Search results for: laser powder bed fusion (LPBF)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2206

Search results for: laser powder bed fusion (LPBF)

1936 Facial Partial Unilateral Lentiginosis Treated with Low-Fluence Q-Switched 1,064-Nm Neodymium-Doped Yttrium Aluminum Garnet Laser

Authors: En Hyung Kim

Abstract:

Partial unilateral lentiginosis (PUL) is an unusual pigmentary disorder characterized by numerous lentigines grouped within an area of normal skin. Although treatment is not necessary, many patients with facial PUL seek medical help for cosmetic reasons. There is no established standard treatment for PUL. Conventional lasers may cause postinflammatory hyperpigmentation because keratinocytes are injured during the process. Also scarring, long downtime and pain are important issues. Case: A 19-year-old patient with facial PUL was treated with 1064-nm Q-Switched Neodymium-Doped Yttrium Aluminum Garnet (QS Nd:YAG) laser. The patient was treated at one-week intervals starting with a spot size of 6 mm, a fluence of 2.5 J/cm2 and a pulse rate of 10 Hz with 1-2 passes of slow sliding technique with approximately 5-15 % overlap. The fluence was elevated to 3 J/cm2 after the 4th session according to treatment response and patient tolerance. After 10 treatment sessions the lesions were remarkably improved. Discussion: Although the exact mechanism by which low fluence 1,064-nm QS Nd:YAG laser improves pigmentary lesions is unclear, the term ‘subcellular selective photothermolysis’ and ‘melanocyte apoptosis and replacement’ have been proposed. If appropriate measures are taken to monitor patient response during and after the procedure, low fluence 1064-nm QS Nd:YAG laser may achieve good cosmetic result in the treatment of PUL with a very safe and effective profile.

Keywords: laser toning, low fluence, 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser, partial unilateral lentiginosis

Procedia PDF Downloads 234
1935 Evaluation of Mechanical Behavior of Laser Cladding in Various Tilting Pad Bearing Materials

Authors: Si-Geun Choi, Hoon-Jae Park, Jung-Woo Cho, Jin-Ho Lim, Jin-Young Park, Joo-Young Oh, Jae-Il Jeong Seock-Sam Kim, Young Tae Cho, Chan Gyu Kim, Jong-Hyoung Kim

Abstract:

The tilting pad bearing is a kind of the fluid film bearing and it can contribute to the high speed and the high load performance compared to other bearings including the rolling element bearing. Furthermore, the tilting bearing has many advantages such as high stability at high-speed performance, long life, high damping, high impact resistance and low noise. Therefore, it mostly used in mid to large size turbomachines, despite the high price disadvantage. Recently, manufacture and process employing laser techniques advancing at a fast-growing rate in mechanical industry, the dissimilar metal weld process employing laser techniques is actively studied. Moreover, also, Industry fields try to apply for welding the white metal and the back metal using laser cladding method for high durability. Furthermore, it has followed that laser cladding method has a lot better bond strength, toughness, anti-abrasion and environment-friendly than centrifugal casting method through preceding research. Therefore, the laser cladding method has a lot better quality, cost reduction, eco-friendliness and permanence of technology than the centrifugal casting method or the gravity casting method. In this study, we compare the mechanical properties of different bearing materials by evaluating the behavior of laser cladding layer with various materials (i.e. SS400, SCM440, S20C) under the same parameters. Furthermore, we analyze the porosity of various tilting pad bearing materials which white metal treated on samples. SEM, EDS analysis and hardness tests of three materials are shown to understand the mechanical properties and tribological behavior. W/D ratio, surface roughness results with various materials are performed in this study.

Keywords: laser cladding, tilting pad bearing, white metal, mechanical properties

Procedia PDF Downloads 383
1934 Infra Red Laser Induced Ablation of Graphene Based Polymer Nanocomposites

Authors: Jadranka Blazhevska Gilev

Abstract:

IR laser-induced ablation of poly(butylacrylate-methylmethacrylate/hydroxyl ethyl methacrylate)/reduced graphene oxide (p(BA/MMA/HEMA)/rGO) was examined with 0.5, 0.75 and 1 wt% reduced graphene oxide content in relation to polymer. The irradiation was performed with TEA (transversely excited atmosphere) CO₂ laser using incident fluence of 15-20 J/cm², repetition frequency of 1 Hz, in an evacuated (10-3 Pa) Pyrex spherical vessel. Thin deposited nanocomposites films with large specific area were obtained using different substrates. The properties of the films deposited on these substrates were evaluated by TGA, FTIR, (Thermogravimetric analysis, Fourier Transformation Infrared) Raman spectroscopy and SEM microscopy. Homogeneous distribution of graphene sheets was observed from the SEM images, making polymer/rGO deposit an ideal candidate for SERS application. SERS measurements were performed using Rhodamine 6G as probe molecule on the substrate Ag/p(BA/MMA/HEMA)/rGO.

Keywords: laser ablation, reduced graphene oxide, polymer/rGO nanocomposites, thin deposited film

Procedia PDF Downloads 201
1933 Simultaneous Measurement of Displacement and Roll Angle of Object

Authors: R. Furutani, K. Ishii

Abstract:

Laser interferometers are now widely used for length and displacement measurement. In conventional methods, the optical path difference between two mirrors, one of which is a reference mirror and the other is a target mirror, is measured, as in Michelson interferometry, or two target mirrors are set up and the optical path difference between the two targets is measured, as in differential interferometry. In these interferometers, the two laser beams pass through different optical elements so that the measurement result is affected by the vibration and other effects in the optical paths. In addition, it is difficult to measure the roll angle around the optical axis. The proposed interferometer simultaneously measures both the translational motion along the optical axis and the roll motion around it by combining the retroreflective principle of the ball lens (BL) and the polarization. This interferometer detects the interferogram by the two beams traveling along the identical optical path from the beam source to BL. This principle is expected to reduce external influences by using the interferogram between the two lasers in an identical optical path. The proposed interferometer uses a BL so that the reflected light from the lens travels on the identical optical path as the incident light. After reaching the aperture of the He-Ne laser oscillator, the reflected light is reflected by a mirror with a very high reflectivity installed in the aperture and is irradiated back toward the BL. Both the first laser beam that enters the BL and the second laser beam that enters the BL after the round trip interferes with each other, enabling the measurement of displacement along the optical axis. In addition, for the measurement of the roll motion, a quarter-wave plate is installed on the optical path to change the polarization state of the laser. The polarization states of the first laser beam and second laser beam are different by the roll angle of the target. As a result, this system can measure the displacement and the roll angle of BL simultaneously. It was verified by the simulation and the experiment that the proposed optical system could measure the displacement and the roll angle simultaneously.

Keywords: common path interferometer, displacement measurement, laser interferometer, simultaneous measurement, roll angle measurement

Procedia PDF Downloads 90
1932 Influence of Strong Optical Feedback on Frequency Chirp and Lineshape Broadening in High-Speed Semiconductor Laser

Authors: Moustafa Ahmed, Fumio Koyama

Abstract:

Directly-modulated semiconductor lasers, including edge-emitting and vertical-cavity surface-emitting lasers, have received considerable interest recently for use in data transmitters in cost-effective high-speed data centers, metro, and access networks. Optical feedback has been proved as an efficient technique to boost the modulation bandwidth and enhance the speed of the semiconductor laser. However, both the laser linewidth and frequency chirping in directly-modulated lasers are sensitive to both intensity modulation and optical feedback. These effects along width fiber dispersion affect the transmission bit rate and distance in single-mode fiber links. In this work, we continue our recent research on directly-modulated semiconductor lasers with modulation bandwidth in the millimeter-wave band by introducing simultaneous modeling and simulations on both the frequency chirping and lineshape broadening. The lasers are operating under strong optical feedback. The model takes into account the multiple reflections of laser reflections of laser radiation in the external cavity. The analyses are given in terms of the chirp-to-modulated power ratio, and the results are shown for the possible dynamic states of continuous wave, period-1 oscillation, and chaos.

Keywords: chirp, linewidth, optical feedback, semiconductor laser

Procedia PDF Downloads 486
1931 Submicron Laser-Induced Dot, Ripple and Wrinkle Structures and Their Applications

Authors: P. Slepicka, N. Slepickova Kasalkova, I. Michaljanicova, O. Nedela, Z. Kolska, V. Svorcik

Abstract:

Polymers exposed to laser or plasma treatment or modified with different wet methods which enable the introduction of nanoparticles or biologically active species, such as amino-acids, may find many applications both as biocompatible or anti-bacterial materials or on the contrary, can be applied for a decrease in the number of cells on the treated surface which opens application in single cell units. For the experiments, two types of materials were chosen, a representative of non-biodegradable polymers, polyethersulphone (PES) and polyhydroxybutyrate (PHB) as biodegradable material. Exposure of solid substrate to laser well below the ablation threshold can lead to formation of various surface structures. The ripples have a period roughly comparable to the wavelength of the incident laser radiation, and their dimensions depend on many factors, such as chemical composition of the polymer substrate, laser wavelength and the angle of incidence. On the contrary, biopolymers may significantly change their surface roughness and thus influence cell compatibility. The focus was on the surface treatment of PES and PHB by pulse excimer KrF laser with wavelength of 248 nm. The changes of physicochemical properties, surface morphology, surface chemistry and ablation of exposed polymers were studied both for PES and PHB. Several analytical methods involving atomic force microscopy, gravimetry, scanning electron microscopy and others were used for the analysis of the treated surface. It was found that the combination of certain input parameters leads not only to the formation of optimal narrow pattern, but to the combination of a ripple and a wrinkle-like structure, which could be an optimal candidate for cell attachment. The interaction of different types of cells and their interactions with the laser exposed surface were studied. It was found that laser treatment contributes as a major factor for wettability/contact angle change. The combination of optimal laser energy and pulse number was used for the construction of a surface with an anti-cellular response. Due to the simple laser treatment, we were able to prepare a biopolymer surface with higher roughness and thus significantly influence the area of growth of different types of cells (U-2 OS cells).

Keywords: cell response, excimer laser, polymer treatment, periodic pattern, surface morphology

Procedia PDF Downloads 240
1930 CFD Simulation Approach for Developing New Powder Dispensing Device

Authors: Revanth Rallapalli

Abstract:

Manually dispensing powders can be difficult as it requires gradually pouring and checking the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and are user-dependent and difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various new powder dispensing mechanisms are being designed to overcome these challenges. A battery-operated screw conveyor mechanism is being innovated to overcome the above problems faced. These inventions are numerically evaluated at the concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in the development of such devices saving time and money by reducing the number of prototypes and testing. This paper describes a simulation of powder dispensation from the trocar’s end by considering the powder as secondary flow in the air, is simulated by using the technique called Dense Discrete Phase Model incorporated with Kinetic Theory of Granular Flow (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation of powder from the inlet side to the trocar’s end side is done by rotation of the screw conveyor. The performance is calculated for a 1-sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and the effective area within a quick turnaround time frame.

Keywords: multiphase flow, screw conveyor, transient, dense discrete phase model (DDPM), kinetic theory of granular flow (KTGF)

Procedia PDF Downloads 151
1929 Flexible Integration of Airbag Weakening Lines in Interior Components: Airbag Weakening with Jenoptik Laser Technology

Authors: Markus Remm, Sebastian Dienert

Abstract:

Vehicle interiors are not only changing in terms of design and functionality but also due to new driving situations in which, for example, autonomous operating modes are possible. Flexible seating positions are changing the requirements for passive safety system behavior and location in the interior of a vehicle. With fully autonomous driving, the driver can, for example, leave the position behind the steering wheel and take a seated position facing backward. Since autonomous and non-autonomous vehicles will share the same road network for the foreseeable future, accidents cannot be avoided, which makes the use of passive safety systems indispensable. With JENOPTIK-VOTAN® A technology, the trend towards flexible predetermined airbag weakening lines is enabled. With the help of laser beams, the predetermined weakening lines are introduced from the backside of the components so that they are absolutely invisible. This machining process is sensor-controlled and guarantees that a small residual wall thickness remains for the best quality and reliability for airbag weakening lines. Due to the wide processing range of the laser, the processing of almost all materials is possible. A CO₂ laser is used for many plastics, natural fiber materials, foams, foils and material composites. A femtosecond laser is used for natural materials and textiles that are very heat-sensitive. This laser type has extremely short laser pulses with very high energy densities. Supported by a high-precision and fast movement of the laser beam by a laser scanner system, the so-called cold ablation is enabled to predetermine weakening lines layer by layer until the desired residual wall thickness remains. In that way, for example, genuine leather can be processed in a material-friendly and process-reliable manner without design implications to the components A-Side. Passive safety in the vehicle is increased through the interaction of modern airbag technology and high-precision laser airbag weakening. The JENOPTIK-VOTAN® A product family has been representing this for more than 25 years and is pointing the way to the future with new and innovative technologies.

Keywords: design freedom, interior material processing, laser technology, passive safety

Procedia PDF Downloads 129
1928 The Preparation of Silicon and Aluminum Extracts from Tuncbilek and Orhaneli Fly Ashes by Alkali Fusion

Authors: M. Sari Yilmaz, N. Karamahmut Mermer

Abstract:

Coal fly ash is formed as a solid waste product from the combustion of coal in coal fired power stations. Huge amounts of fly ash are produced globally every year and are predicted to increase. Nowadays, less than half of the fly ash is used as a raw material for cement manufacturing, construction and the rest of it is disposed as a waste causing yet another environmental concern. For this reason, the recycling of this kind of slurries into useful materials is quite important in terms of economical and environmental aspects. The purpose of this study is to evaluate the Orhaneli and Tuncbilek coal fly ashes for utilization in some industrial applications. Therefore the mineralogical and chemical compositions of these fly ashes were analyzed by X-ray fluorescence (XRF) spectroscopy and X-ray diffraction (XRD). The silicon (Si) and aluminum (Al) in the fly ashes were activated by alkali fusion technique with sodium hydroxide. The obtained extracts were analyzed for Si and Al content by inductively coupled plasma optical emission spectrometry (ICP-OES).

Keywords: extraction, fly ash, fusion, XRD

Procedia PDF Downloads 331
1927 The Influence of Addition of Asparagus Bean Powder (Psophocarpus tetragonolobus) on Gonad Maturity of Nilem Carp (Osteochilus hasselti) at the Floating Net Cage of Cirata Reservoir

Authors: Rita Rostika, Junianto, Zulfiqar W. Ibrahim, Iskandar, Lantun P. Dewanti

Abstract:

The purpose of this research is to determine the influence of asparagus bean powder and its most effective administration dose to improve the gonad maturity of nilem carp (Osteochilus hasselti). The research is conducted in October-July 2017 located at Cirata Reservoir and Aquaculture Laboratory, Faculty of Fisheries and Marine Sciences, Padjadjaran University, Jatinangor. The research employs an experimental method using a Complete Random Design (RAL) with six treatments and three repetitions. The treatments include the addition of asparagus bean powder by 0% (Control), 4% per kg of feed, 5% per kg of feed, 6% per kg of feed, 7% per kg of feed, as well as the addition of vitamin E essential as the control. The results show that the addition of asparagus bean powder to the feed may influence the gonad maturity of nilem carp shown by its Gonado Somatic Index (GSI) parameter, fecundity, egg diameter and egg reaching its maturity phase or GVBD (Germinal Vesicle Breakdown). The best administration dose influencing nilem carp is the addition of asparagus bean powder by 7% per kg of feed with the average GSI of 15.02%, relative fecundity of 137 eggs/g of fish parent weight, egg diameter of 1,263 mm, and egg reaching its maturity phase (GVBD) of 78.15%.

Keywords: asparagus bean powder, nilem carp, gonad maturity, Cirata reservoir

Procedia PDF Downloads 169
1926 Air-Coupled Ultrasonic Testing for Non-Destructive Evaluation of Various Aerospace Composite Materials by Laser Vibrometry

Authors: J. Vyas, R. Kazys, J. Sestoke

Abstract:

Air-coupled ultrasonic is the contactless ultrasonic measurement approach which has become widespread for material characterization in Aerospace industry. It is always essential for the requirement of lightest weight, without compromising the durability. To archive the requirements, composite materials are widely used. This paper yields analysis of the air-coupled ultrasonics for composite materials such as CFRP (Carbon Fibre Reinforced Polymer) and GLARE (Glass Fiber Metal Laminate) and honeycombs for the design of modern aircrafts. Laser vibrometry could be the key source of characterization for the aerospace components. The air-coupled ultrasonics fundamentals, including principles, working modes and transducer arrangements used for this purpose is also recounted in brief. The emphasis of this paper is to approach the developed NDT techniques based on the ultrasonic guided waves applications and the possibilities of use of laser vibrometry in different materials with non-contact measurement of guided waves. 3D assessment technique which employs the single point laser head using, automatic scanning relocation of the material to assess the mechanical displacement including pros and cons of the composite materials for aerospace applications with defects and delaminations.

Keywords: air-coupled ultrasonics, contactless measurement, laser interferometry, NDT, ultrasonic guided waves

Procedia PDF Downloads 241
1925 Joining of Aluminum and Steel in Car Body Manufacturing

Authors: Mohammad Mahdi Mohammadi

Abstract:

Zinc-coated steel sheets have been joined with aluminum samples in an overlapping as well as in a butt-joint configuration. A bi-metal-wire composed from aluminum and steel was used for additional welding experiments. An advantage of the laser-assisted bi-metal-wire welding is that the welding process is simplified since the primary joint between aluminium and steel exists already and laser welding occurs only between similar materials. FEM-simulations of the process were chosen to determine the ideal dimensions with respect to the formability of the bi-metal-wire. A prototype demonstrated the feasibility of the process.

Keywords: car body, steel sheets, formability of bi-metal-wire, laser-assisted bi-metal-wire

Procedia PDF Downloads 514
1924 Preprocessing and Fusion of Multiple Representation of Finger Vein patterns using Conventional and Machine Learning techniques

Authors: Tomas Trainys, Algimantas Venckauskas

Abstract:

Application of biometric features to the cryptography for human identification and authentication is widely studied and promising area of the development of high-reliability cryptosystems. Biometric cryptosystems typically are designed for patterns recognition, which allows biometric data acquisition from an individual, extracts feature sets, compares the feature set against the set stored in the vault and gives a result of the comparison. Preprocessing and fusion of biometric data are the most important phases in generating a feature vector for key generation or authentication. Fusion of biometric features is critical for achieving a higher level of security and prevents from possible spoofing attacks. The paper focuses on the tasks of initial processing and fusion of multiple representations of finger vein modality patterns. These tasks are solved by applying conventional image preprocessing methods and machine learning techniques, Convolutional Neural Network (SVM) method for image segmentation and feature extraction. An article presents a method for generating sets of biometric features from a finger vein network using several instances of the same modality. Extracted features sets were fused at the feature level. The proposed method was tested and compared with the performance and accuracy results of other authors.

Keywords: bio-cryptography, biometrics, cryptographic key generation, data fusion, information security, SVM, pattern recognition, finger vein method.

Procedia PDF Downloads 155
1923 The Effect of Fuel Type on Synthesis of CeO2-MgO Nano-Powder by Combustion Method

Authors: F. Ghafoori-Najafabadi, R. Sarraf-Mamoory, N. Riahi-Noori

Abstract:

In this study, nanocrystalline CeO2-MgO powders were synthesized by combustion reactions using citric acid, ethylene glycol, and glycine as different fuels and nitrate as an oxidant. The powders obtained with different kinds of fuels are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The size and morphology of the particles and the extent of agglomeration in the powders were studied using SEM analysis. It is observed that the variation of fuel has an intense influence on the particle size and morphology of the resulting powder. X-ray diffraction revealed that any combined phases were observed, and that MgO and CeO2 phases were formed, separately.

Keywords: nanoparticle, combustion synthesis, CeO2-MgO, nano-powder

Procedia PDF Downloads 414
1922 Column Studies on Chromium(VI) Adsorption onto Kala Jamun (Syzygium cumini L.) Seed Powder

Authors: Sumi Deka, Krishna Gopal Bhattacharyya

Abstract:

This paper evaluate the industrial use of Kala Jamun (Syzygiumcumini L.) Seed powder (KSP) for the continuous adsorption of Cr(VI) in a column adsorption process. Adsorption of Cr(VI) onto Kala jamun (Syzygiumcumini L.) Seed Powder have been examined with the variation of (a) bed depth of the adsorbents, (b) flow rate of the adsorbents and (c) Cr(VI) concentration. The results showed that both the adsorption and the regeneration of the Cr(VI) onto Kala Jamun (Syzygiumcumini L.) seed Powder (KSP) can effectively occur in the column mode of adsorption. On increasing the bed depth, the adsorption of Cr(VI) onto KSP increases whereas on increasing the flow rate and the Cr(VI) concentration of KSP adsorption decreases. The results of the column studies were also fitted to Bed Depth Service Time (BDST) model. The BDST model was appropriate for designing the column for industrial purpose.

Keywords: bed-depth-service-time, continuous adsorption, Cr(VI), KSP

Procedia PDF Downloads 259
1921 [Keynote Talk]: Evidence Fusion in Decision Making

Authors: Mohammad Abdullah-Al-Wadud

Abstract:

In the current era of automation and artificial intelligence, different systems have been increasingly keeping on depending on decision-making capabilities of machines. Such systems/applications may range from simple classifiers to sophisticated surveillance systems based on traditional sensors and related equipment which are becoming more common in the internet of things (IoT) paradigm. However, the available data for such problems are usually imprecise and incomplete, which leads to uncertainty in decisions made based on traditional probability-based classifiers. This requires a robust fusion framework to combine the available information sources with some degree of certainty. The theory of evidence can provide with such a method for combining evidence from different (may be unreliable) sources/observers. This talk will address the employment of the Dempster-Shafer Theory of evidence in some practical applications.

Keywords: decision making, dempster-shafer theory, evidence fusion, incomplete data, uncertainty

Procedia PDF Downloads 431
1920 Risk Factors for Postoperative Fever in Patients Undergoing Lumbar Fusion

Authors: Bang Haeyong

Abstract:

Purpose: The objectives of this study were to determine the prevalence, incidence, and risk factors for postoperative fever after lumbar fusion. Methods: This study was a retrospective chart review of 291 patients who underwent lumbar fusion between March 2015 and February 2016 at the Asan Medical Center. Information was extracted from electronic medical records. Postoperative fever was measured at Tmax > 37.7 ℃ and Tmax > 38.3 ℃. The presence of postoperative fever, blood culture, urinary excretion, and/or chest x-ray were evaluated. Patients were evaluated for infection after lumbar fusion. Results: We found 222 patients (76.3%) had a postoperative temperature of 37.7 ℃, and 162 patients (55.7%) had a postoperative temperature of 38.3 ℃ or higher. The percentage of febrile patients trended down following the mean 1.8days (from the first postoperative day to seventh postoperative day). Infection rate was 9 patients (3.1%), respiratory virus (1.7%), urinary tract infection (0.3%), phlebitis (0.3%), and surgical site infection (1.4%). There was no correlation between Tmax > 37.7℃ or Tmax > 38.3℃, and timing of fever, positive blood or urine cultures, pneumonia, or surgical site infection. Risk factors for increased postoperative fever following surgery were confirmed to be delay of defecation (OR=1.37, p=.046), and shorten of remove drainage (OR=0.66, p=.037). Conclusions: The incidence of fever was 76.3% after lumbar fusion and the drainage time was faster in the case of fever. It was thought that the bleeding was absorbed at the operation site and fever occurred. The prevalence of febrile septicemia was higher in patients with long bowel movements before surgery than after surgery. Clinical symptoms should be considered because postoperative fever cannot be determined by fever alone because fever and infection are not significant.

Keywords: lumbar surgery, fever, postoperative, risk factor

Procedia PDF Downloads 252
1919 The Effect of Low Power Laser on CK and Some of Markers Delayed Onset Muscle Soreness (DOMS)

Authors: Bahareh Yazdanparast Chaharmahali

Abstract:

The study showed effect of low power laser therapy on knee range of motion (flexion and extension), resting angle of knee joint, knee circumference and rating of delayed onset muscle soreness induced pain, 24 and 48 hours after eccentric training of knee flexor muscle (hamstring muscle). We investigate the effects of pulsed ultrasound on swelling, relaxed, flexion and extension knee angle and pain. 20 volunteers among girl students of college voluntary participated in this research. After eccentric training, subjects were randomly divided into two groups, control and laser therapy. In day 1 and in order to induce delayed onset muscle soreness, subjects eccentrically trained their knee flexor muscles. In day 2, subjects were randomly divided into two groups: control and low power laser therapy. 24 and 48 hours after eccentric training. Variables (knee flexion and extension, srang of motion, resting knee joint angle and knee circumferences) were measured and analyzed. Data are reported as means ± standard error (SE) and repeated measured was used to assess differences within groups. Methods of treatment (low power laser therapy) have significant effects on delayed onset muscle soreness markers. 24 and 48 hours after training a significant difference was observed between mean pains of 2 groups. This difference was significant between low power laser therapy and C groups. The Bonferroni post hock is significant. Low power laser therapy trophy as used in this study did significantly diminish the effects of delayed – onset muscle soreness on swelling, relaxed – knee extension and flexion angle.

Keywords: creatine kinase, DOMS, eccentric training, low power laser

Procedia PDF Downloads 248
1918 Preparation of Nanocrystalline Mesoporous ThO2 Via Surfactant Assisted Sol-gel Procedure

Authors: N. Mohseni, S. Janitabar, S.J. Ahmadi, M. Roshanzamir, M. Thaghizadeh

Abstract:

There has been proposed a technique for getting thorium dioxide mesoporous nanocrystalline. In this paper thorium dioxide powder was synthesized through the sol-gel method using hydrated thorium nitrate and ammonium hydroxide as starting materials and Triton X100 as surfactant. ThO2 gel was characterized by thermogravimetric (TG), and prepared ThO2 powder was subjected to scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emett-Teller (BET) analyses studies. Detailed analyses show that prepared powder consisted of phase with the space group Fm3m of thoria and its crystalline size was 27 nm. The thoria possesses 16.7 m2/g surface area and the pore volume and size calculated to be 0.0423 cc/g and 1.947 nm, respectively.

Keywords: mesoporous, nanocrystalline, sol-gel, thoria

Procedia PDF Downloads 285
1917 Mage Fusion Based Eye Tumor Detection

Authors: Ahmed Ashit

Abstract:

Image fusion is a significant and efficient image processing method used for detecting different types of tumors. This method has been used as an effective combination technique for obtaining high quality images that combine anatomy and physiology of an organ. It is the main key in the huge biomedical machines for diagnosing cancer such as PET-CT machine. This thesis aims to develop an image analysis system for the detection of the eye tumor. Different image processing methods are used to extract the tumor and then mark it on the original image. The images are first smoothed using median filtering. The background of the image is subtracted, to be then added to the original, results in a brighter area of interest or tumor area. The images are adjusted in order to increase the intensity of their pixels which lead to clearer and brighter images. once the images are enhanced, the edges of the images are detected using canny operators results in a segmented image comprises only of the pupil and the tumor for the abnormal images, and the pupil only for the normal images that have no tumor. The images of normal and abnormal images are collected from two sources: “Miles Research” and “Eye Cancer”. The computerized experimental results show that the developed image fusion based eye tumor detection system is capable of detecting the eye tumor and segment it to be superimposed on the original image.

Keywords: image fusion, eye tumor, canny operators, superimposed

Procedia PDF Downloads 368
1916 Overview of a Quantum Model for Decision Support in a Sensor Network

Authors: Shahram Payandeh

Abstract:

This paper presents an overview of a model which can be used as a part of a decision support system when fusing information from multiple sensing environment. Data fusion has been widely studied in the past few decades and numerous frameworks have been proposed to facilitate decision making process under uncertainties. Multi-sensor data fusion technology plays an increasingly significant role during people tracking and activity recognition. This paper presents an overview of a quantum model as a part of a decision-making process in the context of multi-sensor data fusion. The paper presents basic definitions and relationships associating the decision-making process and quantum model formulation in the presence of uncertainties.

Keywords: quantum model, sensor space, sensor network, decision support

Procedia PDF Downloads 232
1915 Optical Heterodyning of Injection-Locked Laser Sources: A Novel Technique for Millimeter-Wave Signal Generation

Authors: Subal Kar, Madhuja Ghosh, Soumik Das, Antara Saha

Abstract:

A novel technique has been developed to generate ultra-stable millimeter-wave signal by optical heterodyning of the output from two slave laser (SL) sources injection-locked to the sidebands of a frequency modulated (FM) master laser (ML). Precise thermal tuning of the SL sources is required to lock the particular slave laser frequency to the desired FM sidebands of the ML. The output signals from the injection-locked SL when coherently heterodyned in a fast response photo detector like high electron mobility transistor (HEMT), extremely stable millimeter-wave signal having very narrow line width can be generated. The scheme may also be used to generate ultra-stable sub-millimeter-wave/terahertz signal.

Keywords: FM sideband injection locking, master-slave injection locking, millimetre-wave signal generation, optical heterodyning

Procedia PDF Downloads 396
1914 Flexible Programmable Circuit Board Electromagnetic 1-D Scanning Micro-Mirror Laser Rangefinder by Active Triangulation

Authors: Vixen Joshua Tan, Siyuan He

Abstract:

Scanners have been implemented within single point laser rangefinders, to determine the ranges within an environment by sweeping the laser spot across the surface of interest. The research motivation is to exploit a smaller and cheaper alternative scanning component for the emitting portion within current designs of laser rangefinders. This research implements an FPCB (Flexible Programmable Circuit Board) Electromagnetic 1-Dimensional scanning micro-mirror as a scanning component for laser rangefinding by means of triangulation. The prototype uses a laser module, micro-mirror, and receiver. The laser module is infrared (850 nm) with a power output of 4.5 mW. The receiver consists of a 50 mm convex lens and a 45mm 1-dimensional PSD (Position Sensitive Detector) placed at the focal length of the lens at 50 mm. The scanning component is an elliptical Micro-Mirror attached onto an FPCB Structure. The FPCB structure has two miniature magnets placed symmetrically underneath it on either side, which are then electromagnetically actuated by small solenoids, causing the FPCB to mechanically rotate about its torsion beams. The laser module projects a laser spot onto the micro-mirror surface, hence producing a scanning motion of the laser spot during the rotational actuation of the FPCB. The receiver is placed at a fixed distance from the micro-mirror scanner and is oriented to capture the scanning motion of the laser spot during operation. The elliptical aperture dimensions of the micro-mirror are 8mm by 5.5 mm. The micro-mirror is supported by an FPCB with two torsion beams with dimensions of 4mm by 0.5mm. The overall length of the FPCB is 23 mm. The voltage supplied to the solenoids is sinusoidal with an amplitude of 3.5 volts and 4.5 volts to achieve optical scanning angles of +/- 10 and +/- 17 degrees respectively. The operating scanning frequency during experiments was 5 Hz. For an optical angle of +/- 10 degrees, the prototype is capable of detecting objects within the ranges from 0.3-1.2 meters with an error of less than 15%. As for an optical angle of +/- 17 degrees the measuring range was from 0.3-0.7 meters with an error of 16% or less. Discrepancy between the experimental and actual data is possibly caused by misalignment of the components during experiments. Furthermore, the power of the laser spot collected by the receiver gradually decreased as the object was placed further from the sensor. A higher powered laser will be tested to potentially measure further distances more accurately. Moreover, a wide-angled lens will be used in future experiments when higher scanning angles are used. Modulation within the current and future higher powered lasers will be implemented to enable the operation of the laser rangefinder prototype without the use of safety goggles.

Keywords: FPCB electromagnetic 1-D scanning micro-mirror, laser rangefinder, position sensitive detector, PSD, triangulation

Procedia PDF Downloads 137
1913 Production of Sr-Ferrite Sub-Micron Powder by Conventional and Sol-Gel Auto-Combustion Methods

Authors: M. Ghobeiti-Hasab

Abstract:

Magnetic powder of Sr-ferrite was prepared by conventional and sol-gel auto-combustion methods. In conventional method, strontium carbonate and ferric oxide powders were mixed together and then mixture was calcined. In sol-gel auto-combustion method, a solution containing strontium nitrate, ferric nitrate and citric acid was heated until the combustion took place automatically; then, as-burnt powder was calcined. Thermal behavior, phase identification, morphology and magnetic properties of powders obtained by these two methods were compared by DTA, XRD, SEM, and VSM techniques. According to the results of DTA analysis, formation temperature of Sr-ferrite obtained by conventional and sol-gel auto-combustion methods were 1300 °C and 1000 °C, respectively. XRD results confirmed the formation of pure Sr-ferrite at the mentioned temperatures. Plate and hexagonal-shape particles of Sr-ferrite were observed using SEM. The Sr-ferrite powder obtained by sol-gel auto-combustion method had saturation magnetization of 66.03 emu/g and coercivity of 5731 Oe in comparison with values of 58.20 emu/g and 4378 Oe obtained by conventional method.

Keywords: Sr-ferrite, sol-gel, magnetic properties, calcination

Procedia PDF Downloads 242
1912 Elucidating Microstructural Evolution Mechanisms in Tungsten via Layerwise Rolling in Additive Manufacturing: An Integrated Simulation and Experimental Approach

Authors: Sadman Durlov, Aditya Ganesh-Ram, Hamidreza Hekmatjou, Md Najmus Salehin, Nora Shayesteh Ameri

Abstract:

In the field of additive manufacturing, tungsten stands out for its exceptional resistance to high temperatures, making it an ideal candidate for use in extreme conditions. However, its inherent brittleness and vulnerability to thermal cracking pose significant challenges to its manufacturability. This study explores the microstructural evolution of tungsten processed through layer-wise rolling in laser powder bed fusion additive manufacturing, utilizing a comprehensive approach that combines advanced simulation techniques with empirical research. We aim to uncover the complex processes of plastic deformation and microstructural transformations, with a particular focus on the dynamics of grain size, boundary evolution, and phase distribution. Our methodology employs a combination of simulation and experimental data, allowing for a detailed comparison that elucidates the key mechanisms influencing microstructural alterations during the rolling process. This approach facilitates a deeper understanding of the material's behavior under additive manufacturing conditions, specifically in terms of deformation and recrystallization. The insights derived from this research not only deepen our theoretical knowledge but also provide actionable strategies for refining manufacturing parameters to improve the tungsten components' mechanical properties and functional performance. By integrating simulation with practical experimentation, this study significantly enhances the field of materials science, offering a robust framework for the development of durable materials suited for challenging operational environments. Our findings pave the way for optimizing additive manufacturing techniques and expanding the use of tungsten across various demanding sectors.

Keywords: additive manufacturing, layer wise rolling, refractory materials, in-situ microstructure modifications

Procedia PDF Downloads 64
1911 Experimental Studies on Reactive Powder Concrete Containing Fly Ash and Steel Fibre

Authors: A. J. Shah, Neeraj Kumar Sahu

Abstract:

Reactive powder concrete (RPC) is high performance and high strength concrete which composes of very fine powdered materials like cement, sand, silica fume and quartz powder. It also constitutes steel fibre (optional) and super-plasticizer. The present study investigates the performance of reactive powder concrete with fly ash as a replacement of cement under hot water and normal water curing conditions. The replacement of cement with fly ash is done at 10%, 20%, 30% and 40%. To compare the results of cement replaced RPC and traditional RPC, the performance of various mixes is evaluated by compressive strength, flexural strength, split tensile strength and durability. The results show that with increasing percentage of fly ash, improvement in durability is observed and a slight decrease in compressive strength and flexural strength is also observed. It is observed that specimen under hot water curing showed 15 to 20 % more strength than specimens under normal water curing.

Keywords: high strength concrete, the flexural strength of RPC, compressive strength of RPC, durability

Procedia PDF Downloads 204
1910 Improvement of Fatigue and Fatigue Corrosion Resistances of Turbine Blades Using Laser Cladding

Authors: Sami I. Jafar, Sami A. Ajeel, Zaman A. Abdulwahab

Abstract:

The turbine blades used in electric power plants are made of low alloy steel type 52. These blades will be subjected to fatigue and also at other times to fatigue corrosion with aging time. Due to their continuous exposure to cyclic rotational stresses in corrosive steam environments, The current research aims to deal with this problem using the laser cladding method for low alloy steel type 52, which works to re-compose the metallurgical structure and improve the mechanical properties by strengthening the resulting structure, which leads to an increase in fatigue and wears resistance, therefore, an increase in the life of these blades is observed.

Keywords: fatigue, fatigue corrosion, turbine blades, laser cladding

Procedia PDF Downloads 203
1909 Diversification of Indonesian Terasi Shrimp (Acetes indicus) Powder as Alternative and Sustainable Food for the Double Burden of Malnutrition

Authors: Galuh Asri Bestari, Hajar Shofiyya

Abstract:

Double burden of malnutrition (DBM) has been a global problem in these last decades occurs in both developed and developing countries. Overweight in adults and stunting among preschool children have dramatically increased and become the main problems of malnutrition that should be solved immediately since they are directly related with the health status and productivity. Reformulation of food product by using the local sea resources called terasi shrimp (Acetes indicus) has a potential possibility in facing the DBM. A study was carried out in Indonesia to determine the acceptability of terasi shrimp powder through sensory evaluation. Terasi shrimps were processed into powder form through sun drying and pounding methods. The powder form was directly added in food as alternative seasonings and tested among stunted and normal preschool children. Meanwhile, a further processing method is given to the shrimp powder tested in overweight and normal-weighed adults. The shrimp powder was mixed with sago flour and formed into balls, then steamed for 15-20 minutes, and finally served as alternative snacks. Based on the sensory evaluation, the shrimp powder has a good acceptance in taste (54%), shape (60%), and color properties (63%), while the shrimp balls has a good acceptance in size (65%), shape (50%), color (48%), taste (40%), and texture (36%). Terasi shrimp powder can be stored for a month in room temperature. In addition, carried out chemical analysis revealed that terasi shrimp (Acetes indicus) has higher percentage of protein, calcium, and iron than other animal sources, but conversely contains zero sodium and very low percentage of fat. Terasi shrimp’s shell also contains a substance called chitosan which acts by forming gels in the intestinal tract to entrap lipids, thus interfering with their absorption. After going through some processing methods, the shrimp powder and balls did not show any significant changes in their nutrient contents. So that, terasi shrimp powder is good to be consumed not only by overweight adults, but also by children to support their optimum growth. Intervention of terasi shrimp powder should be implemented step by step from national up to global governance program to face the DBM.

Keywords: Acetes indicus, alternative food, double burden of malnutrition, sensory evaluation

Procedia PDF Downloads 309
1908 Using Recycled Wastes (Glass Powder) as Partially Replacement for Cement

Authors: Passant Youssef, Ahmed El-Tair, Amr El-Nemr

Abstract:

Lately, with the environmental changes, enthusiasts trigger to stop the contamination of environment. Thus, various efforts were exerted for innovating environmental friendly concrete to sustain as a ‘Green Building’ material. Green building materials consider the cement industry as one of the most sources of air pollutant with high rate of carbon dioxide (CO₂) emissions. Several methods were developed to extensively reduce the influence of cement industry on environment. These methods such as using supplementary cementitious material or improving the cement manufacturing process are still under investigation. However, with the presence of recycled wastes from construction and finishing materials, the use of supplementary cementitious materials seems to provide an economic solution. Furthermore, it improves the mechanical properties of cement paste, in addition to; it modulates the workability and durability of concrete. In this paper, the glass powder was considered to be used as partial replacement of cement. This study provided the mechanical influence for using the glass powder as partial replacement of cement. In addition, it examines the microstructure of cement mortar using scanning electron microscope and X-ray diffraction. The cement in concrete is replaced by waste glass powder in steps of 5%, 10%, 15%, 20% and 25% by weight of cement and its effects on compressive and flexure strength were determined after 7 and 28 days. It was found that the 5% glass powder replacement increased the 7 days compressive strength by 20.5%, however, there was no increase in compressive strength after 28 days; which means that the glass powder did not react in the cement mortar due to its amorphous nature on the long run, and it can act as fine aggregate better that cement replacement. As well as, the 5% and 10% glass powder replacement increased the 28 days flexural strength by 46.9%. SEM micrographs showed very dense matrix for the optimum specimen compared to control specimen as well; some glass particles were clearly observed. High counts of silica were optimized from XRD while amorphous materials such as calcium silicate cannot be directly detected.

Keywords: supplementary materials, glass powder, concrete, cementitious materials

Procedia PDF Downloads 218
1907 Method of Successive Approximations for Modeling of Distributed Systems

Authors: A. Torokhti

Abstract:

A new method of mathematical modeling of the distributed nonlinear system is developed. The system is represented by a combination of the set of spatially distributed sensors and the fusion center. Its mathematical model is obtained from the iterative procedure that converges to the model which is optimal in the sense of minimizing an associated cost function.

Keywords: mathematical modeling, non-linear system, spatially distributed sensors, fusion center

Procedia PDF Downloads 386