Search results for: metabolic networks
3282 Social Media Marketing in Russia
Authors: J. A. Ageeva, Z. S. Zavyalova
Abstract:
The article considers social media as a tool for business promotion. We analyze and compare the SMM experience in the western countries and Russia. A short review of Russian social networks are given including their peculiar features, and the main problems and perspectives of Russian SMM are described.Keywords: social media, social networks, marketing, SMM
Procedia PDF Downloads 5573281 The Load Balancing Algorithm for the Star Interconnection Network
Authors: Ahmad M. Awwad, Jehad Al-Sadi
Abstract:
The star network is one of the promising interconnection networks for future high speed parallel computers, it is expected to be one of the future-generation networks. The star network is both edge and vertex symmetry, it was shown to have many gorgeous topological proprieties also it is owns hierarchical structure framework. Although much of the research work has been done on this promising network in literature, it still suffers from having enough algorithms for load balancing problem. In this paper we try to work on this issue by investigating and proposing an efficient algorithm for load balancing problem for the star network. The proposed algorithm is called Star Clustered Dimension Exchange Method SCDEM to be implemented on the star network. The proposed algorithm is based on the Clustered Dimension Exchange Method (CDEM). The SCDEM algorithm is shown to be efficient in redistributing the load balancing as evenly as possible among all nodes of different factor networks.Keywords: load balancing, star network, interconnection networks, algorithm
Procedia PDF Downloads 3203280 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force
Authors: L. Parisi
Abstract:
In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.Keywords: kinemic gait data, neural networks, hip joint implant, hip arthroplasty, rehabilitation engineering
Procedia PDF Downloads 3553279 Toward an Understanding of the Neurofunctional Dissociation between Animal and Tool Concepts: A Graph Theoretical Analysis
Authors: Skiker Kaoutar, Mounir Maouene
Abstract:
Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from Mc Rae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.Keywords: animals, tools, network, semantics, small-world, resilience to damage
Procedia PDF Downloads 5493278 Assessment of Serum Osteopontin, Osteoprotegerin and Bone-Specific Alp as Markers of Bone Turnover in Patients with Disorders of Thyroid Function in Nigeria, Sub-Saharan Africa
Authors: Oluwabori Emmanuel Olukoyejo, Ogra Victor Ogra, Bosede Amodu, Tewogbade Adeoye Adedeji
Abstract:
Background: Disorders of thyroid function are the second most common endocrine disorders worldwide, with a direct relationship with metabolic bone diseases. These metabolic bone complications are often subtle but manifest as bone pains and an increased risk of fractures. The gold standard for diagnosis, Dual Energy X-ray Absorptiometry (DEXA), is limited in this environment due to unavailability, cumbersomeness and cost. However, bone biomarkers have shown prospects in assessing alterations in bone remodeling, which has not been studied in this environment. Aim: This study evaluates serum levels of bone-specific alkaline phosphatase (bone-specific ALP), osteopontin and osteoprotegerin biomarkers of bone turnover in patients with disorders of thyroid function. Methods: This is a cross-sectional study carried out over a period of one and a half years. Forty patients with thyroid dysfunctions, aged 20 to 50 years, and thirty-eight age and sex-matched healthy euthyroid controls were included in this study. Patients were further stratified into hyperthyroid and hypothyroid groups. Bone-specific ALP, osteopontin, and osteoprotegerin, alongside serum total calcium, ionized calcium and inorganic phosphate, were assayed for all patients and controls. A self-administered questionnaire was used to obtain data on sociodemographic and medical history. Then, 5 ml of blood was collected in a plain bottle and serum was harvested following clotting and centrifugation. Serum samples were assayed for B-ALP, osteopontin, and osteoprotegerin using the ELISA technique. Total calcium and ionized calcium were assayed using an ion-selective electrode, while the inorganic phosphate was assayed with automated photometry. Results: The hyperthyroid and hypothyroid patient groups had significantly increased median serum B-ALP (30.40 and 26.50) ng/ml and significantly lower median OPG (0.80 and 0.80) ng/ml than the controls (10.81 and 1.30) ng/ml respectively, p < 0.05. However, serum osteopontin in the hyperthyroid group was significantly higher and significantly lower in the hypothyroid group when compared with the controls (11.00 and 2.10 vs 3.70) ng/ml, respectively, p < 0.05. Both hyperthyroid and hypothyroid groups had significantly higher mean serum total calcium, ionized calcium and inorganic phosphate than the controls (2.49 ± 0.28, 1.27 ± 0.14 and 1.33 ± 0.33) mmol/l and (2.41 ± 0.04, 1.20 ± 0.04 and 1.15 ± 0.16) mmol/l vs (2.27 ± 0.11, 1.17 ± 0.06 and 1.08 ± 0.16) mmol/l respectively, p < 0.05. Conclusion: Patients with disorders of thyroid function have metabolic imbalances of all the studied bone markers, suggesting a higher bone turnover. The routine bone markers will be an invaluable tool for monitoring bone health in patients with thyroid dysfunctions, while the less readily available markers can be introduced as supplementary tools. Moreover, bone-specific ALP, osteopontin and osteoprotegerin were found to be the strongest independent predictors of metabolic bone markers’ derangements in patients with thyroid dysfunctions.Keywords: metabolic bone diseases, biomarker, bone turnover, hyperthyroid, hypothyroid, euthyroid
Procedia PDF Downloads 383277 Anti-Phase Synchronization of Complex Delayed Networks with Output Coupling via Pinning Control
Authors: Chanyuan Gu, Shouming Zhong
Abstract:
Synchronization is a fundamental phenomenon that enables coherent behavior in networks as a result of interactions. The purpose of this research had been to investigate the problem of anti-phase synchronization for complex delayed dynamical networks with output coupling. The coupling configuration is general, with the coupling matrix not assumed to be symmetric or irreducible. The amount of the coupling variables between two connected nodes is flexible, the nodes in the drive and response systems need not to be identical and there is not any extra constraint on the coupling matrix. Some pinning controllers are designed to make the drive-response system achieve the anti-phase synchronization. For the convenience of description, we applied the matrix Kronecker product. Some new criteria are proposed based on the Lyapunov stability theory, linear matrix inequalities (LMI) and Schur complement. Lastly, some simulation examples are provided to illustrate the effectiveness of our proposed conditions.Keywords: anti-phase synchronization, complex networks, output coupling, pinning control
Procedia PDF Downloads 3953276 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks
Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.
Abstract:
In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means
Procedia PDF Downloads 5603275 Performance Analysis of Heterogeneous Cellular Networks with Multiple Connectivity
Authors: Sungkyung Kim, Jee-Hyeon Na, Dong-Seung Kwon
Abstract:
Future mobile networks following 5th generation will be characterized by one thousand times higher gains in capacity; connections for at least one hundred billion devices; user experience capable of extremely low latency and response times. To be close to the capacity requirements and higher reliability, advanced technologies have been studied, such as multiple connectivity, small cell enhancement, heterogeneous networking, and advanced interference and mobility management. This paper is focused on the multiple connectivity in heterogeneous cellular networks. We investigate the performance of coverage and user throughput in several deployment scenarios. Using the stochastic geometry approach, the SINR distributions and the coverage probabilities are derived in case of dual connection. Also, to compare the user throughput enhancement among the deployment scenarios, we calculate the spectral efficiency and discuss our results.Keywords: heterogeneous networks, multiple connectivity, small cell enhancement, stochastic geometry
Procedia PDF Downloads 3353274 Phone Number Spoofing Attack in VoLTE 4G
Authors: Joo-Hyung Oh
Abstract:
The number of service users of 4G VoLTE (voice over LTE) using LTE data networks is rapidly growing. VoLTE based on all-IP network enables clearer and higher-quality voice calls than 3G. It does, however, pose new challenges; a voice call through IP networks makes it vulnerable to security threats such as wiretapping and forged or falsified information. And in particular, stealing other users’ phone numbers and forging or falsifying call request messages from outgoing voice calls within VoLTE result in considerable losses that include user billing and voice phishing to acquaintances. This paper focuses on the threats of caller phone number spoofing in the VoLTE and countermeasure technology as safety measures for mobile communication networks.Keywords: LTE, 4G, VoLTE, phone number spoofing
Procedia PDF Downloads 4333273 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling
Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou
Abstract:
In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change
Procedia PDF Downloads 2633272 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos
Abstract:
This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.Keywords: metaphor detection, deep learning, representation learning, embeddings
Procedia PDF Downloads 1543271 Traffic Congestions Modeling and Predictions by Social Networks
Authors: Bojan Najdenov, Danco Davcev
Abstract:
Reduction of traffic congestions and the effects of pollution and waste of resources that come with them has been a big challenge in the past decades. Having reliable systems to facilitate the process of modeling and prediction of traffic conditions would not only reduce the environmental pollution, but will also save people time and money. Social networks play big role of people’s lives nowadays providing them means of communicating and sharing thoughts and ideas, that way generating huge knowledge bases by crowdsourcing. In addition to that, crowdsourcing as a concept provides mechanisms for fast and relatively reliable data generation and also many services are being used on regular basis because they are mainly powered by the public as main content providers. In this paper we present the Social-NETS-Traffic-Control System (SNTCS) that should serve as a facilitator in the process of modeling and prediction of traffic congestions. The main contribution of our system is to integrate data from social networks as Twitter and also implements a custom created crowdsourcing subsystem with which users report traffic conditions using an android application. Our first experience of the usage of the system confirms that the integrated approach allows easy extension of the system with other social networks and represents a very useful tool for traffic control.Keywords: traffic, congestion reduction, crowdsource, social networks, twitter, android
Procedia PDF Downloads 4833270 Natural Emergence of a Core Structure in Networks via Clique Percolation
Authors: A. Melka, N. Slater, A. Mualem, Y. Louzoun
Abstract:
Networks are often presented as containing a “core” and a “periphery.” The existence of a core suggests that some vertices are central and form the skeleton of the network, to which all other vertices are connected. An alternative view of graphs is through communities. Multiple measures have been proposed for dense communities in graphs, the most classical being k-cliques, k-cores, and k-plexes, all presenting groups of tightly connected vertices. We here show that the edge number thresholds for such communities to emerge and for their percolation into a single dense connectivity component are very close, in all networks studied. These percolating cliques produce a natural core and periphery structure. This result is generic and is tested in configuration models and in real-world networks. This is also true for k-cores and k-plexes. Thus, the emergence of this connectedness among communities leading to a core is not dependent on some specific mechanism but a direct result of the natural percolation of dense communities.Keywords: cliques, core structure, percolation, phase transition
Procedia PDF Downloads 1723269 Gender Effects in EEG-Based Functional Brain Networks
Authors: Mahdi Jalili
Abstract:
Functional connectivity in the human brain can be represented as a network using electroencephalography (EEG) signals. Network representation of EEG time series can be an efficient vehicle to understand the underlying mechanisms of brain function. Brain functional networks – whose nodes are brain regions and edges correspond to functional links between them – are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which graph theory metrics are sex dependent. To this end, EEGs from 24 healthy female subjects and 21 healthy male subjects were recorded in eyes-closed resting state conditions. The connectivity matrices were extracted using correlation analysis and were further binarized to obtain binary functional networks. Global and local efficiency measures – as graph theory metrics– were computed for the extracted networks. We found that male brains have a significantly greater global efficiency (i.e., global communicability of the network) across all frequency bands for a wide range of cost values in both hemispheres. Furthermore, for a range of cost values, female brains showed significantly greater right-hemispheric local efficiency (i.e., local connectivity) than male brains.Keywords: EEG, brain, functional networks, network science, graph theory
Procedia PDF Downloads 4443268 Risk of Androgen Deprivation Therapy-Induced Metabolic Syndrome-Related Complications for Prostate Cancer in Taiwan
Authors: Olivia Rachel Hwang, Yu-Hsuan Joni Shao
Abstract:
Androgen Deprivation Therapy (ADT) has been a primary treatment for patients with advanced prostate cancer. However, it is associated with numerous adverse effects related to Metabolic Syndrome (MetS), including hypertension, diabetes, hyperlipidaemia, heart diseases and ischemic strokes. However, complications associated with ADT for prostate cancer in Taiwan is not well documented. The purpose of this study is to utilize the data from NHIRD (National Health Insurance Research Database) to examine the trajectory changes of MetS-related complications in men receiving ADT. The risks of developing complications after the treatment were analyzed with multivariate Cox regression model. Covariates including in the model were the complications before the diagnosis of prostate cancer, the age, and the year at cancer diagnosis. A total number of 17268 patients from 1997-2013 were included in this study. The exclusion criteria were patients with any other types of cancer or with the existing MetS-related complications. Changes in MetS-related complications were observed among two treatment groups: 1) ADT (n=9042), and 2) non-ADT (n=8226). The ADT group appeared to have an increased risk in hypertension (hazard ratio 1.08, 95% confidence interval 1.03-1.13, P = 0.001) and hyperlipidemia (hazard ratio 1.09, 95% confidence interval 1.01-1.17, P = 0.02) when compared with non-ADT group in the multivariate Cox regression analyses. In the risk of diabetes, heart diseases, and ischemic strokes, ADT group appeared to have an increased but not significant hazard ratio. In conclusion, ADT was associated with an increased risk in hypertension and hyperlipidemia in prostate cancer patients in Taiwan. The risk of hypertension and hyperlipidemia should be considered while deciding on ADT, especially those with the known history of hypertension and hyperlipidemia.Keywords: androgen deprivation therapy, ADT, complications, metabolic syndrome, MetS, prostate cancer
Procedia PDF Downloads 2893267 Use of Integrated Knowledge Networks to Increase Innovation in Nanotechnology Research and Development
Authors: R. Byler
Abstract:
Innovation, particularly in technology development, is a crucial aspect of nanotechnology R&D and, although several approaches to effective innovation management exist, organizational structures that promote knowledge exchange have been found to be most effect in supporting new and emerging technologies. This paper discusses Integrated Knowledge Networks (IKNs) and evaluates its use within nanotechnology R&D to increase technology innovation. Specifically, this paper reviews the role of IKNs in bolstering national and international nanotechnology development and in enhancing nanotechnology innovation. Both physical and virtual IKNs, particularly IT-based network platforms for community-based innovation, offer strategies for enhanced technology innovation, interdisciplinary cooperation, and enterprise development. Effectively creating and managing technology R&D networks can facilitate successful knowledge exchange, enhanced innovation, commercialization, and technology transfer. As such, IKNs are crucial to technology development processes and, thus, in increasing the quality and access to new, innovative nanoscience and technologies worldwide.Keywords: community-based innovation, integrated knowledge networks, nanotechnology, technology innovation
Procedia PDF Downloads 4143266 Multiple Strategies in Prevention of Metabolic Syndrome Result from Vitamin D Deficiency in Children
Authors: Maryam Ghavam Sadri, Maryam Shahrooz
Abstract:
Background: Nowadays the prevalence of metabolic syndrome (Mets) has taken on a growing trend. Studies have shown the relationship between vitamin D deficiency (VDD) status and Mets in children. Also studies have recorded that exerting strategies for vitamin D status improvement can help prevent Mets in children. This study investigated multiple strategies of prevention of Mets resulting from VDD in children. Methods: This review study has been done by using keywords related to the topic and 54 articles were found (2000-2015) that 25 were selected according to the indicators of Mets, supplementation and fortification of foods with vitamin D and attention to children environment and life style. Results: Studies have suggested the correlation between serum levels of vitamin D with waist circumference (p < 0.0001), systolic blood pressure (p=0.01), HOMA-IR (p=0.001) and HDL cholesterol (p < 0.0001). An inverse correlation between serum 25 (OH) D and HOMA-IR (p = 0.006) and insulin (P = 0.002) has been proved in overweight group. Higher HOMASDS and triglycerides found in vitamin D deficient obese children compared to control group without VDD (p=0.04). After supplementation with vitamin D, serum TG concentration decreases significantly (p=0.04), and improves insulin resistance (p=0.02). The prevalence of VDD is associated with time of watching TV (P < 0.01), hours of physical activity per week (P = 0.01), skipping breakfast (P < 0.001) soda intake (P < 0.001), and milk intake per day (P < 0.01). Conclusion: According to the beneficial role of vitamin D in prevention of Mets and proven relationship between serum levels of vitamin D and Mets indicators, we can prevent childhood Mets through the application of appropriate strategies such as supplementation and food fortification with vitamin D and positive changes in children life style with especial attention to physical activity in exposure of sunlight and their environment condition.Keywords: children, metabolic syndrome, prevention strategies, vitamin D
Procedia PDF Downloads 5673265 Improving Axial-Attention Network via Cross-Channel Weight Sharing
Authors: Nazmul Shahadat, Anthony S. Maida
Abstract:
In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks
Procedia PDF Downloads 843264 Association of Brain-Derived Neurotrophic Factor (BDNF) Gene with Obesity and Metabolic Traits in Malaysian Adults
Authors: Yamunah Devi Apalasamy, Sanjay Rampal, Tin Tin Su, Foong Ming Moy, Hazreen Abdul Majid, Awang Bulgiba, Zahurin Mohamed
Abstract:
Obesity is a growing global health issue. Obesity results from a combination of environmental and genetics factors. Brain-derived neurotrophic factor (BDNF), a gene encodes the BDNF protein and the BDNF gene have been linked to regulation of body weight and appetite. Genome-wide association studies have identified the BDNF variants to be related to obesity among Caucasians, East Asians, and Filipinos. However, the role of BDNF in other ethnic groups remains inconclusive. This case control study aims to investigate the associations of BDNF gene polymorphisms with obesity and metabolic parameters in Malaysian Malays. BDNF rs4074134, BDNF rs10501087 and BDNF rs6265 were genotyped using Sequenom MassARRAY. Anthropometric, body fat, fasting lipids and glucose levels were measured. A total of 663 subjects (194 obese and 469 non-obese) were included in this study. There were no significant associations association between BDNF SNPs and obesity. The allelic and genotype frequencies of the BDNF SNPs were similar in the obese and non-obese groups. After adjustment for age and sex, the BDNF variants were not associated with obesity, body fat, fasting lipids and glucose levels. Haplotypes at the BDNF gene region, were not significantly associated with obesity. The BDNF rs4074134 was in strong LD with BDNF rs10501087 (D'=0.98) and BDNF rs6265 (D'=0.87). The BDNF rs10501087 was also in strong LD with BDNF rs6265 (D'=0.91). Our findings suggest that the BDNF variants and the haplotypes of BDNF gene were not associated with obesity and metabolic traits in this study population. Further research is needed to explore other BDNF variants with a larger sample size with gene-environment interactions in multi ethnic Malaysian population.Keywords: genomics of obesity, SNP, BMI, haplotypes
Procedia PDF Downloads 4303263 Effect of Aging on the Second Law Efficiency, Exergy Destruction and Entropy Generation in the Skeletal Muscles during Exercise
Authors: Jale Çatak, Bayram Yılmaz, Mustafa Ozilgen
Abstract:
The second law muscle work efficiency is obtained by multiplying the metabolic and mechanical work efficiencies. Thermodynamic analyses are carried out with 19 sets of arms and legs exercise data which were obtained from the healthy young people. These data are used to simulate the changes occurring during aging. The muscle work efficiency decreases with aging as a result of the reduction of the metabolic energy generation in the mitochondria. The reduction of the mitochondrial energy efficiency makes it difficult to carry out the maintenance of the muscle tissue, which in turn causes a decline of the muscle work efficiency. When the muscle attempts to produce more work, entropy generation and exergy destruction increase. Increasing exergy destruction may be regarded as the result of the deterioration of the muscles. When the exergetic efficiency is 0.42, exergy destruction becomes 1.49 folds of the work performance. This proportionality becomes 2.50 and 5.21 folds when the exergetic efficiency decreases to 0.30 and 0.17 respectively.Keywords: aging mitochondria, entropy generation, exergy destruction, muscle work performance, second law efficiency
Procedia PDF Downloads 4273262 Comparative Therapeutic Effect of Acalypha indica Linn. Extract and Gemfibrozil on High Fructose and Cholesterol Diet Induced Pancreas Steatosis in Sprague-Dawley Mice
Authors: Adrian Reynaldo Sudirman, Siti Farida, Aisyah Aminy Maulidina, Caren Andika Surbakti
Abstract:
Sedentary lifestyle and imbalance consumption pattern has made metabolic syndrome as the global time bomb phenomenon in the world. The increasing tendency of people in consuming high amount of fructose and cholesterol food has worsened this issue in the society. Pancreas steatosis become one of the most comorbid when early diagnosis and prompt treatment has not been applied on hyperglycemic and hyperlipidemic condition in metabolic syndrome patient. Gemfibrozil become the drug of choice to prevent this issue, yet the efficacy of this regiment was still questionable. Acalypha indica Linn. is the herb that has protective effect on hyperlipidemic and hyperglycemic condition. This study was aimed to compare therapeutic effect of gemfibrozil (G) and Acalypha indica Linn. (AI) on high fructose and cholesterol diet-induced pancreas steatosis in Sprague-Dawley mice. The post induction mice were divided into four groups: control, gemfibrozil, AI extract, and G+AI combination regiment. Each group received four weeks intervention. The result of statistical analysis using the One-Way ANOVA test and Tukey Post Hoc test showed significant decrease in pancreatic steatosis between the control group and administered Acalypha indica group (p = 0.004, 95% CI: 0.170-0.959) and the group administered with a combination of Gemfibrozil-Acalypha indica (p = 0.023, 95% CI: 0.537-0.813). The protective effect of Acalypha indica Linn. shows that this plant has the potential as therapeutic option in overcoming the condition of pancreas steatosis in metabolic syndrome.Keywords: Acalypha Indica Linn., Cholesterol, Fructose, Gemfibrozil, Pancreas Steatosis
Procedia PDF Downloads 3073261 The Role of Social Networking in Activating the Participation of Youth in the Community
Authors: Raya Hamed Hial Al Maamari
Abstract:
The gulf societies have been undergoing radical changes because of the technology transfer. It altered the humanities attitudes. Especially, youth habits so they become a fond of using social networking. This study aimed to find out the ratio of social networking in Directing youth to participate with government institutions in decision-making and improving their societies. The study considered a descriptive study, social survey method was used on a sample of 100 young men from different gulf countries, using an electronic questionnaire, with some interviews with famous leaders of youth groups. Finally, the researchers suggested many effective views to activate youth efforts using social networks as an effective manner to plan for the development policy and Implemented accurately in the community. The findings illustrated that social networks play a vital role in encouraging youth to participate Enthusiastically in providing the service. As it notices these networks contain large numbers of youth. Therefore, the influences become widely and feasible. Moreover, the study indicated the fact that most of youth teamwork started in these social networks. Then, it has been growing to the real society.Keywords: social work, volunteering, youth, community
Procedia PDF Downloads 3483260 Efficient Broadcasting in Wireless Sensor Networks
Authors: Min Kyung An, Hyuk Cho
Abstract:
In this paper, we study the Minimum Latency Broadcast Scheduling (MLBS) problem in wireless sensor networks (WSNs). The main issue of the MLBS problem is to compute schedules with the minimum number of timeslots such that a base station can broadcast data to all other sensor nodes with no collisions. Unlike existing works that utilize the traditional omni-directional WSNs, we target the directional WSNs where nodes can collaboratively determine and orientate their antenna directions. We first develop a 7-approximation algorithm, adopting directional WSNs. Our ratio is currently the best, to the best of our knowledge. We then validate the performance of the proposed algorithm through simulation.Keywords: broadcast, collision-free, directional antenna, approximation, wireless sensor networks
Procedia PDF Downloads 3473259 Location Management in Wireless Sensor Networks with Mobility
Authors: Amrita Anil Agashe, Sumant Tapas, Ajay Verma Yogesh Sonavane, Sourabh Yeravar
Abstract:
Due to advancement in MEMS technology today wireless sensors network has gained a lot of importance. The wide range of its applications includes environmental and habitat monitoring, object localization, target tracking, security surveillance etc. Wireless sensor networks consist of tiny sensor devices called as motes. The constrained computation power, battery power, storage capacity and communication bandwidth of the tiny motes pose challenging problems in the design and deployment of such systems. In this paper, we propose a ubiquitous framework for Real-Time Tracking, Sensing and Management System using IITH motes. Also, we explain the algorithm that we have developed for location management in wireless sensor networks with the aspect of mobility. Our developed framework and algorithm can be used to detect emergency events and safety threats and provides warning signals to handle the emergency.Keywords: mobility management, motes, multihop, wireless sensor networks
Procedia PDF Downloads 4203258 NR/PEO Block Copolymer: A Chelating Exchanger for Metal Ions
Authors: M. S. Mrudula, M. R. Gopinathan Nair
Abstract:
In order to utilize the natural rubber for developing new green polymeric materials for specialty applications, we have prepared natural rubber and polyethylene oxide based polymeric networks by two shot method. The polymeric networks thus formed have been used as chelating exchanger for metal ion binding. Chelating exchangers are, in general, coordinating copolymers containing one or more electron donor atoms such as N, S, O, and P that can form coordinate bonds with metals. Hydrogels are water- swollen network of hydrophilic homopolymer or copolymers. They acquire a great interest due to the facility of the incorporation of different chelating groups into the polymeric networks. Such polymeric hydrogels are promising materials in the field of hydrometallurgical applications and water purification due to their chemical stability. The current study discusses the swelling response of the polymeric networks as a function of time, temperature, pH and [NaCl] and sorption studies. Equilibrium swelling has been observed to depend on both structural aspects of the polymers and environmental factors. Metal ion sorption shows that these polymeric networks can be used for removal, separation, and enrichment of metal ions from aqueous solutions and can play an important role for environmental remediation of municipal and industrial wastewater.Keywords: block copolymer, adsorption, chelating exchanger, swelling study, polymer, metal complexes
Procedia PDF Downloads 3433257 Adaptive Routing Protocol for Dynamic Wireless Sensor Networks
Authors: Fayez Mostafa Alhamoui, Adnan Hadi Mahdi Al- Helali
Abstract:
The main issue in designing a wireless sensor network (WSN) is the finding of a proper routing protocol that complies with the several requirements of high reliability, short latency, scalability, low power consumption, and many others. This paper proposes a novel routing algorithm that complies with these design requirements. The new routing protocol divides the WSN into several sub-networks and each sub-network is divided into several clusters. This division is designed to reduce the number of radio transmission and hence decreases the power consumption. The network division may be changed dynamically to adapt with the network changes and allows the realization of the design requirements.Keywords: wireless sensor networks, routing protocols, AD HOC topology, cluster, sub-network, WSN design requirements
Procedia PDF Downloads 5383256 Enhancing Throughput for Wireless Multihop Networks
Authors: K. Kalaiarasan, B. Pandeeswari, A. Arockia John Francis
Abstract:
Wireless, Multi-hop networks consist of one or more intermediate nodes along the path that receive and forward packets via wireless links. The backpressure algorithm provides throughput optimal routing and scheduling decisions for multi-hop networks with dynamic traffic. Xpress, a cross-layer backpressure architecture was designed to reach the capacity of wireless multi-hop networks and it provides well coordination between layers of network by turning a mesh network into a wireless switch. Transmission over the network is scheduled using a throughput-optimal backpressure algorithm. But this architecture operates much below their capacity due to out-of-order packet delivery and variable packet size. In this paper, we present Xpress-T, a throughput optimal backpressure architecture with TCP support designed to reach maximum throughput of wireless multi-hop networks. Xpress-T operates at the IP layer, and therefore any transport protocol, including TCP, can run on top of Xpress-T. The proposed design not only avoids bottlenecks but also handles out-of-order packet delivery and variable packet size, optimally load-balances traffic across them when needed, improving fairness among competing flows. Our simulation results shows that Xpress-T gives 65% more throughput than Xpress.Keywords: backpressure scheduling and routing, TCP, congestion control, wireless multihop network
Procedia PDF Downloads 5193255 A Review of Attractor Neural Networks and Their Use in Cognitive Science
Authors: Makenzy Lee Gilbert
Abstract:
This literature review explores the role of attractor neural networks (ANNs) in modeling psychological processes in artificial and biological systems. By synthesizing research from dynamical systems theory, psychology, and computational neuroscience, the review provides an overview of the current understanding of ANN function in memory formation, reinforcement, retrieval, and forgetting. Key mathematical foundations, including dynamical systems theory and energy functions, are discussed to explain the behavior and stability of these networks. The review also examines empirical applications of ANNs in cognitive processes such as semantic memory and episodic recall, as well as highlighting the hippocampus's role in pattern separation and completion. The review addresses challenges like catastrophic forgetting and noise effects on memory retrieval. By identifying gaps between theoretical models and empirical findings, it highlights the interdisciplinary nature of ANN research and suggests future exploration areas.Keywords: attractor neural networks, connectionism, computational modeling, cognitive neuroscience
Procedia PDF Downloads 323254 Teaching Contemporary Power Distribution and Industrial Networks in Higher Education Vocational Studies
Authors: Rade M. Ciric
Abstract:
The paper shows the development and implementation of the syllabus of the subject 'Distribution and Industrial Networks', attended by the vocational specialist Year 4 students of the Electric Power Engineering study programme at the Higher Education Technical School of Vocational Studies in Novi Sad. The aim of the subject is to equip students with the knowledge necessary for planning, exploitation and management of distributive and industrial electric power networks in an open electricity market environment. The results of the evaluation of educational outcomes on the subject are presented and discussed.Keywords: engineering education, power distribution network, syllabus implementation, outcome evaluation
Procedia PDF Downloads 4043253 Analyzing the Impact of DCF and PCF on WLAN Network Standards 802.11a, 802.11b, and 802.11g
Authors: Amandeep Singh Dhaliwal
Abstract:
Networking solutions, particularly wireless local area networks have revolutionized the technological advancement. Wireless Local Area Networks (WLANs) have gained a lot of popularity as they provide location-independent network access between computing devices. There are a number of access methods used in Wireless Networks among which DCF and PCF are the fundamental access methods. This paper emphasizes on the impact of DCF and PCF access mechanisms on the performance of the IEEE 802.11a, 802.11b and 802.11g standards. On the basis of various parameters viz. throughput, delay, load etc performance is evaluated between these three standards using above mentioned access mechanisms. Analysis revealed a superior throughput performance with low delays for 802.11g standard as compared to 802.11 a/b standard using both DCF and PCF access methods.Keywords: DCF, IEEE, PCF, WLAN
Procedia PDF Downloads 426