled robotic hand. This project is still undergoing and presents currents results. Future research steps are also presented.Keywords: Explosive Manipulation, Robotic Hand, Tele-Operation, Tool Integration
Procedia PDF Downloads 14168 Predictive Functional Control with Disturbance Observer for Tendon-Driven Balloon Actuator
Authors: Jun-ya Nagase, Toshiyuki Satoh, Norihiko Saga, Koichi Suzumori
Abstract:
In recent years, Japanese society has been aging, engendering a labour shortage of young workers. Robots are therefore expected to perform tasks such as rehabilitation, nursing elderly people, and day-to-day work support for elderly people. The pneumatic balloon actuator is a rubber artificial muscle developed for use in a robot hand in such environments. This actuator has a long stroke, and a high power-to-weight ratio compared with the present pneumatic artificial muscle. Moreover, the dynamic characteristics of this actuator resemble those of human muscle. This study evaluated characteristics of force control of balloon actuator using a predictive functional control (PFC) system with disturbance observer. The predictive functional control is a model-based predictive control (MPC) scheme that predicts the future outputs of the actual plants over the prediction horizon and computes the control effort over the control horizon at every sampling instance. For this study, a 1-link finger system using a pneumatic balloon actuator is developed. Then experiments of PFC control with disturbance observer are performed. These experiments demonstrate the feasibility of its control of a pneumatic balloon actuator for a robot hand.Keywords: disturbance observer, pneumatic balloon, predictive functional control, rubber artificial muscle
Procedia PDF Downloads 45267 Stochastic Modeling and Productivity Analysis of a Flexible Manufacturing System
Authors: Mehmet Savsar, Majid Aldaihani
Abstract:
Flexible Manufacturing Systems (FMS) are used to produce a variety of parts on the same equipment. Therefore, their utilization is higher than traditional machining systems. Higher utilization, on the other hand, results in more frequent equipment failures and additional need for maintenance. Therefore, it is necessary to carefully analyze operational characteristics and productivity of FMS or Flexible Manufacturing Cells (FMC), which are smaller configuration of FMS, before installation or during their operation. Appropriate models should be developed to determine production rates based on operational conditions, including equipment reliability, availability, and repair capacity. In this paper, a stochastic model is developed for an automated FMC system, which consists of two machines served by two robots and a single repairman. The model is used to determine system productivity and equipment utilization under different operational conditions, including random machine failures, random repairs, and limited repair capacity. The results are compared to previous study results for FMC system with sufficient repair capacity assigned to each machine. The results show that the model will be useful for design engineers and operational managers to analyze performance of manufacturing systems at the design or operational stages.Keywords: flexible manufacturing, FMS, FMC, stochastic modeling, production rate, reliability, availability
Procedia PDF Downloads 51666 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based On a Motion Polymorph-Primitives Algorithm
Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba
Abstract:
Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real-time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.Keywords: robotics, aerial robots, motion primitives, helicopter
Procedia PDF Downloads 61665 Assessment of the Landscaped Biodiversity in the National Park of Tlemcen (Algeria) Using Per-Object Analysis of Landsat Imagery
Authors: Bencherif Kada
Abstract:
In the forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape, and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification, that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction, and area of an object, etc.), and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify of the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak, and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants, and bare soils. Texture attributes seem to provide no useful information, while spatial attributes of shape and compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.Keywords: forest, oaks, remote sensing, diversity, shrublands
Procedia PDF Downloads 12464 Mapping Forest Biodiversity Using Remote Sensing and Field Data in the National Park of Tlemcen (Algeria)
Authors: Bencherif Kada
Abstract:
In forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects, and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction and area of an object, etc.) and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants and bare soils. Texture attributes seem to provide no useful information while spatial attributes of shape, compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.Keywords: forest, oaks, remote sensing, biodiversity, shrublands
Procedia PDF Downloads 3063 The Role of Robotization in Reshoring: An Overview of the Implications on International Trade
Authors: Thinh Huu Nguyen, Shahab Sharfaei, Jindřich Soukup
Abstract:
In the pursuit of reducing production costs, offshoring has been a major trend throughout global value chains for many decades. However, with the rise of advanced technologies, new opportunities to automate their production are changing the motivation of multinational firms to go offshore. Instead, many firms are working to relocate their offshored activities from developing economies back to their home countries. This phenomenon, known as reshoring, has recently garnered much attention as it becomes clear that automation in advanced countries might have major implications not only on their own economies but also through international trade on the economy of low-income countries, including their labor market outcomes and their comparative advantages. Thus, while using robots to substitute human labor may lower the relative costs of producing at home, it has the potential to decrease employment and demand for exports from developing economies through reshoring. In this paper, we investigate the recent literature to provide a further understanding of the relationships between robotization and the reshoring of production. Moreover, we analyze the impact of robot adoption on international trade in both developed and emerging markets. Finally, we identify the research gaps and provide avenues for future research in international economics. This study is a part of the project funded by the Internal Grant Agency (IGA) of the Faculty of Business Administration, Prague University of Economics and Business.Keywords: automation, robotization, reshoring, international trade
Procedia PDF Downloads 10962 Autonomic Sonar Sensor Fault Manager for Mobile Robots
Authors: Martin Doran, Roy Sterritt, George Wilkie
Abstract:
NASA, ESA, and NSSC space agencies have plans to put planetary rovers on Mars in 2020. For these future planetary rovers to succeed, they will heavily depend on sensors to detect obstacles. This will also become of vital importance in the future, if rovers become less dependent on commands received from earth-based control and more dependent on self-configuration and self-decision making. These planetary rovers will face harsh environments and the possibility of hardware failure is high, as seen in missions from the past. In this paper, we focus on using Autonomic principles where self-healing, self-optimization, and self-adaption are explored using the MAPE-K model and expanding this model to encapsulate the attributes such as Awareness, Analysis, and Adjustment (AAA-3). In the experimentation, a Pioneer P3-DX research robot is used to simulate a planetary rover. The sonar sensors on the P3-DX robot are used to simulate the sensors on a planetary rover (even though in reality, sonar sensors cannot operate in a vacuum). Experiments using the P3-DX robot focus on how our software system can be adapted with the loss of sonar sensor functionality. The autonomic manager system is responsible for the decision making on how to make use of remaining ‘enabled’ sonars sensors to compensate for those sonar sensors that are ‘disabled’. The key to this research is that the robot can still detect objects even with reduced sonar sensor capability.Keywords: autonomic, self-adaption, self-healing, self-optimization
Procedia PDF Downloads 35061 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning
Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza
Abstract:
The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library
Procedia PDF Downloads 17760 An Automated Optimal Robotic Assembly Sequence Planning Using Artificial Bee Colony Algorithm
Authors: Balamurali Gunji, B. B. V. L. Deepak, B. B. Biswal, Amrutha Rout, Golak Bihari Mohanta
Abstract:
Robots play an important role in the operations like pick and place, assembly, spot welding and much more in manufacturing industries. Out of those, assembly is a very important process in manufacturing, where 20% of manufacturing cost is wholly occupied by the assembly process. To do the assembly task effectively, Assembly Sequences Planning (ASP) is required. ASP is one of the multi-objective non-deterministic optimization problems, achieving the optimal assembly sequence involves huge search space and highly complex in nature. Many researchers have followed different algorithms to solve ASP problem, which they have several limitations like the local optimal solution, huge search space, and execution time is more, complexity in applying the algorithm, etc. By keeping the above limitations in mind, in this paper, a new automated optimal robotic assembly sequence planning using Artificial Bee Colony (ABC) Algorithm is proposed. In this algorithm, automatic extraction of assembly predicates is done using Computer Aided Design (CAD) interface instead of extracting the assembly predicates manually. Due to this, the time of extraction of assembly predicates to obtain the feasible assembly sequence is reduced. The fitness evaluation of the obtained feasible sequence is carried out using ABC algorithm to generate the optimal assembly sequence. The proposed methodology is applied to different industrial products and compared the results with past literature.Keywords: assembly sequence planning, CAD, artificial Bee colony algorithm, assembly predicates
Procedia PDF Downloads 23759 ChatGPT as a “Foreign Language Teacher”: Attitudes of Tunisian English Language Learners
Authors: Leila Najeh Bel'Kiry
Abstract:
Artificial intelligence (AI) brought about many language robots, with ChatGPT being the most sophisticated thanks to its human-like linguistic capabilities. This aspect raises the idea of using ChatGPT in learning foreign languages. Starting from the premise that positions ChatGPT as a mediator between the language and the leaner, functioning as a “ghost teacher" offering a peaceful and secure learning space, this study aims to explore the attitudes of Tunisian students of English towards ChatGPT as a “Foreign Language Teacher” . Forty-five students, in their third year of fundamental English at Tunisian universities and high institutes, completed a Likert scale questionnaire consisting of thirty-two items and covering various aspects of language (phonology, morphology, syntax, semantics, and pragmatics). A scale ranging from 'Strongly Disagree,' 'Disagree,' 'Undecided,' 'Agree,' to 'Strongly Agree.' is used to assess the attitudes of the participants towards the integration of ChaGPTin learning a foreign language. Results indicate generally positive attitudes towards the reliance on ChatGPT in learning foreign languages, particularly some compounds of language like syntax, phonology, and morphology. However, learners show insecurity towards ChatGPT when it comes to pragmatics and semantics, where the artificial model may fail when dealing with deeper contextual and nuanced language levels.Keywords: artificial language model, attitudes, foreign language learning, ChatGPT, linguistic capabilities, Tunisian English language learners
Procedia PDF Downloads 6458 Obtaining High-Dimensional Configuration Space for Robotic Systems Operating in a Common Environment
Authors: U. Yerlikaya, R. T. Balkan
Abstract:
In this research, a method is developed to obtain high-dimensional configuration space for path planning problems. In typical cases, the path planning problems are solved directly in the 3-dimensional (D) workspace. However, this method is inefficient in handling the robots with various geometrical and mechanical restrictions. To overcome these difficulties, path planning may be formalized and solved in a new space which is called configuration space. The number of dimensions of the configuration space comes from the degree of freedoms of the system of interest. The method can be applied in two ways. In the first way, the point clouds of all the bodies of the system and interaction of them are used. The second way is performed via using the clearance function of simulation software where the minimum distances between surfaces of bodies are simultaneously measured. A double-turret system is held in the scope of this study. The 4-D configuration space of a double-turret system is obtained in these two ways. As a result, the difference between these two methods is around 1%, depending on the density of the point cloud. The disparity between the two forms steadily decreases as the point cloud density increases. At the end of the study, in order to verify 4-D configuration space obtained, 4-D path planning problem was realized as 2-D + 2-D and a sample path planning is carried out with using A* algorithm. Then, the accuracy of the configuration space is proved using the obtained paths on the simulation model of the double-turret system.Keywords: A* algorithm, autonomous turrets, high-dimensional C-space, manifold C-space, point clouds
Procedia PDF Downloads 13957 Distributed Real-time Framework for Experimental Multi Aerial Robotic Systems
Authors: Samuel Knox, Verdon Crann, Peyman Amiri, William Crowther
Abstract:
There exists a shortage of open-source firmware for allowing researchers to focus on implementing high-level planning and control strategies for multi aerial robotic systems in simulation and experiment. Within this body of work, practical firmware is presented, which performs all supplementary tasks, including communications, pre and post-experiment procedures, and emergency safety measures. This allows researchers to implement high-level planning and control algorithms for path planning, traffic management, flight formation and swarming of aerial robots. The framework is built in Python using the MAVSDK library, which is compatible with flight controllers running PX4 firmware and onboard computers based on Linux. Communication is performed using Wi-Fi and the MQTT protocol, currently implemented using a centralized broker. Finally, a graphical user interface (GUI) has been developed to send general commands and monitor the agents. This framework enables researchers to prepare customized planning and control algorithms in a modular manner. Studies can be performed experimentally and in simulation using PX4 software in the loop (SITL) and the Gazebo simulator. An example experimental use case of the framework is presented using novel distributed planning and control strategies. The demonstration is performed using off-the-shelf components and minimal setup.Keywords: aerial robotics, distributed framework, experimental, planning and control
Procedia PDF Downloads 11256 The Task-Centered Instructional Strategy to Prepare Teachers for Integrating Robotics Activities in Science Education
Authors: Doaa Saad, Igor Verner, Rinat B. Rosenberg-Kima
Abstract:
This case study demonstrates how the Task-Centered Instructional Strategy can be used to develop robotics competencies in middle-school science teachers without programming knowledge, thereby reducing their anxiety about robotics. Sixteen middle school science teachers participated in a teachers’ professional development program. The strategy combines the progression of real-world tasks with explicit instruction that serves as the backbone of instruction. The designed progression includes three tasks that integrate building and programming robots, pedagogy, and science knowledge, with an increasing level of complexity and decreasing level of support. We used EV3 LEGO kits and programming blocks, a new technology for most of the participating teachers. Pre-post questionnaires were used to examine teachers’ anxiety in performing robotics tasks before the program began and after the program ended. In addition, post-program questionnaires were used to obtain teachers’ feedback on the program’s overall quality. The case study results showed that teachers were less anxious about performing robotics tasks after the program and were highly satisfied with the professional development program. Overall, our research findings indicate a positive effect of the Task-Centered Instructional Strategy for preparing in-service science teachers to integrate robotics activities into their science classes.Keywords: competencies, educational robotics, task-centered instructional strategy, teachers’ professional development
Procedia PDF Downloads 8655 Dynamic Stall Characterization of Low Reynolds Airfoil in Mars and Titan’s Atmosphere
Authors: Vatasta Koul, Vaibhav Sharma, Ayush Gupta, Rajesh Yadav
Abstract:
Exploratory missions to Mars and Titan have increased recently with various endeavors to find an alternate home to humankind. The use of surface rovers has its limitations due to rugged and uneven surfaces of these planetary bodies. The use of aerial robots requires the complete aerodynamic characterization of these vehicles in the atmospheric conditions of these planetary bodies. The dynamic stall phenomenon is extremely important for rotary wings performance under low Reynolds number that can be encountered in Martian and Titan’s atmosphere. The current research focuses on the aerodynamic characterization and exploration of the dynamic stall phenomenon of two different airfoils viz. E387 and Selig-Donovan7003 in Martian and Titan’s atmosphere at low Reynolds numbers of 10000 and 50000. The two-dimensional numerical simulations are conducted using commercially available finite volume solver with multi-species non-reacting mixture of gases as the working fluid. The k-epsilon (k-ε) turbulence model is used to capture the unsteady flow separation and the effect of turbulence. The dynamic characteristics are studied at a fixed different constant rotational extreme of angles of attack. This study of airfoils at different low Reynolds number and atmospheric conditions on Mars and Titan will be resulting in defining the aerodynamic characteristics of these airfoils for unmanned aerial missions for outer space exploration.Keywords: aerodynamics, dynamic stall, E387, SD7003
Procedia PDF Downloads 13454 An Inflatable and Foldable Knee Exosuit Based on Intelligent Management of Biomechanical Energy
Authors: Jing Fang, Yao Cui, Mingming Wang, Shengli She, Jianping Yuan
Abstract:
Wearable robotics is a potential solution in aiding gait rehabilitation of lower limbs dyskinesia patients, such as knee osteoarthritis or stroke afflicted patients. Many wearable robots have been developed in the form of rigid exoskeletons, but their bulk devices, high cost and control complexity hinder their popularity in the field of gait rehabilitation. Thus, the development of a portable, compliant and low-cost wearable robot for gait rehabilitation is necessary. Inspired by Chinese traditional folding fans and balloon inflators, the authors present an inflatable, foldable and variable stiffness knee exosuit (IFVSKE) in this paper. The pneumatic actuator of IFVSKE was fabricated in the shape of folding fans by using thermoplastic polyurethane (TPU) fabric materials. The geometric and mechanical properties of IFVSKE were characterized with experimental methods. To assist the knee joint smartly, an intelligent control profile for IFVSKE was proposed based on the concept of full-cycle energy management of the biomechanical energy during human movement. The biomechanical energy of knee joints in a walking gait cycle of patients could be collected and released to assist the joint motion just by adjusting the inner pressure of IFVSKE. Finally, a healthy subject was involved to walk with and without the IFVSKE to evaluate the assisting effects.Keywords: biomechanical energy management, knee exosuit, gait rehabilitation, wearable robotics
Procedia PDF Downloads 16253 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation
Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma
Abstract:
Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling
Procedia PDF Downloads 14252 Knowledge Based Behaviour Modelling and Execution in Service Robotics
Authors: Suraj Nair, Aravindkumar Vijayalingam, Alexander Perzylo, Alois Knoll
Abstract:
In the last decade robotics research and development activities have grown rapidly, especially in the domain of service robotics. Integrating service robots into human occupied spaces such as homes, offices, hospitals, etc. has become increasingly worked upon. The primary motive is to ease daily lives of humans by taking over some of the household/office chores. However, several challenges remain in systematically integrating such systems in human shared work-spaces. In addition to sensing and indoor-navigation challenges, programmability of such systems is a major hurdle due to the fact that the potential user cannot be expected to have knowledge in robotics or similar mechatronic systems. In this paper, we propose a cognitive system for service robotics which allows non-expert users to easily model system behaviour in an underspecified manner through abstract tasks and objects associated with them. The system uses domain knowledge expressed in the form of an ontology along with logical reasoning mechanisms to infer all the missing pieces of information required for executing the tasks. Furthermore, the system is also capable of recovering from failed tasks arising due to on-line disturbances by using the knowledge base and inferring alternate methods to execute the same tasks. The system is demonstrated through a coffee fetching scenario in an office environment using a mobile robot equipped with sensors and software capabilities for autonomous navigation and human-interaction through natural language.Keywords: cognitive robotics, reasoning, service robotics, task based systems
Procedia PDF Downloads 24351 A Review on Assessment on the Level of Development of Macedonia and Iran Organic Agriculture as Compared to Nigeria
Authors: Yusuf Ahmad Sani, Adamu Alhaji Yakubu, Alhaji Abdullahi Jamilu, Joel Omeke, Ibrahim Jumare Sambo
Abstract:
With the rising global threat of food security, cancer, and related diseases (carcinogenic) because of increased usage of inorganic substances in agricultural food production, the Ministry of Food Agriculture and Livestock of the Republic of Turkey organized an International Workshop on Organic Agriculture between 8 – 12th December 2014 at the International Agricultural Research and Training Center, Izmir. About 21 countries, including Nigeria, were invited to attend the training workshop. Several topics on organic agriculture were presented by renowned scholars, ranging from regulation, certification, crop, animal, seed production, pest and disease management, soil composting, and marketing of organic agricultural products, among others. This paper purposely selected two countries (Macedonia and Iran) out of the 21 countries to assess their level of development in terms of organic agriculture as compared to Nigeria. Macedonia, with a population of only 2.1 million people as of 2014, started organic agriculture in 2005 with only 266ha of land and has grown significantly to over 5,000ha in 2010, covering such crops as cereals (62%), forage (20%) fruit orchard (7%), vineyards (5%), vegetables (4%), oil seed and industrial crops (1%) each. Others are organic beekeeping from 110 hives to over 15,000 certified colonies. As part of government commitment, the level of government subsidy for organic products was 30% compared to the direct support for conventional agricultural products. About 19 by-laws were introduced on organic agricultural production that was fully consistent with European Union regulations. The republic of Iran, on the other hand, embarked on organic agriculture for the fact, that the country recorded the highest rate of cancer disease in the world, with over 30,000 people dying every year and 297 people diagnosed every day. However, the host country, Turkey, is well advanced in organic agricultural production and now being the largest exporter of organic products to Europe and other parts of the globe. A technical trip to one of the villages that are under the government scheme on organic agriculture reveals that organic agriculture was based on market-demand-driven and the support of the government was very visible, linking the farmers with private companies that provide inputs to them while the companies purchase the products at harvest with high premium price. However, in Nigeria, research on organic agriculture was very recent, and there was very scanty information on organic agriculture due to poor documentation and very low awareness, even among the elites. The paper, therefore, recommends that the government should provide funds to NARIs to conduct research on organic agriculture and to establish clear government policy and good pre-conditions for sustainable organic agricultural production in the country.Keywords: organic agriculture, food security, food safety, food nutrition
Procedia PDF Downloads 5050 Optimization of Bifurcation Performance on Pneumatic Branched Networks in next Generation Soft Robots
Authors: Van-Thanh Ho, Hyoungsoon Lee, Jaiyoung Ryu
Abstract:
Efficient pressure distribution within soft robotic systems, specifically to the pneumatic artificial muscle (PAM) regions, is essential to minimize energy consumption. This optimization involves adjusting reservoir pressure, pipe diameter, and branching network layout to reduce flow speed and pressure drop while enhancing flow efficiency. The outcome of this optimization is a lightweight power source and reduced mechanical impedance, enabling extended wear and movement. To achieve this, a branching network system was created by combining pipe components and intricate cross-sectional area variations, employing the principle of minimal work based on a complete virtual human exosuit. The results indicate that modifying the cross-sectional area of the branching network, gradually decreasing it, reduces velocity and enhances momentum compensation, preventing flow disturbances at separation regions. These optimized designs achieve uniform velocity distribution (uniformity index > 94%) prior to entering the connection pipe, with a pressure drop of less than 5%. The design must also consider the length-to-diameter ratio for fluid dynamic performance and production cost. This approach can be utilized to create a comprehensive PAM system, integrating well-designed tube networks and complex pneumatic models.Keywords: pneumatic artificial muscles, pipe networks, pressure drop, compressible turbulent flow, uniformity flow, murray's law
Procedia PDF Downloads 8449 Haptic Robotic Glove for Tele-Exploration of Explosive Devices
Authors: Gizem Derya Demir, Ilayda Yankilic, Daglar Karamuftuoglu, Dante Dorantes
Abstract:
ABSTRACT HAPTIC ROBOTIC GLOVE FOR TELE-EXPLORATION OF EXPLOSIVE DEVICES Gizem Derya Demir, İlayda Yankılıç, Dağlar Karamüftüoğlu, Dante J. Dorantes-González Department of Mechanical Engineering, MEF University Ayazağa Cad. No.4, 34396 Maslak, Sarıyer, İstanbul, Turkey Nowadays, terror attacks are, unfortunately, a more common threat around the world. Therefore, safety measures have become much more essential. An alternative to providing safety and saving human lives is done by robots, such as disassembling and liquidation of bombs. In this article, remote exploration and manipulation of potential explosive devices from a safe-distance are addressed by designing a novel, simple and ergonomic haptic robotic glove. SolidWorks® Computer-Aided Design, computerized dynamic simulation, and MATLAB® kinematic and static analysis were used for the haptic robotic glove and finger design. Angle controls of servo motors were made using ARDUINO® IDE codes on a Makeblock® MegaPi control card. Simple grasping dexterity solutions for the fingers were obtained using one linear soft and one angle sensors for each finger, and six servo motors are used in total to remotely control a slave multi-tooled robotic hand. This project is still undergoing and presents current results. Future research steps are also presented.Keywords: Dexterity, Exoskeleton, Haptics , Position Control, Robotic Hand , Teleoperation
Procedia PDF Downloads 17648 Design of an Acoustic Imaging Sensor Array for Mobile Robots
Authors: Dibyendu Roy, V. Ramu Reddy, Parijat Deshpande, Ranjan Dasgupta
Abstract:
Imaging of underwater objects is primarily conducted by acoustic imagery due to the severe attenuation of electro-magnetic waves in water. Acoustic imagery underwater has varied range of significant applications such as side-scan sonar, mine hunting sonar. It also finds utility in other domains such as imaging of body tissues via ultrasonography and non-destructive testing of objects. In this paper, we explore the feasibility of using active acoustic imagery in air and simulate phased array beamforming techniques available in literature for various array designs to achieve a suitable acoustic sensor array design for a portable mobile robot which can be applied to detect the presence/absence of anomalous objects in a room. The multi-path reflection effects especially in enclosed rooms and environmental noise factors are currently not simulated and will be dealt with during the experimental phase. The related hardware is designed with the same feasibility criterion that the developed system needs to be deployed on a portable mobile robot. There is a trade of between image resolution and range with the array size, number of elements and the imaging frequency and has to be iteratively simulated to achieve the desired acoustic sensor array design. The designed acoustic imaging array system is to be mounted on a portable mobile robot and targeted for use in surveillance missions for intruder alerts and imaging objects during dark and smoky scenarios where conventional optic based systems do not function well.Keywords: acoustic sensor array, acoustic imagery, anomaly detection, phased array beamforming
Procedia PDF Downloads 40947 Development of a Wall Climbing Robotic Ground Penetrating Radar System for Inspection of Vertical Concrete Structures
Authors: Md Omar Faruq Howlader, Tariq Pervez Sattar, Sandra Dudley
Abstract:
This paper describes the design process of a 200 MHz Ground Penetrating Radar (GPR) and a battery powered concrete vertical concrete surface climbing mobile robot. The key design feature is a miniaturized 200 MHz dipole antenna using additional radiating arms and procedure records a reduction of 40% in length compared to a conventional antenna. The antenna set is mounted in front of the robot using a servo mechanism for folding and unfolding purposes. The robot’s adhesion mechanism to climb the reinforced concrete wall is based on neodymium permanent magnets arranged in a unique combination to concentrate and maximize the magnetic flux to provide sufficient adhesion force for GPR installation. The experiments demonstrated the robot’s capability of climbing reinforced concrete wall carrying the attached prototype GPR system and perform floor-to-wall transition and vice versa. The developed GPR’s performance is validated by its capability of detecting and localizing an aluminium sheet and a reinforcement bar (rebar) of 12 mm diameter buried under a test rig built of wood to mimic the concrete structure environment. The present robotic GPR system proves the concept of feasibility of undertaking inspection procedure on large concrete structures in hazardous environments that may not be accessible to human inspectors.Keywords: climbing robot, dipole antenna, ground penetrating radar (GPR), mobile robots, robotic GPR
Procedia PDF Downloads 27546 Designing of Tooling Solution for Material Handling in Highly Automated Manufacturing System
Authors: Muhammad Umair, Yuri Nikolaev, Denis Artemov, Ighor Uzhinsky
Abstract:
A flexible manufacturing system is an integral part of a smart factory of industry 4.0 in which every machine is interconnected and works autonomously. Robots are in the process of replacing humans in every industrial sector. As the cyber-physical-system (CPS) and artificial intelligence (AI) are advancing, the manufacturing industry is getting more dependent on computers than human brains. This modernization has boosted the production with high quality and accuracy and shifted from classic production to smart manufacturing systems. However, material handling for such automated productions is a challenge and needs to be addressed with the best possible solution. Conventional clamping systems are designed for manual work and not suitable for highly automated production systems. Researchers and engineers are trying to find the most economical solution for loading/unloading and transportation workpieces from a warehouse to a machine shop for machining operations and back to the warehouse without human involvement. This work aims to propose an advanced multi-shape tooling solution for highly automated manufacturing systems. The currently obtained result shows that it could function well with automated guided vehicles (AGVs) and modern conveyor belts. The proposed solution is following requirements to be automation-friendly, universal for different part geometry and production operations. We used a bottom-up approach in this work, starting with studying different case scenarios and their limitations and finishing with the general solution.Keywords: artificial intelligence, cyber physics system, Industry 4.0, material handling, smart factory, flexible manufacturing system
Procedia PDF Downloads 13245 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain
Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas
Abstract:
Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.Keywords: the agricultural robot, autonomous control, path-tracking control, tracked mobile robot
Procedia PDF Downloads 17244 The Use of the Limit Cycles of Dynamic Systems for Formation of Program Trajectories of Points Feet of the Anthropomorphous Robot
Authors: A. S. Gorobtsov, A. S. Polyanina, A. E. Andreev
Abstract:
The movement of points feet of the anthropomorphous robot in space occurs along some stable trajectory of a known form. A large number of modifications to the methods of control of biped robots indicate the fundamental complexity of the problem of stability of the program trajectory and, consequently, the stability of the control for the deviation for this trajectory. Existing gait generators use piecewise interpolation of program trajectories. This leads to jumps in the acceleration at the boundaries of sites. Another interpolation can be realized using differential equations with fractional derivatives. In work, the approach to synthesis of generators of program trajectories is considered. The resulting system of nonlinear differential equations describes a smooth trajectory of movement having rectilinear sites. The method is based on the theory of an asymptotic stability of invariant sets. The stability of such systems in the area of localization of oscillatory processes is investigated. The boundary of the area is a bounded closed surface. In the corresponding subspaces of the oscillatory circuits, the resulting stable limit cycles are curves having rectilinear sites. The solution of the problem is carried out by means of synthesis of a set of the continuous smooth controls with feedback. The necessary geometry of closed trajectories of movement is obtained due to the introduction of high-order nonlinearities in the control of stabilization systems. The offered method was used for the generation of trajectories of movement of point’s feet of the anthropomorphous robot. The synthesis of the robot's program movement was carried out by means of the inverse method.Keywords: control, limits cycle, robot, stability
Procedia PDF Downloads 33143 Parametric Appraisal of Robotic Arc Welding of Mild Steel Material by Principal Component Analysis-Fuzzy with Taguchi Technique
Authors: Amruta Rout, Golak Bihari Mahanta, Gunji Bala Murali, Bibhuti Bhusan Biswal, B. B. V. L. Deepak
Abstract:
The use of industrial robots for performing welding operation is one of the chief sign of contemporary welding in these days. The weld joint parameter and weld process parameter modeling is one of the most crucial aspects of robotic welding. As weld process parameters affect the weld joint parameters differently, a multi-objective optimization technique has to be utilized to obtain optimal setting of weld process parameter. In this paper, a hybrid optimization technique, i.e., Principal Component Analysis (PCA) combined with fuzzy logic has been proposed to get optimal setting of weld process parameters like wire feed rate, welding current. Gas flow rate, welding speed and nozzle tip to plate distance. The weld joint parameters considered for optimization are the depth of penetration, yield strength, and ultimate strength. PCA is a very efficient multi-objective technique for converting the correlated and dependent parameters into uncorrelated and independent variables like the weld joint parameters. Also in this approach, no need for checking the correlation among responses as no individual weight has been assigned to responses. Fuzzy Inference Engine can efficiently consider these aspects into an internal hierarchy of it thereby overcoming various limitations of existing optimization approaches. At last Taguchi method is used to get the optimal setting of weld process parameters. Therefore, it has been concluded the hybrid technique has its own advantages which can be used for quality improvement in industrial applications.Keywords: robotic arc welding, weld process parameters, weld joint parameters, principal component analysis, fuzzy logic, Taguchi method
Procedia PDF Downloads 179