Search results for: high correlated data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 40103

Search results for: high correlated data

39833 Students’ Perceptions on Educational Game for Learning Programming Subject: A Case Study

Authors: Roslina Ibrahim, Azizah Jaafar, Khalili Khalil

Abstract:

Educational games (EG) are regarded as a promising teaching and learning tool for the new generation. Growing number of studies and literatures can be found in EG studies. Both academic researchers and commercial developers come out with various educational games prototypes and titles. Despite that, acceptance of educational games still lacks among the students. It is important to understanding students’ perceptions of EG, since they are the main stakeholder of the technology. Thus, this study seeks to understand perceptions of undergraduates’ students using a framework originated from user acceptance theory. The framework consists of six constructs with twenty-eight items. Data collection was done on 180 undergraduate students of Universiti Teknologi Malaysia, Kuala Lumpur using self-developed online EG called ROBO-C. Data analysis was done using descriptive, factor analysis and correlations. Performance expectancy, effort expectancy, attitude, and enjoyment factors were found significantly correlated with the intention to use EG. This study provides more understanding towards the use of educational games among students.

Keywords: educational games, perceptions, acceptance, UTAUT

Procedia PDF Downloads 411
39832 The Arts of Walisanga's Mosques in Java: Structure/Architecture Studies and Its Meaning in Anthropological Perspective

Authors: Slamet Subiyantoro, Mulyanto

Abstract:

Revealing the structure and symbolism meaning of the walisanga’s mosque arts in Java is very important to explain the philosophy of religious foundation which is a manifestation of the norms/ value system and behavior of the Javanese Islam society that support the culture. This research's aims are also to find the structure pattern of walisanga’s mosque and its symbolic meaning in the context of Javanese Islam society. In order to obtain the research objectives, the research were done in several walisanga’s mosques in Java using anthropological approach which is focused on its interpretation and semiotic analysis. The data were collected through interviews with key informants who well informed about the shape and symbolism of walisanga’s mosques in Java. The observation technique is done through visiting walisanga’s mosques to see directly about its structure/ architecture. In completing the information of comprehensive result of the research, it is also used documents and archives as well as any other source which is analyzed to deepen the discussion in answering the problems research. The flow of analysis is done using an interactive model through stages of data collection, data reduction, data presentation and verification. The analysis is done continuously in a cycle system to draw valid conclusions. The research result indicates that the structure/architecture of walisanga’s mosque in Java is structured/built up vertically as well as horizontally. Its structure/architecture is correlated to each other which is having a sacred meaning that is a process represents the mystical belief such as sangkan paraning dumadi and manuggaling kawula gusti.

Keywords: Walisanga’s mosques, Java, structure and architecture, meaning

Procedia PDF Downloads 369
39831 Seismological Studies in Some Areas in Egypt

Authors: Gamal Seliem, Hassan Seliem

Abstract:

Aswan area is one of the important areas in Egypt and because it encompasses the vital engineering structure of the High dam, so it has been selected for the present study. The study of the crustal deformation and gravity associated with earthquake activity in the High Dam area of great importance for the safety of the High Dam and its economic resources. This paper deals with using micro-gravity, precise leveling and GPS data for geophysical and geodetically studies. For carrying out the detailed gravity survey in the area, were established for studying the subsurface structures. To study the recent vertical movements, a profile of 10 km length joins the High Dam and Aswan old dam were established along the road connecting the two dams. This profile consists of 35 GPS/leveling stations extending along the two sides of the road and on the High Dam body. Precise leveling was carried out with GPS and repeated micro-gravity survey in the same time. GPS network consisting of nine stations was established for studying the recent crustal movements. Many campaigns from December 2001 to December 2014 were performed for collecting the gravity, leveling and GPS data. The main aim of this work is to study the structural features and the behavior of the area, as depicted from repeated micro-gravity, precise leveling and GPS measurements. The present work focuses on the analysis of the gravity, leveling and GPS data. The gravity results of the present study investigate and analyze the subsurface geologic structures and reveal to there be minor structures; features and anomalies are taking W-E and N-S directions. The geodetic results indicated lower rates of the vertical and horizontal displacements and strain values. This may be related to the stability of the area.

Keywords: repeated micro-gravity changes, precise leveling, GPS data, Aswan High Dam

Procedia PDF Downloads 448
39830 Unveiling Coaching Style of PE Teachers: A Convergent Parallel Approach

Authors: Arazan Jane V., Badiang, Ronesito Jr. R., Clavesillas Cristine Joy H., Belleza Saramie S.

Abstract:

This study examined the coaching style among the PE Teachers in terms of Autonomy, Supportive style, and Controlling Style. On the other hand, gives opportunities to an athlete to be independent, task-oriented, and acknowledge their feelings and perspective of each individual. A controlling coaching style is also portrayed by the rises and falls over an athlete's training development; when this variance is identified, it might harm training. The selection of the respondents of the study will use a random sample of High School PE teachers of the Division of Davao del Norte with a total of 78 High School PE teachers, which can be broken down into 70 High School PE Teachers for Quantitative data for the survey questionnaire and 8 PE Teachers for Qualitative data (IDI). In the quantitative phase, a set of survey questionnaires will be used to gather data from the participants—the extent of the Implementation Questionnaire. The tool will be a researcher-made questionnaire based on the Coaching Styles of selected High School PE teachers of Davao Del Norte. In the qualitative phase, an interview guide questionnaire will be used. Focus group discussions will be conducted to determine themes and patterns or participants' experiences and insights. The researchers conclude that the degree of coaching style among PE Teachers from the Division of Davao del Norte is high, as seen by the findings of this study, and that coaching style among these teachers is highly noticeable.

Keywords: supportive autonomy style, controlling style, live experiences, exemplified

Procedia PDF Downloads 96
39829 Gender Role Conflict and Subjective Well-Being of Chinese Teenagers: A Study Based on High School Students from Guangdong and Yunnan

Authors: Yuan Zhang, Xin Fu, Yixin Tan

Abstract:

Gender role conflict is a key factor influencing the mental health condition of adolescents. It has a strong connection with the noticeably growing mental health crisis of high school students. This study elucidates the relationship between gender role conflict and reports of subjective well-being of teenagers through mixed-methods empirical research based on surveys conducted in two Chinese cities, namely Shenzhen and Yuxi. These two cities are from two provinces of very distinct economic and cultural backgrounds. We believe a comparison between the two cities reveals the unequally distributed social conditions in China. We found that teenagers who possess a higher degree of gender role conflict tend to exhibit more negative emotions and that this relationship is conditioned upon other important factors such as gender, only child status, and socio-economic factors. Furthermore, we discovered that the social environment that is more progressive and open to various gender roles is correlated with higher levels of subjective well-being of teenagers in Shenzhen and Yunnan.

Keywords: gender role conflict, mental health conditions, subjective well-being, social environment

Procedia PDF Downloads 125
39828 Feature Extraction of MFCC Based on Fisher-Ratio and Correlated Distance Criterion for Underwater Target Signal

Authors: Han Xue, Zhang Lanyue

Abstract:

In order to seek more effective feature extraction technology, feature extraction method based on MFCC combined with vector hydrophone is exposed in the paper. The sound pressure signal and particle velocity signal of two kinds of ships are extracted by using MFCC and its evolution form, and the extracted features are fused by using fisher-ratio and correlated distance criterion. The features are then identified by BP neural network. The results showed that MFCC, First-Order Differential MFCC and Second-Order Differential MFCC features can be used as effective features for recognition of underwater targets, and the fusion feature can improve the recognition rate. Moreover, the results also showed that the recognition rate of the particle velocity signal is higher than that of the sound pressure signal, and it reflects the superiority of vector signal processing.

Keywords: vector information, MFCC, differential MFCC, fusion feature, BP neural network

Procedia PDF Downloads 530
39827 Vulnerability of Groundwater to Pollution in Akwa Ibom State, Southern Nigeria, using the DRASTIC Model and Geographic Information System (GIS)

Authors: Aniedi A. Udo, Magnus U. Igboekwe, Rasaaq Bello, Francis D. Eyenaka, Michael C. Ohakwere-Eze

Abstract:

Groundwater vulnerability to pollution was assessed in Akwa Ibom State, Southern Nigeria, with the aim of locating areas with high potentials for resource contamination, especially due to anthropogenic influence. The electrical resistivity method was utilized in the collection of the initial field data. Additional data input, which included depth to static water level, drilled well log data, aquifer recharge data, percentage slope, as well as soil information, were sourced from secondary sources. The initial field data were interpreted both manually and with computer modeling to provide information on the geoelectric properties of the subsurface. Interpreted results together with the secondary data were used to develop the DRASTIC thematic maps. A vulnerability assessment was performed using the DRASTIC model in a GIS environment and areas with high vulnerability which needed immediate attention was clearly mapped out and presented using an aquifer vulnerability map. The model was subjected to validation and the rate of validity was 73% within the area of study.

Keywords: groundwater, vulnerability, DRASTIC model, pollution

Procedia PDF Downloads 207
39826 Links between Inflammation and Insulin Resistance in Children with Morbid Obesity and Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Obesity is a clinical state associated with low-grade inflammation. It is also a major risk factor for insulin resistance (IR). In its advanced stages, metabolic syndrome (MetS), a much more complicated disease which may lead to life-threatening problems, may develop. Obesity-mediated IR seems to correlate with the inflammation. Human studies performed particularly on pediatric population are scarce. The aim of this study is to detect possible associations between inflammation and IR in terms of some related ratios. 549 children were grouped according to their age- and sex-based body mass index (BMI) percentile tables of WHO. MetS components were determined. Informed consent and approval from the Ethics Committee for Clinical Investigations were obtained. The principles of the Declaration of Helsinki were followed. The exclusion criteria were infection, inflammation, chronic diseases and those under drug treatment. Anthropometric measurements were obtained. Complete blood cell, fasting blood glucose, insulin, and C-reactive protein (CRP) analyses were performed. Homeostasis model assessment of insulin resistance (HOMA-IR), systemic immune inflammation (SII) index, tense index, alanine aminotransferase to aspartate aminotransferase ratio (ALT/AST), neutrophils to lymphocyte (NLR), platelet to lymphocyte, and lymphocyte to monocyte ratios were calculated. Data were evaluated by statistical analyses. The degree for statistical significance was 0.05. Statistically significant differences were found among the BMI values of the groups (p < 0.001). Strong correlations were detected between the BMI and waist circumference (WC) values in all groups. Tense index values were also correlated with both BMI and WC values in all groups except overweight (OW) children. SII index values of children with normal BMI were significantly different from the values obtained in OW, obese, morbid obese and MetS groups. Among all the other lymphocyte ratios, NLR exhibited a similar profile. Both HOMA-IR and ALT/AST values displayed an increasing profile from N towards MetS3 group. BMI and WC values were correlated with HOMA-IR and ALT/AST. Both in morbid obese and MetS groups, significant correlations between CRP versus SII index as well as HOMA-IR versus ALT/AST were found. ALT/AST and HOMA-IR values were correlated with NLR in morbid obese group and with SII index in MetS group, (p < 0.05), respectively. In conclusion, these findings showed that some parameters may exhibit informative differences between the early and late stages of obesity. Important associations among HOMA-IR, ALT/AST, NLR and SII index have come to light in the morbid obese and MetS groups. This study introduced the SII index and NLR as important inflammatory markers for the discrimination of normal and obese children. Interesting links were observed between inflammation and IR in morbid obese children and those with MetS, both being late stages of obesity.

Keywords: children, inflammation, insulin resistance, metabolic syndrome, obesity

Procedia PDF Downloads 137
39825 Relationships between Chinese Educated and Talented Women

Authors: Jianghe Niu, Mu-Qing Huang

Abstract:

This research applies qualitative approach to conduct literature review to explore and analyze the relationship between three pairs of female Chinese public figure with high levels of education and social recognitionto understand the role of male admiration in driving hostile response from the female pairs. Commonalities in the cases were found. Hong Huang and SuMang, both are coaches in the Chinese fashion industry, and their contemporaries are also editors-in-chief of major fashion publications. Lin Huiyin and XieBingxin are successful women in the field of literature and architecture. They are of similar age and share similar place of origin and family background; the former received high levels of male admiration, while the latter did not. Zhang Ailing and Su Qing, they are both highly established in the field of literature with very similar style, and they shared great admiration for each other’s talent once upon a time. Zhang’s husband used to be Su Qing's lover, and it was only through Su Qing that He met Zhang Ailing. Conclusion: The relationship between Chinese women, especially women with high levels of education and social recognition, the degree of similarities, and the closeness of relationship of these attributes (such as age, family background, education level, peer similarity, appearance, family, marriage) is positively correlated with increased level of discord, hostility, and hostility. This is observed across the three samples. The relationship between Chinese women, especially women with high levels of education and social recognition - if there are men romantically involved and the levels of male admiration is not equal between the two females - the imbalance of male admiration will act as a leverage that further drives up the levels of negative relationship between the women. This is the case with the first two examples above. The relationship between Chinese women, especially women with high levels of education and social recognition - if there is a man romantically involved and if he’s a previous lover to one woman - the transfer of male romantic interest from the first women to the second women, the new union will bring the hostile and negative relationship with the two females to a peak.

Keywords: Chinese, gender, relationship, women

Procedia PDF Downloads 119
39824 Forecasting of Scaffolding Work Comfort Parameters Based on Data from Meteorological Stations

Authors: I. Szer, J. Szer, M. Pieńko, A. Robak, P. Jamińska-Gadomska

Abstract:

Work at height, such as construction works on scaffoldings, is associated with a considerable risk. Scaffolding workers are usually exposed to changing weather conditions what can additionally increase the risk of dangerous situations. Therefore, it is very important to foresee the risk of adverse conditions to which the worker may be exposed. The data from meteorological stations may be used to asses this risk. However, the dependency between weather conditions on a scaffolding and in the vicinity of meteorological station, should be determined. The paper presents an analysis of two selected environmental parameters which have influence on the behavior of workers – air temperature and wind speed. Measurements of these parameters were made between April and November of 2016 on ten scaffoldings located in different parts of Poland. They were compared with the results taken from the meteorological stations located closest to the studied scaffolding. The results gathered from the construction sites and meteorological stations were not the same, but statistical analyses have shown that they were correlated.

Keywords: scaffolding, health and safety at work, temperature, wind velocity

Procedia PDF Downloads 173
39823 Physical and Psychosocial Risk Factors Associated with Occupational Lower Back/Neck Pain among Industrial Workers

Authors: Ghorbanali Mohammadi

Abstract:

Background: The objectives of this study were the association between physical and psychological risk factors for occupational lower back and neck pain among industrial workers. Methods: We conducted a cross-sectional study among 400 male workers of an industrial company over the previous 7days and 12 months. Data were collected using Nordic and third version of COPSOO questionnaires and QEC method for assessment of postures during the work. Results: The prevalence of LB and NP in the last 12 months is 58% and 52% respectively. The relationship between risk factors and low back/ neck pain in the last 12 months were cognitive demands (OR 995% CI 1.65) and (OR 995% CI 1.75); Influence at work (OR 995% CI 2.21) and (OR 995% CI 1.85); quality of leadership (OR 995% CI 2.42) and (OR 995% CI 2.09) was strongly correlated with complaints of low back and neck pains. Conclusion: Data of this study showed a higher prevalence of LBP and NP in the subjects. The results revealed that workers with work experience of more than 12 yrs. and who work more than 8 hrs. days with smoking habits had more probability to develop both LBP and NP.

Keywords: low back pain, neck pain, physical risk factors, psychological risk factors, QEC, COPSOQ III

Procedia PDF Downloads 91
39822 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network

Authors: Li Qingjian, Li Ke, He Chun, Huang Yong

Abstract:

In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.

Keywords: DBN, SOM, pattern classification, hyperspectral, data compression

Procedia PDF Downloads 341
39821 A Deletion-Cost Based Fast Compression Algorithm for Linear Vector Data

Authors: Qiuxiao Chen, Yan Hou, Ning Wu

Abstract:

As there are deficiencies of the classic Douglas-Peucker Algorithm (DPA), such as high risks of deleting key nodes by mistake, high complexity, time consumption and relatively slow execution speed, a new Deletion-Cost Based Compression Algorithm (DCA) for linear vector data was proposed. For each curve — the basic element of linear vector data, all the deletion costs of its middle nodes were calculated, and the minimum deletion cost was compared with the pre-defined threshold. If the former was greater than or equal to the latter, all remaining nodes were reserved and the curve’s compression process was finished. Otherwise, the node with the minimal deletion cost was deleted, its two neighbors' deletion costs were updated, and the same loop on the compressed curve was repeated till the termination. By several comparative experiments using different types of linear vector data, the comparison between DPA and DCA was performed from the aspects of compression quality and computing efficiency. Experiment results showed that DCA outperformed DPA in compression accuracy and execution efficiency as well.

Keywords: Douglas-Peucker algorithm, linear vector data, compression, deletion cost

Procedia PDF Downloads 251
39820 Classification of Poverty Level Data in Indonesia Using the Naïve Bayes Method

Authors: Anung Style Bukhori, Ani Dijah Rahajoe

Abstract:

Poverty poses a significant challenge in Indonesia, requiring an effective analytical approach to understand and address this issue. In this research, we applied the Naïve Bayes classification method to examine and classify poverty data in Indonesia. The main focus is on classifying data using RapidMiner, a powerful data analysis platform. The analysis process involves data splitting to train and test the classification model. First, we collected and prepared a poverty dataset that includes various factors such as education, employment, and health..The experimental results indicate that the Naïve Bayes classification model can provide accurate predictions regarding the risk of poverty. The use of RapidMiner in the analysis process offers flexibility and efficiency in evaluating the model's performance. The classification produces several values to serve as the standard for classifying poverty data in Indonesia using Naive Bayes. The accuracy result obtained is 40.26%, with a moderate recall result of 35.94%, a high recall result of 63.16%, and a low recall result of 38.03%. The precision for the moderate class is 58.97%, for the high class is 17.39%, and for the low class is 58.70%. These results can be seen from the graph below.

Keywords: poverty, classification, naïve bayes, Indonesia

Procedia PDF Downloads 55
39819 Self-Efficacy as a Predictor of Well-Being in University Students

Authors: Enes Ergün, Sedat Geli̇bolu

Abstract:

The purpose of this study is to determine the relationship between self-efficacy and subjective well-being among university students. We are aiming to determine whether self efficacy of university students predicts their subjective well-being and if there is a statistically significant difference among boys and girls in this context. Sample of this study consists of 245 university students from Çanakkale, ages ranging between 17 and 24. 72% (n=171) of the participants were girls and 28% (n=69) boys. Three different scales were utilized as data collection tools that Life Satisfaction Scale, General Self-Efficacy Scale, and Positive Negative Experiences Scale. Pearson correlation coefficient, independent sample t test and simple linear regression were used for data analyses. Results showed that well-being is significantly correlated with self-efficacy and self-efficacy is a statistically significant predictor of well-being too. In terms of gender differences, there is no significant difference between self-efficacy scores of boys and girls which shows the same case with well being scores, as well. Fostering university students' academic, social and emotional self-efficacy will increase their well-being which is very important for young adults especially their freshman years.

Keywords: positive psychology, self-efficacy, subjective well being, university students

Procedia PDF Downloads 282
39818 Efficient Recommendation System for Frequent and High Utility Itemsets over Incremental Datasets

Authors: J. K. Kavitha, D. Manjula, U. Kanimozhi

Abstract:

Mining frequent and high utility item sets have gained much significance in the recent years. When the data arrives sporadically, incremental and interactive rule mining and utility mining approaches can be adopted to handle user’s dynamic environmental needs and avoid redundancies, using previous data structures, and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests frequent and high utility item sets over dynamic datasets for a cluster based location prediction strategy to predict user’s trajectories using the Efficient Incremental Rule Mining (EIRM) algorithm and the Fast Update Utility Pattern Tree (FUUP) algorithm. Through comprehensive evaluations by experiments, this scheme has shown to deliver excellent performance.

Keywords: data sets, recommendation system, utility item sets, frequent item sets mining

Procedia PDF Downloads 293
39817 “Self-efficacy, Task value and Metacognitive Self-regulation as Predictors of English Language Achievement”

Authors: Omar Baissane and, Hassan Zaid

Abstract:

The purpose of this study was to determine whether self-efficacy, task value, and metacognitive self-regulation predict students’ English language achievement among Vietnamese high school students. In this non-experimental quantitative study, 403 Vietnamese random participants were required to fill out the Motivated Strategies for Learning Questionnaire to measure self-efficacy, task value and metacognitive self-regulation. Criterion for English language achievement was the final grade that students themselves reported. The results revealed that, unlike metacognitive self-regulation, self-efficacy and task value were significantly correlated with language achievement. Moreover, the findings showed that self-efficacy was the only significant predictor of language achievement.

Keywords: language achievement, metacognitive self-regulation, predictor, self-efficacy, task value

Procedia PDF Downloads 97
39816 Visualization Tool for EEG Signal Segmentation

Authors: Sweeti, Anoop Kant Godiyal, Neha Singh, Sneh Anand, B. K. Panigrahi, Jayasree Santhosh

Abstract:

This work is about developing a tool for visualization and segmentation of Electroencephalograph (EEG) signals based on frequency domain features. Change in the frequency domain characteristics are correlated with change in mental state of the subject under study. Proposed algorithm provides a way to represent the change in the mental states using the different frequency band powers in form of segmented EEG signal. Many segmentation algorithms have been suggested in literature having application in brain computer interface, epilepsy and cognition studies that have been used for data classification. But the proposed method focusses mainly on the better presentation of signal and that’s why it could be a good utilization tool for clinician. Algorithm performs the basic filtering using band pass and notch filters in the range of 0.1-45 Hz. Advanced filtering is then performed by principal component analysis and wavelet transform based de-noising method. Frequency domain features are used for segmentation; considering the fact that the spectrum power of different frequency bands describes the mental state of the subject. Two sliding windows are further used for segmentation; one provides the time scale and other assigns the segmentation rule. The segmented data is displayed second by second successively with different color codes. Segment’s length can be selected as per need of the objective. Proposed algorithm has been tested on the EEG data set obtained from University of California in San Diego’s online data repository. Proposed tool gives a better visualization of the signal in form of segmented epochs of desired length representing the power spectrum variation in data. The algorithm is designed in such a way that it takes the data points with respect to the sampling frequency for each time frame and so it can be improved to use in real time visualization with desired epoch length.

Keywords: de-noising, multi-channel data, PCA, power spectra, segmentation

Procedia PDF Downloads 397
39815 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections

Authors: Anthony D. Rhodes, Manan Goel

Abstract:

We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.

Keywords: computer vision, object segmentation, interactive segmentation, model compression

Procedia PDF Downloads 120
39814 Libyan Crude Oil Composition Analysis and Prediction

Authors: Omar Hussein El Ayadi, EmadY. El-Mansouri, Mohamed B. Dozan

Abstract:

Production oil process require specific details i.e. oil composition. Generally, types of oil or differentiation between reservoir fluids depend specifically on composition. The main purpose of this study is to correlate and predict the Libyan oil (reservoir fluid and residual) composition utilizing tri-angle-coordinate plots discovered and tasked with Excel. The reservoir fluid data (61 old + 47 new), the residual oil data (33 new) collected from most of Libyan reservoirs were correlated with each others. Moreover, find a relation between stock tank molecular weight and stock tank oil gravity (oAPI), the molecular weight oh (C7+) versus residual oil gravity (oAPI). The average value of every oil composition was estimated including non-hydrocarbon (H2S, CO2, and N2). Nevertheless, the isomers (i-…) and normal (n-…) structure of (C4) and (C5) were also obtained. The summary of the conclusion is; utilizing excel Microsoft office to draw triangle coordinates to find two unknown component if only one is known. However, it is recommended to use the obtained oil composition plots and equations for any oil composition dependents i.e. optimum separator pressure.

Keywords: PVT, phase behavior, petroleum, chemical engineering

Procedia PDF Downloads 514
39813 Identity Verification Using k-NN Classifiers and Autistic Genetic Data

Authors: Fuad M. Alkoot

Abstract:

DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN). 

Keywords: biometrics, genetic data, identity verification, k nearest neighbor

Procedia PDF Downloads 258
39812 Investigating Seasonal Changes of Urban Land Cover with High Spatio-Temporal Resolution Satellite Data via Image Fusion

Authors: Hantian Wu, Bo Huang, Yuan Zeng

Abstract:

Divisions between wealthy and poor, private and public landscapes are propagated by the increasing economic inequality of cities. While these are the spatial reflections of larger social issues and problems, urban design can at least employ spatial techniques that promote more inclusive rather than exclusive, overlapping rather than segregated, interlinked rather than disconnected landscapes. Indeed, the type of edge or border between urban landscapes plays a critical role in the way the environment is perceived. China experiences rapid urbanization, which poses unpredictable environmental challenges. The urban green cover and water body are under changes, which highly relevant to resident wealth and happiness. However, very limited knowledge and data on their rapid changes are available. In this regard, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understating the driving forces of urban landscape changes can be a significant contribution for urban planning and studying. High-resolution remote sensing data has been widely applied to urban management in China. The map of urban land use map for the entire China of 2018 with 10 meters resolution has been published. However, this research focuses on the large-scale and high-resolution remote sensing land use but does not precisely focus on the seasonal change of urban covers. High-resolution remote sensing data has a long-operation cycle (e.g., Landsat 8 required 16 days for the same location), which is unable to satisfy the requirement of monitoring urban-landscape changes. On the other hand, aerial-remote or unmanned aerial vehicle (UAV) sensing are limited by the aviation-regulation and cost was hardly widely applied in the mega-cities. Moreover, those data are limited by the climate and weather conditions (e.g., cloud, fog), and those problems make capturing spatial and temporal dynamics is always a challenge for the remote sensing community. Particularly, during the rainy season, no data are available even for Sentinel Satellite data with 5 days interval. Many natural events and/or human activities drive the changes of urban covers. In this case, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understanding the mechanism of urban landscape changes can be a significant contribution for urban planning and studying. This project aims to use the high spatiotemporal fusion of remote sensing data to create short-cycle, high-resolution remote sensing data sets for exploring the high-frequently urban cover changes. This research will enhance the long-term monitoring applicability of high spatiotemporal fusion of remote sensing data for the urban landscape for optimizing the urban management of landscape border to promoting the inclusive of the urban landscape to all communities.

Keywords: urban land cover changes, remote sensing, high spatiotemporal fusion, urban management

Procedia PDF Downloads 125
39811 Sea Level Characteristics Referenced to Specific Geodetic Datum in Alexandria, Egypt

Authors: Ahmed M. Khedr, Saad M. Abdelrahman, Kareem M. Tonbol

Abstract:

Two geo-referenced sea level datasets (September 2008 – November 2010) and (April 2012 – January 2014) were recorded at Alexandria Western Harbour (AWH). Accurate re-definition of tidal datum, referred to the latest International Terrestrial Reference Frame (ITRF-2014), was discussed and updated to improve our understanding of the old predefined tidal datum at Alexandria. Tidal and non-tidal components of sea level were separated with the use of Delft-3D hydrodynamic model-tide suit (Delft-3D, 2015). Tidal characteristics at AWH were investigated and harmonic analysis showed the most significant 34 constituents with their amplitudes and phases. Tide was identified as semi-diurnal pattern as indicated by a “Form Factor” of 0.24 and 0.25, respectively. Principle tidal datums related to major tidal phenomena were recalculated referred to a meaningful geodetic height datum. The portion of residual energy (surge) out of the total sea level energy was computed for each dataset and found 77% and 72%, respectively. Power spectral density (PSD) showed accurate resolvability in high band (1–6) cycle/days for the nominated independent constituents, except some neighbouring constituents, which are too close in frequency. Wind and atmospheric pressure data, during the recorded sea level time, were analysed and cross-correlated with the surge signals. Moderate association between surge and wind and atmospheric pressure data were obtained. In addition, long-term sea level rise trend at AWH was computed and showed good agreement with earlier estimated rates.

Keywords: Alexandria, Delft-3D, Egypt, geodetic reference, harmonic analysis, sea level

Procedia PDF Downloads 165
39810 Advanced Analytical Competency Is Necessary for Strategic Leadership to Achieve High-Quality Decision-Making

Authors: Amal Mohammed Alqahatni

Abstract:

This paper is a non-empirical analysis of existing literature on digital leadership competency, data-driven organizations, and dealing with AI technology (big data). This paper will provide insights into the importance of developing the leader’s analytical skills and style to be more effective for high-quality decision-making in a data-driven organization and achieve creativity during the organization's transformation to be digitalized. Despite the enormous potential that big data has, there are not enough experts in the field. Many organizations faced an issue with leadership style, which was considered an obstacle to organizational improvement. It investigates the obstacles to leadership style in this context and the challenges leaders face in coaching and development. The leader's lack of analytical skill with AI technology, such as big data tools, was noticed, as was the lack of understanding of the value of that data, resulting in poor communication with others, especially in meetings when the decision should be made. By acknowledging the different dynamics of work competency and organizational structure and culture, organizations can make the necessary adjustments to best support their leaders. This paper reviews prior research studies and applies what is known to assist with current obstacles. This paper addresses how analytical leadership will assist in overcoming challenges in a data-driven organization's work environment.

Keywords: digital leadership, big data, leadership style, digital leadership challenge

Procedia PDF Downloads 69
39809 The Relationship between Anthropometric Obesity Indices and Insulin in Children with Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

The number of indices developed for the evaluation of obesity both in adults and pediatric population is ever increasing. These indices are also used in cases with metabolic syndrome (MetS), mostly the ultimate form of morbid obesity. Aside from anthropometric measurements, formulas constituted using these parameters also find clinical use. These formulas can be listed as two groups; being weight-dependent and –independent. Some are extremely sophisticated equations and their clinical utility is questionable in routine clinical practice. The aim of this study is to compare presently available obesity indices and find the most practical one. Their associations with MetS components were also investigated to determine their capacities in differential diagnosis of morbid obesity with and without MetS. Children with normal body mass index (N-BMI) and morbid obesity were recruited for this study. Three groups were constituted. Age- and sex- dependent BMI percentiles for morbid obese (MO) children were above 99 according to World Health Organization tables. Of them, those with MetS findings were evaluated as MetS group. Children, whose values were between 85 and 15 were included in N-BMI group. The study protocol was approved by the Ethics Committee of the Institution. Parents filled out informed consent forms to participate in the study. Anthropometric measurements and blood pressure values were recorded. Body mass index, hip index (HI), conicity index (CI), triponderal mass index (TPMI), body adiposity index (BAI), body shape index (ABSI), body roundness index (BRI), abdominal volume index (AVI), waist-to-hip ratio (WHR) and waist circumference+hip circumference/2 ((WC+HC)/2) were the formulas examined within the scope of this study. Routine biochemical tests including fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein-cholesterol (HDL-C) were performed. Statistical package program SPSS was used for the evaluation of study data. p<0.05 was accepted as the statistical significance degree. Hip index did not differ among the groups. A statistically significant difference was noted between N-BMI and MetS groups in terms of ABSI. All the other indices were capable of making discrimination between N-BMI-MO, N-BMI- MetS and MO-MetS groups. No correlation was found between FBG and any obesity indices in any groups. The same was true for INS in N-BMI group. Insulin was correlated with BAI, TPMI, CI, BRI, AVI and (WC+HC)/2 in MO group without MetS findings. In MetS group, the only index, which was correlated with INS was (WC+HC)/2. These findings have pointed out that complicated formulas may not be required for the evaluation of the alterations among N-BMI and various obesity groups including MetS. The simple easily computable weight-independent index, (WC+HC)/2, was unique, because it was the only index, which exhibits a valuable association with INS in MetS group. It did not exhibit any correlation with other obesity indices showing associations with INS in MO group. It was concluded that (WC+HC)/2 was pretty valuable practicable index for the discrimination of MO children with and without MetS findings.

Keywords: children, insulin, metabolic syndrome, obesity indices

Procedia PDF Downloads 77
39808 Measuring the Unmeasurable: A Project of High Risk Families Prediction and Management

Authors: Peifang Hsieh

Abstract:

The prevention of child abuse has aroused serious concerns in Taiwan because of the disparity between the increasing amount of reported child abuse cases that doubled over the past decade and the scarcity of social workers. New Taipei city, with the most population in Taiwan and over 70% of its 4 million citizens are migrant families in which the needs of children can be easily neglected due to insufficient support from relatives and communities, sees urgency for a social support system, by preemptively identifying and outreaching high-risk families of child abuse, so as to offer timely assistance and preventive measure to safeguard the welfare of the children. Big data analysis is the inspiration. As it was clear that high-risk families of child abuse have certain characteristics in common, New Taipei city decides to consolidate detailed background information data from departments of social affairs, education, labor, and health (for example considering status of parents’ employment, health, and if they are imprisoned, fugitives or under substance abuse), to cross-reference for accurate and prompt identification of the high-risk families in need. 'The Service Center for High-Risk Families' (SCHF) was established to integrate data cross-departmentally. By utilizing the machine learning 'random forest method' to build a risk prediction model which can early detect families that may very likely to have child abuse occurrence, the SCHF marks high-risk families red, yellow, or green to indicate the urgency for intervention, so as to those families concerned can be provided timely services. The accuracy and recall rates of the above model were 80% and 65%. This prediction model can not only improve the child abuse prevention process by helping social workers differentiate the risk level of newly reported cases, which may further reduce their major workload significantly but also can be referenced for future policy-making.

Keywords: child abuse, high-risk families, big data analysis, risk prediction model

Procedia PDF Downloads 135
39807 Synthesis of High-Pressure Performance Adsorbent from Coconut Shells Polyetheretherketone for Methane Adsorption

Authors: Umar Hayatu Sidik

Abstract:

Application of liquid base petroleum fuel (petrol and diesel) for transportation fuel causes emissions of greenhouse gases (GHGs), while natural gas (NG) reduces the emissions of greenhouse gases (GHGs). At present, compression and liquefaction are the most matured technology used for transportation system. For transportation use, compression requires high pressure (200–300 bar) while liquefaction is impractical. A relatively low pressure of 30-40 bar is achievable by adsorbed natural gas (ANG) to store nearly compressed natural gas (CNG). In this study, adsorbents for high-pressure adsorption of methane (CH4) was prepared from coconut shells and polyetheretherketone (PEEK) using potassium hydroxide (KOH) and microwave-assisted activation. Design expert software version 7.1.6 was used for optimization and prediction of preparation conditions of the adsorbents for CH₄ adsorption. Effects of microwave power, activation time and quantity of PEEK on the adsorbents performance toward CH₄ adsorption was investigated. The adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric (TG) and derivative thermogravimetric (DTG) and scanning electron microscopy (SEM). The ideal CH4 adsorption capacities of adsorbents were determined using volumetric method at pressures of 5, 17, and 35 bar at an ambient temperature and 5 oC respectively. Isotherm and kinetics models were used to validate the experimental results. The optimum preparation conditions were found to be 15 wt% amount of PEEK, 3 minutes activation time and 300 W microwave power. The highest CH4 uptake of 9.7045 mmol CH4 adsorbed/g adsorbent was recorded by M33P15 (300 W of microwave power, 3 min activation time and 15 wt% amount of PEEK) among the sorbents at an ambient temperature and 35 bar. The CH4 equilibrium data is well correlated with Sips, Toth, Freundlich and Langmuir. Isotherms revealed that the Sips isotherm has the best fit, while the kinetics studies revealed that the pseudo-second-order kinetic model best describes the adsorption process. In all scenarios studied, a decrease in temperature led to an increase in adsorption of both gases. The adsorbent (M33P15) maintained its stability even after seven adsorption/desorption cycles. The findings revealed the potential of coconut shell-PEEK as CH₄ adsorbents.

Keywords: adsorption, desorption, activated carbon, coconut shells, polyetheretherketone

Procedia PDF Downloads 67
39806 Altered Lower Extremity Biomechanical Risk Factor Related to Anterior Cruciate Ligament Injury in Athlete with Functional Ankle Instability

Authors: Mohammad Karimizadehardakani, Hooman Minoonejad, Reza Rajabi, Ali Sharifnejad

Abstract:

Background: Ankle sprain is one of the most important risk factor of anterior cruciate ligament (ACL) injury. Also, functional ankle instability (FAI) population has alterations in lower extremity sagittal plane biomechanics during landing task. We want to examine whether biomechanical alterations demonstrated by FAI patients are associated with the mechanism of ACL injury during high risk and sport related tasks. Methods: Sixteen basketball player with FAI and 16 non-injured control performed a single-leg cross drop landing. Knee sagittal and frontal (ATSF) was calculated. Independent t-tests, multiple linear regression, and Pearson correlation were used for analysis data. Result: Subject with FAI showed more peak ATFS, posterior ground reaction force (GRF) and less knee flexion, compared to the controls (P= 0.001, P= 0.004, P= 0.011). Knee flexion (r= −0.824, P = 0.011) and posterior GRF (r= 0.901, P = .001) were correlated with ATSF; Posterior GRF was factor that most explained the variance in ATSF (R2= 0.645; P = .001) in the FAI group. Conclusions: Result of our study showed there is a potential biomechanical relationship between the presence of FAI and risk factors associated with ACL injury mechanism.

Keywords: functional ankle instability, anterior cruciate ligament, biomechanics, risk factor

Procedia PDF Downloads 223
39805 Cloud Computing in Data Mining: A Technical Survey

Authors: Ghaemi Reza, Abdollahi Hamid, Dashti Elham

Abstract:

Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.

Keywords: cloud computing, data mining, computing models, cloud services

Procedia PDF Downloads 479
39804 Stress, Anxiety and Its Associated Factors Within the Transgender Population of Delhi: A Cross-Sectional Study

Authors: Annie Singh, Ishaan Singh

Abstract:

Background: Transgenders are people who have a gender identity different from their sex assigned at birth. Their gender behaviour doesn’t match their body anatomy. The community faces discrimination due to their gender identity all across the world. The term transgender is an umbrella term for many people non-conformal to their biological identity; note that the term transgender is different from gender dysphoria, which is a DSM-5 disorder defined as problems faced by an individual due to their non-conforming gender identity. Transgender people have been a part of Indian culture for ages yet have continued to face exclusion and discrimination in society. This has led to the low socio-economic status of the community. Various studies done across the world have established the role of discrimination, harassment and exclusion in the development of psychological disorders. The study is aimed to assess the frequency of stress and anxiety in the transgender population and understand the various factors affecting the same. Methodology: A cross-sectional survey of self consenting transgender individuals above the age of 18 residing in Delhi was done to assess their socioeconomic status and experiential ecology. Recruitment of participants was done with the help of NGOs. The survey was constructed GAD-7 and PSS-10, two well-known scales were used to assess the stress and anxiety levels. Medians, means and ranges are used for reporting continuous data wherever required, while frequencies and percentages are used for categorical data. For associations and comparison between groups in categorical data, the Chi-square test was used, while the Kruskal-Wallis H test was employed for associations involving multiple ordinal groups. SPSS v28.0 was used to perform the statistical analysis for this study. Results: The survey showed that the frequency of stress and anxiety is high in the transgender population. A demographic survey indicates a low socio-economic background. 44% of participants reported facing discrimination on a daily basis; the frequency of discrimination is higher in transwomen than in transmen. Stress and anxiety levels are similar among both transmen and transwomen. Only 34.5% of participants said they had receptive family or friends. The majority of participants (72.7%) reported a positive or neutral experience with healthcare workers. The prevalence of discrimination is significantly lower in the higher educated groups. Analysis of data shows a positive impact of acceptance and reception on mental health, while discrimination is correlated with higher levels of stress and anxiety. Conclusion: The prevalence of widespread transphobia and discrimination faced by the transgender community has culminated in high levels of stress and anxiety in the transgender population and shows variance according to multiple socio-demographic factors. Educating people about the LGBT community formation of support groups, policies and laws are required to establish trust and promote integration.

Keywords: transgender, gender, stress, anxiety, mental health, discrimination, exclusion

Procedia PDF Downloads 111