Search results for: multiple scales
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5486

Search results for: multiple scales

5216 Physical Verification Flow on Multiple Foundries

Authors: Rohaya Abdul Wahab, Raja Mohd Fuad Tengku Aziz, Nazaliza Othman, Sharifah Saleh, Nabihah Razali, Muhammad Al Baqir Zinal Abidin, Md Hanif Md Nasir

Abstract:

This paper will discuss how we optimize our physical verification flow in our IC Design Department having various rule decks from multiple foundries. Our ultimate goal is to achieve faster time to tape-out and avoid schedule delay. Currently the physical verification runtimes and memory usage have drastically increased with the increasing number of design rules, design complexity and the size of the chips to be verified. To manage design violations, we use a number of solutions to reduce the amount of violations needed to be checked by physical verification engineers. The most important functions in physical verifications are DRC (design rule check), LVS (layout vs. schematic) and XRC (extraction). Since we have a multiple number of foundries for our design tape-outs, we need a flow that improve the overall turnaround time and ease of use of the physical verification process. The demand for fast turnaround time is even more critical since the physical design is the last stage before sending the layout to the foundries.

Keywords: physical verification, DRC, LVS, XRC, flow, foundry, runset

Procedia PDF Downloads 654
5215 A Systematic Review of Chronic Neurologic Complications of COVID-19; A Potential Risk Factor for Narcolepsy, Parkinson's Disease, and Multiple Sclerosis.

Authors: Sulemana Saibu, Moses Ikpeme

Abstract:

Background: The severity of the COVID-19 pandemic, brought on by the SARS-CoV-2 coronavirus, has been unprecedented since the 1918 influenza pandemic. SARS-CoV-2 cases of CNS and peripheral nervous system disease, including neurodegenerative disorders and chronic immune-mediated diseases, may be anticipated based on knowledge of past coronaviruses, particularly those that caused the severe acute respiratory syndrome and Middle East respiratory syndrome outbreaks. Although respiratory symptoms are the most common clinical presentation, neurological symptoms are becoming increasingly recognized, raising concerns about their potential role in causing Parkinson's disease, Multiple sclerosis, and Narcolepsy. This systematic review aims to summarize the current evidence by exploring the association between COVID-19 infection and how it may overlap with etiological mechanisms resulting in Narcolepsy, Parkinson's disease, and Multiple sclerosis. Methods: A systematic search was conducted using electronic databases ((PubMed/MedLine, Embase, PsycINFO, ScieLO, Web of Science, ProQuest (Biotechnology, Virology, and AIDS), Scopus, and CINAHL)) to identify studies published between January 2020 and December 2022 that investigated the association between COVID-19 and Parkinson's disease, multiple sclerosis, and Narcolepsy. Per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the review was performed and reported. Study quality was assessed using the Critical Appraisal Skills Programme Checklist and the Joanna Briggs Institute Critical appraisal tools. Results: A total of 21 studies out of 1025 met the inclusion criteria, including 8 studies reporting Parkinson's disease, 11 on multiple sclerosis, and 2 on Narcolepsy. In COVID-19 individuals compared to the general population, Narcolepsy, Parkinson's disease, and multiple sclerosis were shown to have a higher incidence. The findings imply that COVID-19 may worsen the signs or induce multiple sclerosis and Parkinson's disease and may raise the risk of developing Narcolepsy. Further research is required to confirm these connections because the available data is insufficient. Conclusion: According to the existing data, COVID-19 may raise the risk of Narcolepsy and have a causative relationship with Parkinson's disease, multiple sclerosis, and other diseases. More study is required to confirm these correlations and pinpoint probable mechanisms behind these interactions. Clinicians should be aware of how COVID-19 may affect various neurological illnesses and should treat patients who are affected accordingly.

Keywords: COVID-19, parkinson’s disease, multiple sclerosis, narcolepsy, neurological disorders, sars-cov-2, neurodegenerative disorders, chronic immune-mediated diseases

Procedia PDF Downloads 84
5214 The Predictive Utility of Subjective Cognitive Decline Using Item Level Data from the Everyday Cognition (ECog) Scales

Authors: J. Fox, J. Randhawa, M. Chan, L. Campbell, A. Weakely, D. J. Harvey, S. Tomaszewski Farias

Abstract:

Early identification of individuals at risk for conversion to dementia provides an opportunity for preventative treatment. Many older adults (30-60%) report specific subjective cognitive decline (SCD); however, previous research is inconsistent in terms of what types of complaints predict future cognitive decline. The purpose of this study is to identify which specific complaints from the Everyday Cognition Scales (ECog) scales, a measure of self-reported concerns for everyday abilities across six cognitive domains, are associated with: 1) conversion from a clinical diagnosis of normal to either MCI or dementia (categorical variable) and 2) progressive cognitive decline in memory and executive function (continuous variables). 415 cognitively normal older adults were monitored annually for an average of 5 years. Cox proportional hazards models were used to assess associations between self-reported ECog items and progression to impairment (MCI or dementia). A total of 114 individuals progressed to impairment; the mean time to progression was 4.9 years (SD=3.4 years, range=0.8-13.8). Follow-up models were run controlling for depression. A subset of individuals (n=352) underwent repeat cognitive assessments for an average of 5.3 years. For those individuals, mixed effects models with random intercepts and slopes were used to assess associations between ECog items and change in neuropsychological measures of episodic memory or executive function. Prior to controlling for depression, subjective concerns on five of the eight Everyday Memory items, three of the nine Everyday Language items, one of the seven Everyday Visuospatial items, two of the five Everyday Planning items, and one of the six Everyday Organization items were associated with subsequent diagnostic conversion (HR=1.25 to 1.59, p=0.003 to 0.03). However, after controlling for depression, only two specific complaints of remembering appointments, meetings, and engagements and understanding spoken directions and instructions were associated with subsequent diagnostic conversion. Episodic memory in individuals reporting no concern on ECog items did not significantly change over time (p>0.4). More complaints on seven of the eight Everyday Memory items, three of the nine Everyday Language items, and three of the seven Everyday Visuospatial items were associated with a decline in episodic memory (Interaction estimate=-0.055 to 0.001, p=0.003 to 0.04). Executive function in those reporting no concern on ECog items declined slightly (p <0.001 to 0.06). More complaints on three of the eight Everyday Memory items and three of the nine Everyday Language items were associated with a decline in executive function (Interaction estimate=-0.021 to -0.012, p=0.002 to 0.04). These findings suggest that specific complaints across several cognitive domains are associated with diagnostic conversion. Specific complaints in the domains of Everyday Memory and Language are associated with a decline in both episodic memory and executive function. Increased monitoring and treatment of individuals with these specific SCD may be warranted.

Keywords: alzheimer’s disease, dementia, memory complaints, mild cognitive impairment, risk factors, subjective cognitive decline

Procedia PDF Downloads 80
5213 Algorithm Optimization to Sort in Parallel by Decreasing the Number of the Processors in SIMD (Single Instruction Multiple Data) Systems

Authors: Ali Hosseini

Abstract:

Paralleling is a mechanism to decrease the time necessary to execute the programs. Sorting is one of the important operations to be used in different systems in a way that the proper function of many algorithms and operations depend on sorted data. CRCW_SORT algorithm executes ‘N’ elements sorting in O(1) time on SIMD (Single Instruction Multiple Data) computers with n^2/2-n/2 number of processors. In this article having presented a mechanism by dividing the input string by the hinge element into two less strings the number of the processors to be used in sorting ‘N’ elements in O(1) time has decreased to n^2/8-n/4 in the best state; by this mechanism the best state is when the hinge element is the middle one and the worst state is when it is minimum. The findings from assessing the proposed algorithm by other methods on data collection and number of the processors indicate that the proposed algorithm uses less processors to sort during execution than other methods.

Keywords: CRCW, SIMD (Single Instruction Multiple Data) computers, parallel computers, number of the processors

Procedia PDF Downloads 310
5212 SVM-Based Modeling of Mass Transfer Potential of Multiple Plunging Jets

Authors: Surinder Deswal, Mahesh Pal

Abstract:

The paper investigates the potential of support vector machines based regression approach to model the mass transfer capacity of multiple plunging jets, both vertical (θ = 90°) and inclined (θ = 60°). The data set used in this study consists of four input parameters with a total of eighty eight cases. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 (root mean square error values of 0.0025 and 0.0020) were achieved by using polynomial and radial basis kernel functions based support vector regression respectively. Results suggest an improved performance by radial basis function in comparison to polynomial kernel based support vector machines. The estimated overall mass transfer coefficient, by both the kernel functions, is in good agreement with actual experimental values (within a scatter of ±15 %); thereby suggesting the utility of support vector machines based regression approach.

Keywords: mass transfer, multiple plunging jets, support vector machines, ecological sciences

Procedia PDF Downloads 464
5211 Comparison of Mini-BESTest versus Berg Balance Scale to Evaluate Balance Disorders in Parkinson's Disease

Authors: R. Harihara Prakash, Shweta R. Parikh, Sangna S. Sheth

Abstract:

The purpose of this study was to explore the usefulness of the Mini-BESTest compared to the Berg Balance Scale in evaluating balance in people with Parkinson's Disease (PD) of varying severity. Evaluation were done to obtain (1) the distribution of patients scores to look for ceiling effects, (2) concurrent validity with severity of disease, and (3) the sensitivity & specificity of separating people with or without postural response deficits. Methods and Material: Seventy-seven(77) people with Parkinson's Disease were tested for balance deficits using the Berg Balance Scale, Mini-BESTest. Unified Parkinson’s Disease Rating Scale (UPDRS) III and the Hoehn & Yahr (H&Y) disease severity scales were used for classification. Materials used in this study were case record sheet, chair without arm rests or wheels, Incline ramp, stopwatch, a box, 3 meter distance measured out and marked on the floor with tape [from chair]. Statistical analysis used: Multiple Linear regression was carried out of UPDRS jointly on the two scores for the Berg and Mini-BESTest. Receiver operating characteristic curves for classifying people into two groups based on a threshold for the H&Y score, to discriminate between mild PD versus more severe PD.Correlation co-efficient to find relativeness between the two variables. Results: The Mini-BESTest is highly correlated with the Berg (r = 0.732,P < 0.001), but avoids the ceiling compression effect of the Berg for mild PD (skewness −0.714 Berg, −0.512 Mini-BESTest). Consequently, the Mini-BESTest is more effective than the Berg for predicting UPDRS Motor score (P < 0.001 Mini-BESTest versus P = 0.72 Berg), and for discriminating between those with and without postural response deficits as measured by the H&Y (ROC).

Keywords: balance, berg balance scale, MINI BESTest, parkinson's disease

Procedia PDF Downloads 394
5210 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics

Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.

Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network

Procedia PDF Downloads 18
5209 A Two Tailed Secretary Problem with Multiple Criteria

Authors: Alaka Padhye, S. P. Kane

Abstract:

The following study considers some variations made to the secretary problem (SP). In a multiple criteria secretary problem (MCSP), the selection of a unit is based on two independent characteristics. The units that appear before an observer are known say N, the best rank of a unit being N. A unit is selected, if it is better with respect to either first or second or both the characteristics. When the number of units is large and due to constraints like time and cost, the observer might want to stop earlier instead of inspecting all the available units. Let the process terminate at r2th unit where r1Keywords: joint distribution, marginal distribution, real ranks, secretary problem, selection criterion, two tailed secretary problem

Procedia PDF Downloads 271
5208 Research on Pilot Sequence Design Method of Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing System Based on High Power Joint Criterion

Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang

Abstract:

For the pilot design of the sparse channel estimation model in Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems, the observation matrix constructed according to the matrix cross-correlation criterion, total correlation criterion and other optimization criteria are not optimal, resulting in inaccurate channel estimation and high bit error rate at the receiver. This paper proposes a pilot design method combining high-power sum and high-power variance criteria, which can more accurately estimate the channel. First, the pilot insertion position is designed according to the high-power variance criterion under the condition of equal power. Then, according to the high power sum criterion, the pilot power allocation is converted into a cone programming problem, and the power allocation is carried out. Finally, the optimal pilot is determined by calculating the weighted sum of the high power sum and the high power variance. Compared with the traditional pilot frequency, under the same conditions, the constructed MIMO-OFDM system uses the optimal pilot frequency for channel estimation, and the communication bit error rate performance obtains a gain of 6~7dB.

Keywords: MIMO-OFDM, pilot optimization, compressed sensing, channel estimation

Procedia PDF Downloads 149
5207 Constructing a Co-Working Innovation Model for Multiple Art Integration: A Case Study of Children's Musical

Authors: Nai-Chia Chao, Meng-Chi Shih

Abstract:

Under today’s fast technology and massive data era, the working method start to change. In this study, based under literature meaning of “Co-working” we had implemented the new “Co-working innovation model”. Research concluded that co-working innovation model shall not be limited in co-working space but use under different field when applying multiple art integration stragies. Research show co-working should not be limited in special field or group, should be use or adapt whenever different though or ideas where found, it should be use under different field and plans.

Keywords: arts integration, co-working, children's musical

Procedia PDF Downloads 299
5206 The Link of the Human Immunodeficiency Virus With the Progression of Multiple Sclerosis Disease

Authors: Sina Mahdavi

Abstract:

Multiple sclerosis (MS) is a progressive inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human immunodeficiency virus (HIV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on human HIV infection in MS disease progression. In this study, the keywords "Multiple sclerosis", "Human immunodeficiency virus ", and "Central nervous system" in the databases PubMed, and Google Scholar between 2017 and 2022 were searched and 15 articles were chosen, studied, and analyzed. Revealed histologic signs of "MS-like illness" in the setting of HIV, which comprised widespread demyelination with reactive astrocytes, foamy macrophages, and perivascular infiltration with inflammatory cells, all of which are compatible with MS lesions. Human immunodeficiency virus causes dysfunction of the immune system, especially characterized by hypergammaglobulinemia and chronic activation of B cells. Activation of B cells leads to increased synthesis of immunoglobulin and finally to an excess of free light chains. Free light chains may be involved in autoimmune responses against neurons. There is a high expression of HIV during the course of MS, which indicates the relationship between HIV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of HIV may be effective in reducing inflammatory processes in demyelinated areas of MS patients.

Keywords: multiple sclerosis, human immunodeficiency virus, central nervous system, autoimmunity

Procedia PDF Downloads 84
5205 Autonomous Strategic Aircraft Deconfliction in a Multi-Vehicle Low Altitude Urban Environment

Authors: Loyd R. Hook, Maryam Moharek

Abstract:

With the envisioned future growth of low altitude urban aircraft operations for airborne delivery service and advanced air mobility, strategies to coordinate and deconflict aircraft flight paths must be prioritized. Autonomous coordination and planning of flight trajectories is the preferred approach to the future vision in order to increase safety, density, and efficiency over manual methods employed today. Difficulties arise because any conflict resolution must be constrained by all other aircraft, all airspace restrictions, and all ground-based obstacles in the vicinity. These considerations make pair-wise tactical deconfliction difficult at best and unlikely to find a suitable solution for the entire system of vehicles. In addition, more traditional methods which rely on long time scales and large protected zones will artificially limit vehicle density and drastically decrease efficiency. Instead, strategic planning, which is able to respond to highly dynamic conditions and still account for high density operations, will be required to coordinate multiple vehicles in the highly constrained low altitude urban environment. This paper develops and evaluates such a planning algorithm which can be implemented autonomously across multiple aircraft and situations. Data from this evaluation provide promising results with simulations showing up to 10 aircraft deconflicted through a relatively narrow low-altitude urban canyon without any vehicle to vehicle or obstacle conflict. The algorithm achieves this level of coordination beginning with the assumption that each vehicle is controlled to follow an independently constructed flight path, which is itself free of obstacle conflict and restricted airspace. Then, by preferencing speed change deconfliction maneuvers constrained by the vehicles flight envelope, vehicles can remain as close to the original planned path and prevent cascading vehicle to vehicle conflicts. Performing the search for a set of commands which can simultaneously ensure separation for each pair-wise aircraft interaction and optimize the total velocities of all the aircraft is further complicated by the fact that each aircraft's flight plan could contain multiple segments. This means that relative velocities will change when any aircraft achieves a waypoint and changes course. Additionally, the timing of when that aircraft will achieve a waypoint (or, more directly, the order upon which all of the aircraft will achieve their respective waypoints) will change with the commanded speed. Put all together, the continuous relative velocity of each vehicle pair and the discretized change in relative velocity at waypoints resembles a hybrid reachability problem - a form of control reachability. This paper proposes two methods for finding solutions to these multi-body problems. First, an analytical formulation of the continuous problem is developed with an exhaustive search of the combined state space. However, because of computational complexity, this technique is only computable for pairwise interactions. For more complicated scenarios, including the proposed 10 vehicle example, a discretized search space is used, and a depth-first search with early stopping is employed to find the first solution that solves the constraints.

Keywords: strategic planning, autonomous, aircraft, deconfliction

Procedia PDF Downloads 95
5204 Digital Joint Equivalent Channel Hybrid Precoding for Millimeterwave Massive Multiple Input Multiple Output Systems

Authors: Linyu Wang, Mingjun Zhu, Jianhong Xiang, Hanyu Jiang

Abstract:

Aiming at the problem that the spectral efficiency of hybrid precoding (HP) is too low in the current millimeter wave (mmWave) massive multiple input multiple output (MIMO) system, this paper proposes a digital joint equivalent channel hybrid precoding algorithm, which is based on the introduction of digital encoding matrix iteration. First, the objective function is expanded to obtain the relation equation, and the pseudo-inverse iterative function of the analog encoder is derived by using the pseudo-inverse method, which solves the problem of greatly increasing the amount of computation caused by the lack of rank of the digital encoding matrix and reduces the overall complexity of hybrid precoding. Secondly, the analog coding matrix and the millimeter-wave sparse channel matrix are combined into an equivalent channel, and then the equivalent channel is subjected to Singular Value Decomposition (SVD) to obtain a digital coding matrix, and then the derived pseudo-inverse iterative function is used to iteratively regenerate the simulated encoding matrix. The simulation results show that the proposed algorithm improves the system spectral efficiency by 10~20%compared with other algorithms and the stability is also improved.

Keywords: mmWave, massive MIMO, hybrid precoding, singular value decompositing, equivalent channel

Procedia PDF Downloads 96
5203 Use of a Symptom Scale Based on Degree of Functional Impairment for Acute Concussion

Authors: Matthew T. McCarthy, Sarah Janse, Natalie M. Pizzimenti, Anthony K. Savino, Brian Crosser, Sean C. Rose

Abstract:

Concussion is diagnosed clinically using a comprehensive history and exam, supported by ancillary testing. Frequently, symptom checklists are used as part of the evaluation of concussion. Existing symptom scales are based on a subjective Likert scale, without relation of symptoms to clinical or functional impairment. This is a retrospective review of 133 patients under age 30 seen in an outpatient neurology practice within 30 days of a probable or definite concussion. Each patient completed 2 symptom checklists at the initial visit – the SCAT-3 symptom evaluation (22 symptoms, 0-6 scale) and a scale based on the degree of clinical impairment for each symptom (22 symptoms, 0-3 scale related to functional impact of the symptom). Final clearance date was determined by the treating physician. 60.9% of patients were male with mean age 15.7 years (SD 2.3). Mean time from concussion to first visit was 6.9 days (SD 6.2), and 101 patients had definite concussions (75.9%), while 32 were diagnosed as probable (24.1%). 94 patients had a known clearance date (70.7%) with mean clearance time of 20.6 days (SD 18.6) and median clearance time of 19 days (95% CI 16-21). Mean total symptom score was 27.2 (SD 22.9) on the SCAT-3 and 14.7 (SD 11.9) for the functional impairment scale. Pearson’s correlation between the two scales was 0.98 (p < 0.001). After adjusting for patient and injury characteristics, an equivalent increase in score on each scale was associated with longer time to clearance (SCAT-3 hazard ratio 0.885, 95%CI 0.835-0.938, p < 0.001; functional impairment scale hazard ratio 0.851, 95%CI 0.802-0.902, p < 0.001). A concussion symptom scale based on degree of functional impairment correlates strongly with the SCAT-3 scale and demonstrates a similar association with time to clearance. By assessing the degree of impact on clinical functioning, this symptom scale reflects a more intuitive approach to rating symptoms and can be used in the management of concussion.

Keywords: checklist, concussion, neurology, scale, sports, symptoms

Procedia PDF Downloads 153
5202 Bit Error Rate Performance of MIMO Systems for Wireless Communications

Authors: E. Ghayoula, M. Haj Taieb, A. Bouallegue, J. Y. Chouinard, R. Ghayoula

Abstract:

This paper evaluates the bit error rate (BER) performance of MIMO systems for wireless communication. MIMO uses multiple transmitting antennas, multiple receiving antennas and the space-time block codes to provide diversity. MIMO transmits signal encoded by space-time block (STBC) encoder through different transmitting antennas. These signals arrive at the receiver at slightly different times. Spatially separated multiple receiving antennas are employed to provide diversity reception to combat the effect of fading in the channel. This paper presents a detailed study of diversity coding for MIMO systems. STBC techniques are implemented and simulation results in terms of the BER performance with varying number of MIMO transmitting and receiving antennas are presented. Our results show how increasing the number of both transmit and receive antenna improves system performance and reduces the bit error rate.

Keywords: MIMO systems, diversity, BER, MRRC, SIMO, MISO, STBC, alamouti, SNR

Procedia PDF Downloads 490
5201 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning

Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V

Abstract:

The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.

Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network

Procedia PDF Downloads 142
5200 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection

Authors: Yulan Wu

Abstract:

With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.

Keywords: fake news, deep learning, natural language processing, multiple domains

Procedia PDF Downloads 96
5199 Preoperative Anxiety Evaluation: Comparing the Visual Facial Anxiety Scale/Yumul Faces Anxiety Scale, Numerical Verbal Rating Scale, Categorization Scale, and the State-Trait Anxiety Inventory

Authors: Roya Yumul, Chse, Ofelia Loani Elvir Lazo, David Chernobylsky, Omar Durra

Abstract:

Background: Preoperative anxiety has been shown to be caused by the fear associated with surgical and anesthetic complications; however, the current gold standard for assessing patient anxiety, the STAI, is problematic to use in the preoperative setting given the duration and concentration required to complete the 40-item extensive questionnaire. Our primary aim in the study is to investigate the correlation of the Visual Facial Anxiety Scale (VFAS) and Numerical Verbal Rating Scale (NVRS) to State-Trait Anxiety Inventory (STAI) to determine the optimal anxiety scale to use in the perioperative setting. Methods: A clinical study of patients undergoing various surgeries was conducted utilizing each of the preoperative anxiety scales. Inclusion criteria included patients undergoing elective surgeries, while exclusion criteria included patients with anesthesia contraindications, inability to comprehend instructions, impaired judgement, substance abuse history, and those pregnant or lactating. 293 patients were analyzed in terms of demographics, anxiety scale survey results, and anesthesia data via Spearman Coefficients, Chi-Squared Analysis, and Fischer’s exact test utilized for comparison analysis. Results: Statistical analysis showed that VFAS had a higher correlation to STAI than NVRS (rs=0.66, p<0.0001 vs. rs=0.64, p<0.0001). The combined VFAS-Categorization Scores showed the highest correlation with the gold standard (rs=0.72, p<0.0001). Subgroup analysis showed similar results. STAI evaluation time (247.7 ± 54.81 sec) far exceeds VFAS (7.29 ± 1.61 sec), NVRS (7.23 ± 1.60 sec), and Categorization scales (7.29 ± 1.99 sec). Patients preferred VFAS (54.4%), Categorization (11.6%), and NVRS (8.8%). Anesthesiologists preferred VFAS (63.9%), NVRS (22.1%), and Categorization Scales (14.0%). Of note, the top five causes of preoperative anxiety were determined to be waiting (56.5%), pain (42.5%), family concerns (40.5%), no information about surgery (40.1%), or anesthesia (31.6%). Conclusions: Combined VFAS-Categorization Score (VCS) demonstrates the highest correlation to the gold standard, STAI. Both VFAS and Categorization tests also take significantly less time than STAI, which is critical in the preoperative setting. Among both patients and anesthesiologists, VFAS was the most preferred scale. This forms the basis of the Yumul FACES Anxiety Scale, designed for quick quantization and assessment in the preoperative setting while maintaining a high correlation to the golden standard. Additional studies using the formulated Yumul FACES Anxiety Scale are merited.

Keywords: numerical verbal anxiety scale, preoperative anxiety, state-trait anxiety inventory, visual facial anxiety scale

Procedia PDF Downloads 140
5198 A Pedagogical Case Study on Consumer Decision Making Models: A Selection of Smart Phone Apps

Authors: Yong Bum Shin

Abstract:

This case focuses on Weighted additive difference, Conjunctive, Disjunctive, and Elimination by aspects methodologies in consumer decision-making models and the Simple additive weighting (SAW) approach in the multi-criteria decision-making (MCDM) area. Most decision-making models illustrate that the rank reversal phenomenon is unpreventable. This paper presents that rank reversal occurs in popular managerial methods such as Weighted Additive Difference (WAD), Conjunctive Method, Disjunctive Method, Elimination by Aspects (EBA) and MCDM methods as well as such as the Simple Additive Weighting (SAW) and finally Unified Commensurate Multiple (UCM) models which successfully addresses these rank reversal problems in most popular MCDM methods in decision-making area.

Keywords: multiple criteria decision making, rank inconsistency, unified commensurate multiple, analytic hierarchy process

Procedia PDF Downloads 81
5197 Study on the Geometric Similarity in Computational Fluid Dynamics Calculation and the Requirement of Surface Mesh Quality

Authors: Qian Yi Ooi

Abstract:

At present, airfoil parameters are still designed and optimized according to the scale of conventional aircraft, and there are still some slight deviations in terms of scale differences. However, insufficient parameters or poor surface mesh quality is likely to occur if these small deviations are embedded in a future civil aircraft with a size that is quite different from conventional aircraft, such as a blended-wing-body (BWB) aircraft with future potential, resulting in large deviations in geometric similarity in computational fluid dynamics (CFD) simulations. To avoid this situation, the study on the CFD calculation on the geometric similarity of airfoil parameters and the quality of the surface mesh is conducted to obtain the ability of different parameterization methods applied on different airfoil scales. The research objects are three airfoil scales, including the wing root and wingtip of conventional civil aircraft and the wing root of the giant hybrid wing, used by three parameterization methods to compare the calculation differences between different sizes of airfoils. In this study, the constants including NACA 0012, a Reynolds number of 10 million, an angle of attack of zero, a C-grid for meshing, and the k-epsilon (k-ε) turbulence model are used. The experimental variables include three airfoil parameterization methods: point cloud method, B-spline curve method, and class function/shape function transformation (CST) method. The airfoil dimensions are set to 3.98 meters, 17.67 meters, and 48 meters, respectively. In addition, this study also uses different numbers of edge meshing and the same bias factor in the CFD simulation. Studies have shown that with the change of airfoil scales, different parameterization methods, the number of control points, and the meshing number of divisions should be used to improve the accuracy of the aerodynamic performance of the wing. When the airfoil ratio increases, the most basic point cloud parameterization method will require more and larger data to support the accuracy of the airfoil’s aerodynamic performance, which will face the severe test of insufficient computer capacity. On the other hand, when using the B-spline curve method, average number of control points and meshing number of divisions should be set appropriately to obtain higher accuracy; however, the quantitative balance cannot be directly defined, but the decisions should be made repeatedly by adding and subtracting. Lastly, when using the CST method, it is found that limited control points are enough to accurately parameterize the larger-sized wing; a higher degree of accuracy and stability can be obtained by using a lower-performance computer.

Keywords: airfoil, computational fluid dynamics, geometric similarity, surface mesh quality

Procedia PDF Downloads 222
5196 Use of Fractal Geometry in Machine Learning

Authors: Fuad M. Alkoot

Abstract:

The main component of a machine learning system is the classifier. Classifiers are mathematical models that can perform classification tasks for a specific application area. Additionally, many classifiers are combined using any of the available methods to reduce the classifier error rate. The benefits gained from the combination of multiple classifier designs has motivated the development of diverse approaches to multiple classifiers. We aim to investigate using fractal geometry to develop an improved classifier combiner. Initially we experiment with measuring the fractal dimension of data and use the results in the development of a combiner strategy.

Keywords: fractal geometry, machine learning, classifier, fractal dimension

Procedia PDF Downloads 216
5195 Reduced Complexity of ML Detection Combined with DFE

Authors: Jae-Hyun Ro, Yong-Jun Kim, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

In multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, many detection schemes have been developed to improve the error performance and to reduce the complexity. Maximum likelihood (ML) detection has optimal error performance but it has very high complexity. Thus, this paper proposes reduced complexity of ML detection combined with decision feedback equalizer (DFE). The error performance of the proposed detection scheme is higher than the conventional DFE. But the complexity of the proposed scheme is lower than the conventional ML detection.

Keywords: detection, DFE, MIMO-OFDM, ML

Procedia PDF Downloads 610
5194 Impact of Map Generalization in Spatial Analysis

Authors: Lin Li, P. G. R. N. I. Pussella

Abstract:

When representing spatial data and their attributes on different types of maps, the scale plays a key role in the process of map generalization. The process is consisted with two main operators such as selection and omission. Once some data were selected, they would undergo of several geometrical changing processes such as elimination, simplification, smoothing, exaggeration, displacement, aggregation and size reduction. As a result of these operations at different levels of data, the geometry of the spatial features such as length, sinuosity, orientation, perimeter and area would be altered. This would be worst in the case of preparation of small scale maps, since the cartographer has not enough space to represent all the features on the map. What the GIS users do is when they wanted to analyze a set of spatial data; they retrieve a data set and does the analysis part without considering very important characteristics such as the scale, the purpose of the map and the degree of generalization. Further, the GIS users use and compare different maps with different degrees of generalization. Sometimes, GIS users are going beyond the scale of the source map using zoom in facility and violate the basic cartographic rule 'it is not suitable to create a larger scale map using a smaller scale map'. In the study, the effect of map generalization for GIS analysis would be discussed as the main objective. It was used three digital maps with different scales such as 1:10000, 1:50000 and 1:250000 which were prepared by the Survey Department of Sri Lanka, the National Mapping Agency of Sri Lanka. It was used common features which were on above three maps and an overlay analysis was done by repeating the data with different combinations. Road data, River data and Land use data sets were used for the study. A simple model, to find the best place for a wild life park, was used to identify the effects. The results show remarkable effects on different degrees of generalization processes. It can see that different locations with different geometries were received as the outputs from this analysis. The study suggests that there should be reasonable methods to overcome this effect. It can be recommended that, as a solution, it would be very reasonable to take all the data sets into a common scale and do the analysis part.

Keywords: generalization, GIS, scales, spatial analysis

Procedia PDF Downloads 328
5193 Towards Security in Virtualization of SDN

Authors: Wanqing You, Kai Qian, Xi He, Ying Qian

Abstract:

In this paper, the potential security issues brought by the virtualization of a Software Defined Networks (SDN) would be analyzed. The virtualization of SDN is achieved by FlowVisor (FV). With FV, a physical network is divided into multiple isolated logical networks while the underlying resources are still shared by different slices (isolated logical networks). However, along with the benefits brought by network virtualization, it also presents some issues regarding security. By examining security issues existing in an OpenFlow network, which uses FlowVisor to slice it into multiple virtual networks, we hope we can get some significant results and also can get further discussions among the security of SDN virtualization.

Keywords: SDN, network, virtualization, security

Procedia PDF Downloads 428
5192 Error Probability of Multi-User Detection Techniques

Authors: Komal Babbar

Abstract:

Multiuser Detection is the intelligent estimation/demodulation of transmitted bits in the presence of Multiple Access Interference. The authors have presented the Bit-error rate (BER) achieved by linear multi-user detectors: Matched filter (which treats the MAI as AWGN), Decorrelating and MMSE. In this work, authors investigate the bit error probability analysis for Matched filter, decorrelating, and MMSE. This problem arises in several practical CDMA applications where the receiver may not have full knowledge of the number of active users and their signature sequences. In particular, the behavior of MAI at the output of the Multi-user detectors (MUD) is examined under various asymptotic conditions including large signal to noise ratio; large near-far ratios; and a large number of users. In the last section Authors also shows Matlab Simulation results for Multiuser detection techniques i.e., Matched filter, Decorrelating, MMSE for 2 users and 10 users.

Keywords: code division multiple access, decorrelating, matched filter, minimum mean square detection (MMSE) detection, multiple access interference (MAI), multiuser detection (MUD)

Procedia PDF Downloads 528
5191 Understanding Indonesian Smallholder Dairy Farmers’ Decision to Adopt Multiple Farm: Level Innovations

Authors: Rida Akzar, Risti Permani, Wahida , Wendy Umberger

Abstract:

Adoption of farm innovations may increase farm productivity, and therefore improve market access and farm incomes. However, most studies that look at the level and drivers of innovation adoption only focus on a specific type of innovation. Farmers may consider multiple innovation options, and constraints such as budget, environment, scarcity of labour supply, and the cost of learning. There have been some studies proposing different methods to combine a broad variety of innovations into a single measurable index. However, little has been done to compare these methods and assess whether they provide similar information about farmer segmentation by their ‘innovativeness’. Using data from a recent survey of 220 dairy farm households in West Java, Indonesia, this study compares and considers different methods of deriving an innovation index, including expert-weighted innovation index; an index derived from the total number of adopted technologies; and an index of the extent of adoption of innovation taking into account both adoption and disadoption of multiple innovations. Second, it examines the distribution of different farming systems taking into account their innovativeness and farm characteristics. Results from this study will inform policy makers and stakeholders in the dairy industry on how to better design, target and deliver programs to improve and encourage farm innovation, and therefore improve farm productivity and the performance of the dairy industry in Indonesia.

Keywords: adoption, dairy, household survey, innovation index, Indonesia, multiple innovations dairy, West Java

Procedia PDF Downloads 336
5190 Coordinated Interference Canceling Algorithm for Uplink Massive Multiple Input Multiple Output Systems

Authors: Messaoud Eljamai, Sami Hidouri

Abstract:

Massive multiple-input multiple-output (MIMO) is an emerging technology for new cellular networks such as 5G systems. Its principle is to use many antennas per cell in order to maximize the network's spectral efficiency. Inter-cellular interference remains a fundamental problem. The use of massive MIMO will not derogate from the rule. It improves performances only when the number of antennas is significantly greater than the number of users. This, considerably, limits the networks spectral efficiency. In this paper, a coordinated detector for an uplink massive MIMO system is proposed in order to mitigate the inter-cellular interference. The proposed scheme combines the coordinated multipoint technique with an interference-cancelling algorithm. It requires the serving cell to send their received symbols, after processing, decision and error detection, to the interfered cells via a backhaul link. Each interfered cell is capable of eliminating intercellular interferences by generating and subtracting the user’s contribution from the received signal. The resulting signal is more reliable than the original received signal. This allows the uplink massive MIMO system to improve their performances dramatically. Simulation results show that the proposed detector improves system spectral efficiency compared to classical linear detectors.

Keywords: massive MIMO, COMP, interference canceling algorithm, spectral efficiency

Procedia PDF Downloads 147
5189 Multiple Version of Roman Domination in Graphs

Authors: J. C. Valenzuela-Tripodoro, P. Álvarez-Ruíz, M. A. Mateos-Camacho, M. Cera

Abstract:

In 2004, it was introduced the concept of Roman domination in graphs. This concept was initially inspired and related to the defensive strategy of the Roman Empire. An undefended place is a city so that no legions are established on it, whereas a strong place is a city in which two legions are deployed. This situation may be modeled by labeling the vertices of a finite simple graph with labels {0, 1, 2}, satisfying the condition that any 0-vertex must be adjacent to, at least, a 2-vertex. Roman domination in graphs is a variant of classic domination. Clearly, the main aim is to obtain such labeling of the vertices of the graph with minimum cost, that is to say, having minimum weight (sum of all vertex labels). Formally, a function f: V (G) → {0, 1, 2} is a Roman dominating function (RDF) in the graph G = (V, E) if f(u) = 0 implies that f(v) = 2 for, at least, a vertex v which is adjacent to u. The weight of an RDF is the positive integer w(f)= ∑_(v∈V)▒〖f(v)〗. The Roman domination number, γ_R (G), is the minimum weight among all the Roman dominating functions? Obviously, the set of vertices with a positive label under an RDF f is a dominating set in the graph, and hence γ(G)≤γ_R (G). In this work, we start the study of a generalization of RDF in which we consider that any undefended place should be defended from a sudden attack by, at least, k legions. These legions can be deployed in the city or in any of its neighbours. A function f: V → {0, 1, . . . , k + 1} such that f(N[u]) ≥ k + |AN(u)| for all vertex u with f(u) < k, where AN(u) represents the set of active neighbours (i.e., with a positive label) of vertex u, is called a [k]-multiple Roman dominating functions and it is denoted by [k]-MRDF. The minimum weight of a [k]-MRDF in the graph G is the [k]-multiple Roman domination number ([k]-MRDN) of G, denoted by γ_[kR] (G). First, we prove that the [k]-multiple Roman domination decision problem is NP-complete even when restricted to bipartite and chordal graphs. A problem that had been resolved for other variants and wanted to be generalized. We know the difficulty of calculating the exact value of the [k]-MRD number, even for families of particular graphs. Here, we present several upper and lower bounds for the [k]-MRD number that permits us to estimate it with as much precision as possible. Finally, some graphs with the exact value of this parameter are characterized.

Keywords: multiple roman domination function, decision problem np-complete, bounds, exact values

Procedia PDF Downloads 108
5188 Quantitative Structure Activity Relationship and Insilco Docking of Substituted 1,3,4-Oxadiazole Derivatives as Potential Glucosamine-6-Phosphate Synthase Inhibitors

Authors: Suman Bala, Sunil Kamboj, Vipin Saini

Abstract:

Quantitative Structure Activity Relationship (QSAR) analysis has been developed to relate antifungal activity of novel substituted 1,3,4-oxadiazole against Candida albicans and Aspergillus niger using computer assisted multiple regression analysis. The study has shown the better relationship between antifungal activities with respect to various descriptors established by multiple regression analysis. The analysis has shown statistically significant correlation with R2 values 0.932 and 0.782 against Candida albicans and Aspergillus niger respectively. These derivatives were further subjected to molecular docking studies to investigate the interactions between the target compounds and amino acid residues present in the active site of glucosamine-6-phosphate synthase. All the synthesized compounds have better docking score as compared to standard fluconazole. Our results could be used for the further design as well as development of optimal and potential antifungal agents.

Keywords: 1, 3, 4-oxadiazole, QSAR, multiple linear regression, docking, glucosamine-6-phosphate synthase

Procedia PDF Downloads 341
5187 Human Endogenous Retrovirus Link With Multiple Sclerosis Disease Progression

Authors: Sina Mahdavi

Abstract:

Background and Objective: Multiple sclerosis (MS) is an inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human endogenous retrovirus (HERV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on HERV infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis", "Human endogenous retrovirus", and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched and 14 articles chosen, studied, and analyzed. Results: In the leptomeningeal cells of MS patients, a retrovirus-like element associated with reverse transcriptase (RT) activity called multiple sclerosis-associated retroviruses (MSRV) has been identified. HERVs are expressed in the human CNS despite mechanisms to suppress their expression. External factors, especially viral infections such as influenza virus, Epstein-Barr virus, and herpes simplex virus type 1, can activate HERV gene expression. The MSRV coat protein is activated by activating TLR4 at the brain surface, particularly in oligodendroglial progenitor cells and macrophages, leading to immune cascades followed by the downregulation of myelin protein expression. The HERV-K18 envelope gene (env) acts as a superantigen and induces inflammatory responses in patients with MS. Conclusion: There is a high expression of endogenous retroviruses during the course of MS, which indicates the relationship between HERV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of endogenous retroviruses may be effective in reducing inflammatory processes in demyelinated areas of MS patients.

Keywords: multiple sclerosis, human endogenous retrovirus, central nervous system, MSRV

Procedia PDF Downloads 71