Search results for: aerial imaging and detection
4630 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique
Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu
Abstract:
Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing
Procedia PDF Downloads 1014629 Efficient Iterative V-BLAST Detection Technique in Wireless Communication System
Authors: Hwan-Jun Choi, Sung-Bok Choi, Hyoung-Kyu Song
Abstract:
Recently, among the MIMO-OFDM detection techniques, a lot of papers suggested V-BLAST scheme which can achieve high data rate. Therefore, the signal detection of MIMOOFDM system is important issue. In this paper, efficient iterative VBLAST detection technique is proposed in wireless communication system. The proposed scheme adjusts the number of candidate symbol and iterative scheme based on channel state. According to the simulation result, the proposed scheme has better BER performance than conventional schemes and similar BER performance of the QRD-M with iterative scheme. Moreover complexity of proposed scheme has 50.6 % less than complexity of QRD-M detection with iterative scheme. Therefore the proposed detection scheme can be efficiently used in wireless communication.Keywords: MIMO-OFDM, V-BLAST, QR-decomposition, QRDM, DFE, iterative scheme, channel condition
Procedia PDF Downloads 5304628 Lab Bench for Synthetic Aperture Radar Imaging System
Authors: Karthiyayini Nagarajan, P. V. Ramakrishna
Abstract:
Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar (SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System (Lab Bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.Keywords: synthetic aperture radar, radio reflection model, lab bench, imaging engineering
Procedia PDF Downloads 4974627 Combination between Intrusion Systems and Honeypots
Authors: Majed Sanan, Mohammad Rammal, Wassim Rammal
Abstract:
Today, security is a major concern. Intrusion Detection, Prevention Systems and Honeypot can be used to moderate attacks. Many researchers have proposed to use many IDSs ((Intrusion Detection System) time to time. Some of these IDS’s combine their features of two or more IDSs which are called Hybrid Intrusion Detection Systems. Most of the researchers combine the features of Signature based detection methodology and Anomaly based detection methodology. For a signature based IDS, if an attacker attacks slowly and in organized way, the attack may go undetected through the IDS, as signatures include factors based on duration of the events but the actions of attacker do not match. Sometimes, for an unknown attack there is no signature updated or an attacker attack in the mean time when the database is updating. Thus, signature-based IDS fail to detect unknown attacks. Anomaly based IDS suffer from many false-positive readings. So there is a need to hybridize those IDS which can overcome the shortcomings of each other. In this paper we propose a new approach to IDS (Intrusion Detection System) which is more efficient than the traditional IDS (Intrusion Detection System). The IDS is based on Honeypot Technology and Anomaly based Detection Methodology. We have designed Architecture for the IDS in a packet tracer and then implemented it in real time. We have discussed experimental results performed: both the Honeypot and Anomaly based IDS have some shortcomings but if we hybridized these two technologies, the newly proposed Hybrid Intrusion Detection System (HIDS) is capable enough to overcome these shortcomings with much enhanced performance. In this paper, we present a modified Hybrid Intrusion Detection System (HIDS) that combines the positive features of two different detection methodologies - Honeypot methodology and anomaly based intrusion detection methodology. In the experiment, we ran both the Intrusion Detection System individually first and then together and recorded the data from time to time. From the data we can conclude that the resulting IDS are much better in detecting intrusions from the existing IDSs.Keywords: security, intrusion detection, intrusion prevention, honeypot, anomaly-based detection, signature-based detection, cloud computing, kfsensor
Procedia PDF Downloads 3824626 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines
Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso
Abstract:
The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.Keywords: feature extraction, machine learning, OBIA, remote sensing
Procedia PDF Downloads 3624625 ROSgeoregistration: Aerial Multi-Spectral Image Simulator for the Robot Operating System
Authors: Andrew R. Willis, Kevin Brink, Kathleen Dipple
Abstract:
This article describes a software package called ROS-georegistration intended for use with the robot operating system (ROS) and the Gazebo 3D simulation environment. ROSgeoregistration provides tools for the simulation, test, and deployment of aerial georegistration algorithms and is available at github.com/uncc-visionlab/rosgeoregistration. A model creation package is provided which downloads multi-spectral images from the Google Earth Engine database and, if necessary, incorporates these images into a single, possibly very large, reference image. Additionally a Gazebo plugin which uses the real-time sensor pose and image formation model to generate simulated imagery using the specified reference image is provided along with related plugins for UAV relevant data. The novelty of this work is threefold: (1) this is the first system to link the massive multi-spectral imaging database of Google’s Earth Engine to the Gazebo simulator, (2) this is the first example of a system that can simulate geospatially and radiometrically accurate imagery from multiple sensor views of the same terrain region, and (3) integration with other UAS tools creates a new holistic UAS simulation environment to support UAS system and subsystem development where real-world testing would generally be prohibitive. Sensed imagery and ground truth registration information is published to client applications which can receive imagery synchronously with telemetry from other payload sensors, e.g., IMU, GPS/GNSS, barometer, and windspeed sensor data. To highlight functionality, we demonstrate ROSgeoregistration for simulating Electro-Optical (EO) and Synthetic Aperture Radar (SAR) image sensors and an example use case for developing and evaluating image-based UAS position feedback, i.e., pose for image-based Guidance Navigation and Control (GNC) applications.Keywords: EO-to-EO, EO-to-SAR, flight simulation, georegistration, image generation, robot operating system, vision-based navigation
Procedia PDF Downloads 1034624 Assessing Building Rooftop Potential for Solar Photovoltaic Energy and Rainwater Harvesting: A Sustainable Urban Plan for Atlantis, Western Cape
Authors: Adedayo Adeleke, Dineo Pule
Abstract:
The ongoing load-shedding in most parts of South Africa, combined with climate change causing severe drought conditions in Cape Town, has left electricity consumers seeking alternative sources of power and water. Solar energy, which is abundant in most parts of South Africa and is regarded as a clean and renewable source of energy, allows for the generation of electricity via solar photovoltaic systems. Rainwater harvesting is the collection and storage of rainwater from building rooftops, allowing people without access to water to collect it. The lack of dependable energy and water source must be addressed by shifting to solar energy via solar photovoltaic systems and rainwater harvesting. Before this can be done, the potential of building rooftops must be assessed to determine whether solar energy and rainwater harvesting will be able to meet or significantly contribute to Atlantis industrial areas' electricity and water demands. This research project presents methods and approaches for automatically extracting building rooftops in Atlantis industrial areas and evaluating their potential for solar photovoltaics and rainwater harvesting systems using Light Detection and Ranging (LiDAR) data and aerial imagery. The four objectives were to: (1) identify an optimal method of extracting building rooftops from aerial imagery and LiDAR data; (2) identify a suitable solar radiation model that can provide a global solar radiation estimate of the study area; (3) estimate solar photovoltaic potential overbuilding rooftop; and (4) estimate the amount of rainwater that can be harvested from the building rooftop in the study area. Mapflow, a plugin found in Quantum Geographic Information System(GIS) was used to automatically extract building rooftops using aerial imagery. The mean annual rainfall in Cape Town was obtained from a 29-year rainfall period (1991- 2020) and used to calculate the amount of rainwater that can be harvested from building rooftops. The potential for rainwater harvesting and solar photovoltaic systems was assessed, and it can be concluded that there is potential for these systems but only to supplement the existing resource supply and offer relief in times of drought and load-shedding.Keywords: roof potential, rainwater harvesting, urban plan, roof extraction
Procedia PDF Downloads 1154623 Approaches of Flight Level Selection for an Unmanned Aerial Vehicle Round-Trip in Order to Reach Best Range Using Changes in Flight Level Winds
Authors: Dmitry Fedoseyev
Abstract:
The ultimate success of unmanned aerial vehicles (UAVs) depends largely on the effective control of their flight, especially in variable wind conditions. This paper investigates different approaches to selecting the optimal flight level to maximize the range of UAVs. We propose to consider methods based on mathematical models of atmospheric conditions, as well as the use of sensor data and machine learning algorithms to automatically optimize the flight level in real-time. The proposed approaches promise to improve the efficiency and range of UAVs in various wind conditions, which may have significant implications for the application of these systems in various fields, including geodesy, environmental surveillance, and search and rescue operations.Keywords: drone, UAV, flight trajectory, wind-searching, efficiency
Procedia PDF Downloads 624622 Mosaic Augmentation: Insights and Limitations
Authors: Olivia A. Kjorlien, Maryam Asghari, Farshid Alizadeh-Shabdiz
Abstract:
The goal of this paper is to investigate the impact of mosaic augmentation on the performance of object detection solutions. To carry out the study, YOLOv4 and YOLOv4-Tiny models have been selected, which are popular, advanced object detection models. These models are also representatives of two classes of complex and simple models. The study also has been carried out on two categories of objects, simple and complex. For this study, YOLOv4 and YOLOv4 Tiny are trained with and without mosaic augmentation for two sets of objects. While mosaic augmentation improves the performance of simple object detection, it deteriorates the performance of complex object detection, specifically having the largest negative impact on the false positive rate in a complex object detection case.Keywords: accuracy, false positives, mosaic augmentation, object detection, YOLOV4, YOLOV4-Tiny
Procedia PDF Downloads 1274621 Recent Advances of Photo-Detectors in Single Photon Emission Computed Tomography Imaging System
Authors: Qasem A. Alyazji
Abstract:
One of the main techniques for Positron emission tomography (PET), Single photon emission computed tomography (SPECT) is the development of radiation detectors. The NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes known as the Anger camera, is the most dominant detectors system in PET and SPECT devices. Technological advances in many materials, in addition to the emerging importance of specialized applications such as preclinical imaging and cardiac imaging, have encouraged innovation so that alternatives to the anger camera are now part in alternative imaging systems. In this paper we will discuss the main performance characteristics of detectors devices and scanning developments in both scintillation detectors, semiconductor (solid state) detectors, and Photon Transducers such as photomultiplier tubes (PMTs), position sensitive photomultiplier tubes (PSPMTs), Avalanche photodiodes (APDs) and Silicon photomultiplier (SiPMT). This paper discussed the detectors that showed promising results. This study is a review of recent developments in the detectors used in single photon emission computed tomography (SPECT) imaging system.Keywords: SPECT, scintillation, PMTs, SiPMT, PSPMTs, APDs, semiconductor (solid state)
Procedia PDF Downloads 1674620 Mobility-Aware Relay Selection in Two Hop Unmanned Aerial Vehicles Network
Authors: Tayyaba Hussain, Sobia Jangsher, Saqib Ali, Saqib Ejaz
Abstract:
Unmanned Aerial vehicles (UAV’s) have gained great popularity due to their remoteness, ease of deployment and high maneuverability in different applications like real-time surveillance, image capturing, weather atmospheric studies, disaster site monitoring and mapping. These applications can involve a real-time communication with the ground station. However, altitude and mobility possess a few challenges for the communication. UAV’s at high altitude usually require more transmit power. One possible solution can be with the use of multi hops (UAV’s acting as relays) and exploiting the mobility pattern of the UAV’s. In this paper, we studied a relay (UAV’s acting as relays) selection for a reliable transmission to a destination UAV. We exploit the mobility information of the UAV’s to propose a Mobility-Aware Relay Selection (MARS) algorithm with the objective of giving improved data rates. The results are compared with Non Mobility-Aware relay selection scheme and optimal values. Numerical results show that our proposed MARS algorithm gives 6% better achievable data rates for the mobile UAV’s as compared with Non MobilityAware relay selection scheme. On average a decrease of 20.2% in data rate is achieved with MARS as compared with SDP solver in Yalmip.Keywords: mobility aware, relay selection, time division multiple acess, unmanned aerial vehicle
Procedia PDF Downloads 2384619 The Use of Unmanned Aerial System (UAS) in Improving the Measurement System on the Example of Textile Heaps
Authors: Arkadiusz Zurek
Abstract:
The potential of using drones is visible in many areas of logistics, especially in terms of their use for monitoring and control of many processes. The technologies implemented in the last decade concern new possibilities for companies that until now have not even considered them, such as warehouse inventories. Unmanned aerial vehicles are no longer seen as a revolutionary tool for Industry 4.0, but rather as tools in the daily work of factories and logistics operators. The research problem is to develop a method for measuring the weight of goods in a selected link of the clothing supply chain by drones. However, the purpose of this article is to analyze the causes of errors in traditional measurements, and then to identify adverse events related to the use of drones for the inventory of a heap of textiles intended for production purposes. On this basis, it will be possible to develop guidelines to eliminate the causes of these events in the measurement process using drones. In a real environment, work was carried out to determine the volume and weight of textiles, including, among others, weighing a textile sample to determine the average density of the assortment, establishing a local geodetic network, terrestrial laser scanning and photogrammetric raid using an unmanned aerial vehicle. As a result of the analysis of measurement data obtained in the facility, the volume and weight of the assortment and the accuracy of their determination were determined. In this article, this work presents how such heaps are currently being tested, what adverse events occur, indicate and describes the current use of photogrammetric techniques of this type of measurements so far performed by external drones for the inventory of wind farms or construction of the station and compare them with the measurement system of the aforementioned textile heap inside a large-format facility.Keywords: drones, unmanned aerial system, UAS, indoor system, security, process automation, cost optimization, photogrammetry, risk elimination, industry 4.0
Procedia PDF Downloads 864618 Real Time Video Based Smoke Detection Using Double Optical Flow Estimation
Authors: Anton Stadler, Thorsten Ike
Abstract:
In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos.Keywords: low density, optical flow, upward smoke motion, video based smoke detection
Procedia PDF Downloads 3554617 Active Islanding Detection Method Using Intelligent Controller
Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang
Abstract:
An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.Keywords: distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone
Procedia PDF Downloads 3894616 Structural Damage Detection Using Sensors Optimally Located
Authors: Carlos Alberto Riveros, Edwin Fabián García, Javier Enrique Rivero
Abstract:
The measured data obtained from sensors in continuous monitoring of civil structures are mainly used for modal identification and damage detection. Therefore when modal identification analysis is carried out the quality in the identification of the modes will highly influence the damage detection results. It is also widely recognized that the usefulness of the measured data used for modal identification and damage detection is significantly influenced by the number and locations of sensors. The objective of this study is the numerical implementation of two widely known optimum sensor placement methods in beam-like structuresKeywords: optimum sensor placement, structural damage detection, modal identification, beam-like structures.
Procedia PDF Downloads 4314615 Essential Oil Analysis of the Aerial Parts of Sideritis incana and Calamitha hispidula
Authors: Smain Amiraa, Hocine Laouerb, Fatima Benchikh-Amiraa, Guido Flaminic
Abstract:
The aerial parts of Sideritis incana and Calamintha hispidula at the flowering stage were submitted to hydrodistillation in a Clevenger–type apparatus for 3 hours and the chemical composition of the essential oil was analyzed by GC coupled to GC-MS. The essential oil contained a total of 99 constituents for S. incana and 31 for C. hispidula representing 95.7% and 99.6 of the total oils, rerspectively. The mains components of S. incana oil were linalool (25.2), cedrol (13.7%), geraniol (7%) and α-terpineol (5.4%). The chemical constituents of the oil from C. hispidula were predominated by pulegone (43.2%), isomenthone (36%), piperitone (3.2%), limonene (2.6%) and 4-terpineol (2.5%). The results revealed that the oil of the plants is characterized by the presence of many important components which could be applied in food, pharmaceutical and perfume industry.Keywords: essential oils, Calamintha hispidula, Sideritis incana, chemical and molecular engineering
Procedia PDF Downloads 2464614 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 184613 Integrating AI into Breast Cancer Diagnosis: Aligning Perspectives for Effective Clinical Practice
Authors: Mehrnaz Mostafavi, Mahtab Shabani, Alireza Azani, Fatemeh Ghafari
Abstract:
Artificial intelligence (AI) can transform breast cancer diagnosis and therapy by providing sophisticated solutions for screening, imaging interpretation, histopathological analysis, and treatment planning. This literature review digs into the many uses of AI in breast cancer treatment, highlighting the need for collaboration between AI scientists and healthcare practitioners. It emphasizes advances in AI-driven breast imaging interpretation, such as computer-aided detection and diagnosis (CADe/CADx) systems and deep learning algorithms. These have shown significant potential for improving diagnostic accuracy and lowering radiologists' workloads. Furthermore, AI approaches such as deep learning have been used in histopathological research to accurately predict hormone receptor status and categorize tumor-associated stroma from regular H&E stains. These AI-powered approaches simplify diagnostic procedures while providing insights into tumor biology and prognosis. As AI becomes more embedded in breast cancer care, it is crucial to ensure its ethical, efficient, and patient-focused implementation to improve outcomes for breast cancer patients ultimately.Keywords: breast cancer, artificial intelligence, cancer diagnosis, clinical practice
Procedia PDF Downloads 684612 GPU Based Real-Time Floating Object Detection System
Authors: Jie Yang, Jian-Min Meng
Abstract:
A GPU-based floating object detection scheme is presented in this paper which is designed for floating mine detection tasks. This system uses contrast and motion information to eliminate as many false positives as possible while avoiding false negatives. The GPU computation platform is deployed to allow detecting objects in real-time. From the experimental results, it is shown that with certain configuration, the GPU-based scheme can speed up the computation up to one thousand times compared to the CPU-based scheme.Keywords: object detection, GPU, motion estimation, parallel processing
Procedia PDF Downloads 4744611 Bridging Urban Planning and Environmental Conservation: A Regional Analysis of Northern and Central Kolkata
Authors: Tanmay Bisen, Aastha Shayla
Abstract:
This study introduces an advanced approach to tree canopy detection in urban environments and a regional analysis of Northern and Central Kolkata that delves into the intricate relationship between urban development and environmental conservation. Leveraging high-resolution drone imagery from diverse urban green spaces in Kolkata, we fine-tuned the deep forest model to enhance its precision and accuracy. Our results, characterized by an impressive Intersection over Union (IoU) score of 0.90 and a mean average precision (mAP) of 0.87, underscore the model's robustness in detecting and classifying tree crowns amidst the complexities of aerial imagery. This research not only emphasizes the importance of model customization for specific datasets but also highlights the potential of drone-based remote sensing in urban forestry studies. The study investigates the spatial distribution, density, and environmental impact of trees in Northern and Central Kolkata. The findings underscore the significance of urban green spaces in met-ropolitan cities, emphasizing the need for sustainable urban planning that integrates green infrastructure for ecological balance and human well-being.Keywords: urban greenery, advanced spatial distribution analysis, drone imagery, deep learning, tree detection
Procedia PDF Downloads 554610 Automatic Early Breast Cancer Segmentation Enhancement by Image Analysis and Hough Transform
Authors: David Jurado, Carlos Ávila
Abstract:
Detection of early signs of breast cancer development is crucial to quickly diagnose the disease and to define adequate treatment to increase the survival probability of the patient. Computer Aided Detection systems (CADs), along with modern data techniques such as Machine Learning (ML) and Neural Networks (NN), have shown an overall improvement in digital mammography cancer diagnosis, reducing the false positive and false negative rates becoming important tools for the diagnostic evaluations performed by specialized radiologists. However, ML and NN-based algorithms rely on datasets that might bring issues to the segmentation tasks. In the present work, an automatic segmentation and detection algorithm is described. This algorithm uses image processing techniques along with the Hough transform to automatically identify microcalcifications that are highly correlated with breast cancer development in the early stages. Along with image processing, automatic segmentation of high-contrast objects is done using edge extraction and circle Hough transform. This provides the geometrical features needed for an automatic mask design which extracts statistical features of the regions of interest. The results shown in this study prove the potential of this tool for further diagnostics and classification of mammographic images due to the low sensitivity to noisy images and low contrast mammographies.Keywords: breast cancer, segmentation, X-ray imaging, hough transform, image analysis
Procedia PDF Downloads 834609 RoboWeedSupport-Semi-Automated Unmanned Aerial System for Cost Efficient High Resolution in Sub-Millimeter Scale Acquisition of Weed Images
Authors: Simon L. Madsen, Mads Dyrmann, Morten S. Laursen, Rasmus N. Jørgensen
Abstract:
Recent advances in the Unmanned Aerial System (UAS) safety and perception systems enable safe low altitude autonomous terrain following flights recently demonstrated by the consumer DJI Mavic PRO and Phamtom 4 Pro drones. This paper presents the first prototype system utilizing this functionality in form of semi-automated UAS based collection of crop/weed images where the embedded perception system ensures a significantly safer and faster gathering of weed images with sub-millimeter resolution. The system is to be used when the weeds are at cotyledon stage and prior to the harvest recognizing the grass weed species, which cannot be discriminated at the cotyledon stage.Keywords: weed mapping, UAV, DJI SDK, automation, cotyledon plants
Procedia PDF Downloads 3094608 UAV’s Enhanced Data Collection for Heterogeneous Wireless Sensor Networks
Authors: Kamel Barka, Lyamine Guezouli, Assem Rezki
Abstract:
In this article, we propose a protocol called DataGA-DRF (a protocol for Data collection using a Genetic Algorithm through Dynamic Reference Points) that collects data from Heterogeneous wireless sensor networks. This protocol is based on DGA (Destination selection according to Genetic Algorithm) to control the movement of the UAV (Unmanned aerial vehicle) between dynamic reference points that virtually represent the sensor node deployment. The dynamics of these points ensure an even distribution of energy consumption among the sensors and also improve network performance. To determine the best points, DataGA-DRF uses a classification algorithm such as K-Means.Keywords: heterogeneous wireless networks, unmanned aerial vehicles, reference point, collect data, genetic algorithm
Procedia PDF Downloads 824607 Thermal Neutron Detection Efficiency as a Function of Film Thickness for Front and Back Irradiation Detector Devices Coated with ¹⁰B, ⁶LiF, and Pure Li Thin Films
Authors: Vedant Subhash
Abstract:
This paper discusses the physics of the detection of thermal neutrons using thin-film coated semiconductor detectors. The thermal neutron detection efficiency as a function of film thickness is calculated for the front and back irradiation detector devices coated with ¹⁰B, ⁶LiF, and pure Li thin films. The detection efficiency for back irradiation devices is 4.15% that is slightly higher than that for front irradiation detectors, 4.0% for ¹⁰B films of thickness 2.4μm. The theoretically calculated thermal neutron detection efficiency using ¹⁰B film thickness of 1.1 μm for the back irradiation device is 3.0367%, which has an offset of 0.0367% from the experimental value of 3.0%. The detection efficiency values are compared and proved consistent with the given calculations.Keywords: detection efficiency, neutron detection, semiconductor detectors, thermal neutrons
Procedia PDF Downloads 1324606 'Low Electronic Noise' Detector Technology in Computed Tomography
Authors: A. Ikhlef
Abstract:
Image noise in computed tomography, is mainly caused by the statistical noise, system noise reconstruction algorithm filters. Since last few years, low dose x-ray imaging became more and more desired and looked as a technical differentiating technology among CT manufacturers. In order to achieve this goal, several technologies and techniques are being investigated, including both hardware (integrated electronics and photon counting) and software (artificial intelligence and machine learning) based solutions. From a hardware point of view, electronic noise could indeed be a potential driver for low and ultra-low dose imaging. We demonstrated that the reduction or elimination of this term could lead to a reduction of dose without affecting image quality. Also, in this study, we will show that we can achieve this goal using conventional electronics (low cost and affordable technology), designed carefully and optimized for maximum detective quantum efficiency. We have conducted the tests using large imaging objects such as 30 cm water and 43 cm polyethylene phantoms. We compared the image quality with conventional imaging protocols with radiation as low as 10 mAs (<< 1 mGy). Clinical validation of such results has been performed as well.Keywords: computed tomography, electronic noise, scintillation detector, x-ray detector
Procedia PDF Downloads 1264605 The Potential for Cyclotron and Generator-produced Positron Emission Tomography Radiopharmaceuticals: An Overview
Authors: Ng Yen, Shafii Khamis, Rehir Bin Dahalan
Abstract:
Cyclotrons in the energy range 10-30 MeV are widely used for the production of clincally relevant radiosiotopes used in positron emission tomography (PET) nuclear imaging. Positron emmision tomography is a powerful nuclear imaging tool that produces high quality 3-dimentional images of functional processes of body. The advantage of PET among all other imaging devices is that it allows the study of an impressive array of discrete biochemical and physiologic processes, within a single imaging session. The number of PET scanner increases every year globally due to high clinical demand. However, not all PET centers can afford a cyclotron, due to the expense associated with operation of an in-house cyclotron. Therefore, current research has also focused on the development of parent/daughter generators that can reliably provide PET nuclides. These generators (68Ge/68Ga generator, 62Zn/62Cu, 82Sr/82Rb, etc) can provide even short-lived radionuclides at any time on demand, without the need of an ‘in-house cyclotron’. The parent isotope is produced at a cyclotron/reactor facility, and can be shipped to remote clinical sites (regionally/overseas), where the daughter isotope is eluted, a model similar to the 99Mo/99mTc generator system. The specific aim for this presentation is to talk about the potential for both of the cyclotron and generator-produced PET radiopharmaceuticals used in clinical imaging.Keywords: positron emission tomography, radiopharmaceutical, cyclotron, generator
Procedia PDF Downloads 4824604 Procedure to Use Quantitative Bone-Specific SPECT/CT in North Karelia Central Hospital
Authors: L. Korpinen, P. Taskinen, P. Rautio
Abstract:
This study aimed to describe procedures that we developed to use in the quantitative, bone-specific SPECT/CT at our hospital. Our procedures included the following questions for choosing imaging protocols, which were based on a clinical doctor's referral: (1) Is she/he a cancer patient or not? (2) Are there any indications of inflammatory rheumatoid arthritis? We performed about 1,106 skeletal scintigraphies over two years. About 394 patients were studied with quantitative bone-specific single-photon emission computed tomography/computerized tomography (SPECT/CT) (i.e., about 36% of all bone scintigraphies). Approximately 64% of the patients were studied using the conventional Anterior-Posterior/Posterior-Anterior imaging. Our procedure has improved efficiency and decreased cycle times.Keywords: skeletal scintigraphy, SPECT/CT, imaging, procedure
Procedia PDF Downloads 1524603 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression
Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras
Abstract:
In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression
Procedia PDF Downloads 1204602 Neural Network Motion Control of VTAV by NARMA-L2 Controller for Enhanced Situational Awareness
Authors: Igor Astrov, Natalya Berezovski
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a neural network motion control procedure to address the dynamics variation and performance requirement difference of flight trajectory for a VTAV. This control strategy with using of NARMA-L2 neurocontroller for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.Keywords: NARMA-L2 neurocontroller, situational awareness, vectored thrust aerial vehicle, aviation
Procedia PDF Downloads 4204601 Fault Detection and Isolation in Attitude Control Subsystem of Spacecraft Formation Flying Using Extended Kalman Filters
Authors: S. Ghasemi, K. Khorasani
Abstract:
In this paper, the problem of fault detection and isolation in the attitude control subsystem of spacecraft formation flying is considered. In order to design the fault detection method, an extended Kalman filter is utilized which is a nonlinear stochastic state estimation method. Three fault detection architectures, namely, centralized, decentralized, and semi-decentralized are designed based on the extended Kalman filters. Moreover, the residual generation and threshold selection techniques are proposed for these architectures.Keywords: component, formation flight of satellites, extended Kalman filter, fault detection and isolation, actuator fault
Procedia PDF Downloads 434