Search results for: time-domain signal generator
2134 Transient Signal Generator For Fault Indicator Testing
Authors: Mohamed Shaban, Ali Alfallah
Abstract:
This paper describes an application for testing of a fault indicator but it could be used for other network protection testing. The application is created in the LabVIEW environment and consists of three parts. The first part of the application is determined for transient phenomenon generation and imitates voltage and current transient signal at ground fault originate. The second part allows to set sequences of trend for each current and voltage output signal, up to six trends for each phase. The last part of the application generates harmonic signal with continuously controllable amplitude of current or voltage output signal and phase shift of each signal can be changed there. Further any sub-harmonics and upper harmonics can be added to selected current output signalKeywords: signal generator-fault indicator, harmonic signal generator, voltage output
Procedia PDF Downloads 4992133 Design of an Arbitrary Signal Generator Based on Time-Domain Superposition
Authors: Yu JunLiang
Abstract:
This paper introduces the design principles and methods of a time-domain signal generator. It explores the spectral characteristics of pulse signals and proposes a signal synthesis method based on the superposition of Gaussian signals. By adjusting the amplitude parameters of the Gaussian functions, the synthesis of arbitrary spectral signals can be achieved. The synthesis method considers the calculation of synthesis coefficients for signals with known frequency domain functions. Finally, simulation experiments verify the time-domain and frequency-domain characteristics of the synthesized signals and discuss the degree of fit between the synthesized and original signals in both domains. This paper provides valuable insights for understanding the design principles and implementation methods of time-domain signal generators.Keywords: time-domain signal generator, pulse signal, arbitrary signal generator, signal synthesis
Procedia PDF Downloads 72132 The Effects of Signal Level of the Microwave Generator on the Brillouin Gain Spectrum in BOTDA and BOTDR
Authors: Murat Yucel, Murat Yucel, Nail Ferhat Ozturk, Halim Haldun Goktas, Cemal Gemci, Fatih Vehbi Celebi
Abstract:
In this study, Brillouin gain spectrum (BGS) is experimentally analyzed in the Brillouin optical time domain reflectometry (BOTDR) and Brillouin optical time domain analyzer (BOTDA). For this purpose, the signal level of the microwave generator is varied and the effects of BGS are investigated. In the setups, 20 km conventional single mode fiber is used to both setups and laser wavelengths are selected around 1550 nm. To achieve best results, it can be used between 5 dBm to 15 dBm signal level of microwave generator for BOTDA and BOTDR setups.Keywords: microwave signal level, Brillouin gain spectrum, BOTDA, BOTDR
Procedia PDF Downloads 6912131 A Study on Analysis of Magnetic Field in Induction Generator for Small Francis Turbine Generator
Authors: Young-Kwan Choi, Han-Sang Jeong, Yeon-Ho Ok, Jae-Ho Choi
Abstract:
The purpose of this study is to verify validity of design by testing output of induction generator through finite element analysis before manufacture of induction generator designed. Characteristics in the operating domain of induction generator can be understood through analysis of magnetic field according to load (rotational speed) of induction generator. Characteristics of induction generator such as induced voltage, current, torque, magnetic flux density (magnetic flux saturation), and loss can be predicted by analysis of magnetic field.Keywords: electromagnetic analysis, induction generator, small hydro power generator, small francis turbine generator
Procedia PDF Downloads 14782130 Piezoelectric Micro-generator Characterization for Energy Harvesting Application
Authors: José E. Q. Souza, Marcio Fontana, Antonio C. C. Lima
Abstract:
This paper presents analysis and characterization of a piezoelectric micro-generator for energy harvesting application. A low-cost experimental prototype was designed to operate as piezoelectric micro-generator in the laboratory. An input acceleration of 9.8m/s2 using a sine signal (peak-to-peak voltage: 1V, offset voltage: 0V) at frequencies ranging from 10Hz to 160Hz generated a maximum average power of 432.4μW (linear mass position = 25mm) and an average power of 543.3μW (angular mass position = 35°). These promising results show that the prototype can be considered for low consumption load application as an energy harvesting micro-generator.Keywords: piezoelectric, micro-generator, energy harvesting, cantilever beam
Procedia PDF Downloads 4692129 Real-Time Image Encryption Using a 3D Discrete Dual Chaotic Cipher
Authors: M. F. Haroun, T. A. Gulliver
Abstract:
In this paper, an encryption algorithm is proposed for real-time image encryption. The scheme employs a dual chaotic generator based on a three dimensional (3D) discrete Lorenz attractor. Encryption is achieved using non-autonomous modulation where the data is injected into the dynamics of the master chaotic generator. The second generator is used to permute the dynamics of the master generator using the same approach. Since the data stream can be regarded as a random source, the resulting permutations of the generator dynamics greatly increase the security of the transmitted signal. In addition, a technique is proposed to mitigate the error propagation due to the finite precision arithmetic of digital hardware. In particular, truncation and rounding errors are eliminated by employing an integer representation of the data which can easily be implemented. The simple hardware architecture of the algorithm makes it suitable for secure real-time applications.Keywords: chaotic systems, image encryption, non-autonomous modulation, FPGA
Procedia PDF Downloads 5112128 Design of 100 kW Induction Generator for Wind Power Plant at Tamanjaya Village-Sukabumi
Authors: Andri Setiyoso, Agus Purwadi, Nanda Avianto Wicaksono
Abstract:
This paper present about induction generator design for 100kW power output capacity. Induction machine had been chosen because of the capability for energy conversion from electric energy to mechanical energy and vise-versa with operation on variable speed condition. Stator Controlled Induction Generator (SCIG) was applied as wind power plant in Desa Taman Jaya, Sukabumi, Indonesia. Generator was designed to generate power 100 kW with wind speed at 12 m/s and survival condition at speed 21 m/s.Keywords: wind energy, induction generator, Stator Controlled Induction Generator (SCIG), variable speed generator
Procedia PDF Downloads 5112127 Simulation Study of a Fault at the Switch on the Operation of the Doubly Fed Induction Generator Based on the Wind Turbine
Authors: N. Zerzouri, N. Benalia, N. Bensiali
Abstract:
This work is devoted to an analysis of the operation of a doubly fed induction generator (DFIG) integrated with a wind system. The power transfer between the stator and the network is carried out by acting on the rotor via a bidirectional signal converter. The analysis is devoted to the study of a fault in the converter due to an interruption of the control of a semiconductor. Simulation results obtained by the MATLAB / Simulink software illustrate the quality of the power generated at the default.Keywords: doubly fed induction generator (DFIG), wind power generation, back to back PWM converter, default switching
Procedia PDF Downloads 4702126 Permanent Magnet Generator – One Phase Regime Operation
Authors: Pawel Pistelok
Abstract:
The article presents the concept of an electromagnetic circuit of a 3-phase surface-mounted permanent magnet generator designed for a single phase operation. A cross section of electromagnetic circuit and a field-circuit model of generator used for computations are shown. The paper presents comparative analysis of simulation results obtained for two different versions of generator regarding construction of armature winding. In the first version of generator the voltages generated in each of three winding phases have different rms values (different number of turns in each of phases), three winding phases are connected in series and one phase load is connected to the two output terminals of generator. The second version of generator is very similar, i.e. three winding phases are connected in series and one phase load is powered by generator, but in this version the voltages generated in each of winding phases have exactly the same rms values (the same number of turns in each of phases). The time waveforms of voltages, currents and electromagnetic torques in the airgaps of two machine versions for rated power are shown.Keywords: permanent magnet generator, permanent magnets, synchronous generator, vibration, course of torque, single phase work, unsymmetrical operation point, serial connection of winding phase
Procedia PDF Downloads 6982125 Analyzing the Effect of Ambient Temperature and Loads Power Factor on Electric Generator Power Rating
Authors: Ahmed Elsebaay, Maged A. Abu Adma, Mahmoud Ramadan
Abstract:
This study presents a technique clarifying the effect of ambient air temperature and loads power factor changing from standard values on electric generator power rating. The study introduces an optimized technique for selecting the correct electric generator power rating for certain application and operating site ambient temperature. The de-rating factors due to the previous effects will be calculated to be applied on a generator to select its power rating accurately to avoid unsafe operation and save its lifetime. The information in this paper provides a simple, accurate, and general method for synchronous generator selection and eliminates common errors.Keywords: ambient temperature, de-rating factor, electric generator, power factor
Procedia PDF Downloads 3622124 Contribution to Improving the DFIG Control Using a Multi-Level Inverter
Authors: Imane El Karaoui, Mohammed Maaroufi, Hamid Chaikhy
Abstract:
Doubly Fed Induction Generator (DFIG) is one of the most reliable wind generator. Major problem in wind power generation is to generate Sinusoidal signal with very low THD on variable speed caused by inverter two levels used. This paper presents a multi-level inverter whose objective is to reduce the THD and the dimensions of the output filter. This work proposes a three-level NPC-type inverter, the results simulation are presented demonstrating the efficiency of the proposed inverter.Keywords: DFIG, multilevel inverter, NPC inverter, THD, induction machine
Procedia PDF Downloads 2532123 Pulse Generator with Constant Pulse Width
Authors: Rozita Borhan, Hanif Che Lah, Wee Leong Son
Abstract:
This paper is about method to produce a stable and accurate constant output pulse width regardless of the amplitude, period and pulse width variation of the input signal source. The pulse generated is usually being used in numerous applications as the reference input source to other circuits in the system. Therefore, it is crucial to produce a clean and constant pulse width to make sure the system is working accurately as expected.Keywords: amplitude, Constant Pulse Width, frequency divider, pulse generator
Procedia PDF Downloads 3992122 Direct Drive Double Fed Wind Generator
Authors: Vlado Ostovic
Abstract:
An electric machine topology characterized by single tooth winding in both stator and rotor is presented. The proposed machine is capable of operating as a direct drive double fed wind generator (DDDF, D3F) because it requires no gearbox and only a reduced-size converter. A wind turbine drive built around a D3F generator is cheaper to manufacture, requires less maintenance, and has a higher energy yield than its conventional counterparts. The single tooth wound generator of a D3F turbine has superb volume utilization and lower stator I2R losses due to its extremely short-end windings. Both stator and rotor of a D3F generator can be manufactured in segments, which simplifies its assembly and transportation to the site, and makes production cheaper.Keywords: direct drive, double fed generator, gearbox, permanent magnet generators, single tooth winding, wind power
Procedia PDF Downloads 1952121 Modal Analysis for Optimal Location of Doubly Fed Induction-Generator-Based Wind Farms for Reduction of Small Signal Oscillation
Authors: Meet Patel, Darshan Patel, Nilay Shah
Abstract:
Excess growth of wind-based renewable energy sources is required to identify the optimal location and damping capacity of doubly fed induction-generator-based (DFIG) wind farms while it penetrates into the transmission network. In this analysis, various ratings of DFIG wind farms are penetrated into the Single Machine Infinite Bus (SMIB ) at a different distance of the transmission line. On the basis of detailed examinations, a prime position is evaluated to maximize the stability of overall systems. A damping controller is designed at an optimum location to mitigate the small oscillations. The proposed model was validated using eigenvalue analysis, calculation of the participation factor, and time-domain simulation.Keywords: DFIG, small signal stability, eigenvalues, time domain simulation
Procedia PDF Downloads 1172120 Development of an Analytical Model for a Synchronous Permanent Magnet Generator
Authors: T. Sahbani, M. Bouteraa, R. Wamkeue
Abstract:
Wind Turbine are considered to be one of the more efficient system of energy production nowadays, a reason that leads the main industrial companies in wind turbine construction and researchers in over the world to look for better performance and one of the ways for that is the use of the synchronous permanent magnet generator. In this context, this work is about developing an analytical model that could simulate different situation in which the synchronous generator may go through, and of course this model match perfectly with the numerical and experimental model.Keywords: MATLAB, synchronous permanent magnet generator, wind turbine, analytical model
Procedia PDF Downloads 5532119 Generator Subgraphs of the Wheel
Authors: Neil M. Mame
Abstract:
We consider only finite graphs without loops nor multiple edges. Let G be a graph with E(G) = {e1, e2, …., em}. The edge space of G, denoted by ε(G), is a vector space over the field Z2. The elements of ε(G) are all the subsets of E(G). Vector addition is defined as X+Y = X Δ Y, the symmetric difference of sets X and Y, for X, Y ∈ ε(G). Scalar multiplication is defined as 1.X =X and 0.X = Ø for X ∈ ε(G). The set S ⊆ ε(G) is called a generating set if every element ε(G) is a linear combination of the elements of S. For a non-empty set X ∈ ε(G), the smallest subgraph with edge set X is called edge-induced subgraph of G, denoted by G[X]. The set EH(G) = { A ∈ ε(G) : G[A] ≅ H } denotes the uniform set of H with respect to G and εH(G) denotes the subspace of ε(G) generated by EH(G). If εH(G) is generating set, then we call H a generator subgraph of G. This paper gives the characterization for the generator subgraphs of the wheel that contain cycles and gives the necessary conditions for the acyclic generator subgraphs of the wheel.Keywords: edge space, edge-induced subgraph, generator subgraph, wheel
Procedia PDF Downloads 4672118 Temperature Rises Characteristics of Distinct Double-Sided Flat Permanent Magnet Linear Generator for Free Piston Engines for Hybrid Vehicles
Authors: Ismail Rahama Adam Hamid
Abstract:
This paper presents the development of a thermal model for a flat, double-sided linear generator designed for use in free-piston engines. The study conducted in this paper examines the influence of temperature on the performance of the permeant magnet linear generator, an integral and pivotal component within the system. This research places particular emphasis on the Neodymium Iron Boron (NdFeB) permanent magnet, which serves as a source of magnetic field for the linear generator. In this study, an internal combustion engine that tends to produce heat is connected to a generator. Considering the temperatures rise from both the combustion process and the thermal contributions of current-carrying conductors and frictional forces. Utilizing Computational Fluid Dynamics (CFD) method, a thermal model of the (NdFeB) magnet within the linear generator is constructed and analyzed. Furthermore, the temperature field is examined to ensure that the linear generator operates under stable conditions without the risk of demagnetization.Keywords: free piston engine, permanent magnet, linear generator, demagnetization, simulation
Procedia PDF Downloads 612117 Six-Phase Tooth-Coil Winding Starter-Generator Embedded in Aerospace Engine
Authors: Flur R. Ismagilov, Vyacheslav E. Vavilov, Denis V. Gusakov
Abstract:
This paper is devoted to solve the problem of increasing the electrification of aircraft engines by installing a synchronous generator at high pressure shaft. Technical solution of this problem by various research centers is discussed. A design solution of the problem was proposed. To evaluate the effectiveness of the proposed cooling system, thermal analysis was carried out in ANSYS software.Keywords: starter-generator, more electrical engine, aircraft engines, high pressure shaft, synchronous generator
Procedia PDF Downloads 2602116 Study on the Impact of Default Converter on the Quality of Energy Produced by DFIG Based Wind Turbine
Authors: N. Zerzouri, N. Benalia, N. Bensiali
Abstract:
This work is devoted to an analysis of the operation of a doubly fed induction generator (DFIG) integrated with a wind system. The power transfer between the stator and the network is carried out by acting on the rotor via a bidirectional signal converter. The analysis is devoted to the study of a fault in the converter due to an interruption of the control of a semiconductor. Simulation results obtained by the MATLAB/Simulink software illustrate the quality of the power generated at the default.Keywords: doubly fed induction generator (DFIG), wind energy, PWM inverter, modeling
Procedia PDF Downloads 3212115 Design and Performance Analysis of a Hydro-Power Rim-Driven Superconducting Synchronous Generator
Authors: A. Hassannia, S. Ramezani
Abstract:
The technology of superconductivity has developed in many power system devices such as transmission cable, transformer, current limiter, motor and generator. Superconducting wires can carry high density current without loss, which is the capability that is used to design the compact, lightweight and more efficient electrical machines. Superconducting motors have found applications in marine and air propulsion systems as well as superconducting generators are considered in low power hydraulic and wind generators. This paper presents a rim-driven superconducting synchronous generator for hydraulic power plant. The rim-driven concept improves the performance of hydro turbine. Furthermore, high magnetic field that is produced by superconducting windings allows replacing the rotor core. As a consequent, the volume and weight of the machine is decreased significantly. In this paper, a 1 MW coreless rim-driven superconducting synchronous generator is designed. Main performance characteristics of the proposed machine are then evaluated using finite elements method and compared to an ordinary similar size synchronous generator.Keywords: coreless machine, electrical machine design, hydraulic generator, rim-driven machine, superconducting generator
Procedia PDF Downloads 1792114 Techno-Economic Analysis of Motor-Generator Pair System and Virtual Synchronous Generator for Providing Inertia of Power System
Authors: Zhou Yingkun, Xu Guorui, Wei Siming, Huang Yongzhang
Abstract:
With the increasing of the penetration of renewable energy in power system, the whole inertia of the power system is declining, which will endanger the frequency stability of the power system. In order to enhance the inertia, virtual synchronous generator (VSG) has been proposed. In addition, the motor-generator pair (MGP) system is proposed to enhance grid inertia. Both of them need additional equipment to provide instantaneous energy, so the economic problem should be considered. In this paper, the basic working principle of MGP system and VSG are introduced firstly. Then, the technical characteristics and economic investment of MGP/VSG are compared by calculation and simulation. The results show that the MGP system can provide same inertia with less cost than VSG.Keywords: high renewable energy penetration, inertia of power system, motor-generator pair (MGP) system, virtual synchronous generator (VSG), techno-economic analysis
Procedia PDF Downloads 4582113 Design and Construction of an Impulse Current Generator for Lightning Strike Experiments
Authors: Kamran Yousefpour, Mojtaba Rostaghi-Chalaki, Jason Warden, Chanyeop Park
Abstract:
There has been a rising trend in using impulse current generators to investigate the lightning strike protection of materials including aluminum and composites in structures such as wind turbine blade and aircraft body. The focus of this research is to present a new impulse current generator built in the High Voltage Lab at Mississippi State University. The generator is capable of producing component A and D of the natural lightning discharges in accordance with the Society of Automotive Engineers (SAE) standard, which is widely used in the aerospace industry. The generator can supply lightning impulse energy up to 400 kJ with the capability of producing impulse currents with magnitudes greater than 200 kA. The electrical circuit and physical components of an improved impulse current generator are described and several lightning strike waveforms with different amplitudes is presented for comparing with the standard waveform. The results of this study contribute to the fundamental understanding the functionality of the impulse current generators and present a new impulse current generator developed at the High Voltage Lab of Mississippi State University.Keywords: impulse current generator, lightning, society of automotive engineers, capacitor
Procedia PDF Downloads 1702112 Sliding Mode Power System Stabilizer for Synchronous Generator Stability Improvement
Authors: J. Ritonja, R. Brezovnik, M. Petrun, B. Polajžer
Abstract:
Many modern synchronous generators in power systems are extremely weakly damped. The reasons are cost optimization of the machine building and introduction of the additional control equipment into power systems. Oscillations of the synchronous generators and related stability problems of the power systems are harmful and can lead to failures in operation and to damages. The only useful solution to increase damping of the unwanted oscillations represents the implementation of the power system stabilizers. Power system stabilizers generate the additional control signal which changes synchronous generator field excitation voltage. Modern power system stabilizers are integrated into static excitation systems of the synchronous generators. Available commercial power system stabilizers are based on linear control theory. Due to the nonlinear dynamics of the synchronous generator, current stabilizers do not assure optimal damping of the synchronous generator’s oscillations in the entire operating range. For that reason the use of the robust power system stabilizers which are convenient for the entire operating range is reasonable. There are numerous robust techniques applicable for the power system stabilizers. In this paper the use of sliding mode control for synchronous generator stability improvement is studied. On the basis of the sliding mode theory, the robust power system stabilizer was developed. The main advantages of the sliding mode controller are simple realization of the control algorithm, robustness to parameter variations and elimination of disturbances. The advantage of the proposed sliding mode controller against conventional linear controller was tested for damping of the synchronous generator oscillations in the entire operating range. Obtained results show the improved damping in the entire operating range of the synchronous generator and the increase of the power system stability. The proposed study contributes to the progress in the development of the advanced stabilizer, which will replace conventional linear stabilizers and improve damping of the synchronous generators.Keywords: control theory, power system stabilizer, robust control, sliding mode control, stability, synchronous generator
Procedia PDF Downloads 2272111 Design and Development of Wind Turbine Emulator to Operate with 1.5 kW Induction Generator
Authors: Himani Ratna Dahiya
Abstract:
This paper contributes to design a Wind Emulator coupled to 1.5 kW Induction generator for Wind Energy Conversion System. A wind turbine emulator (WTE) is important equipment for developing wind energy conversion systems. It offers a controllable test environment that allows the evaluation and improvement of control schemes for electric generators that is hard to achieve with an actual wind turbine since the wind speed varies randomly. In this paper a wind emulator is modeled and simulated using MATLAB. Verification of the simulation results is done by experimental setup using DC motor-Induction generator set, LABVIEW and data acquisition card.Keywords: Wind Turbine Emulator, LABVIEW, matlab, induction generator
Procedia PDF Downloads 5942110 Compensation of Cable Attenuation in Step Current Generators to Enable the Convolution Method for Calibration of Current Transducers
Authors: P. Treyer, M. Kujda, H. Urs
Abstract:
The purpose of this paper is to digitally compensate for the apparent discharge time constant of the coaxial cable so that the current step response is flat and can be used to calibrate current transducers using the convolution method. For proper use of convolution, the step response record length is required to be at least the same as the waveform duration to be evaluated. The current step generator based on the cable discharge is compared to the Blumlein generator. Moreover, the influence of each component of the system on the performance of the step is described, which allows building the appropriate measurement set-up. In the end, the calibration of current viewing resistors dedicated to high current impulse is computed.Keywords: Blumlein generator, cable attenuation, convolution, current step generator
Procedia PDF Downloads 1512109 Modeling and Simulation of a CMOS-Based Analog Function Generator
Authors: Madina Hamiane
Abstract:
Modelling and simulation of an analogy function generator is presented based on a polynomial expansion model. The proposed function generator model is based on a 10th order polynomial approximation of any of the required functions. The polynomial approximations of these functions can then be implemented using basic CMOS circuit blocks. In this paper, a circuit model is proposed that can simultaneously generate many different mathematical functions. The circuit model is designed and simulated with HSPICE and its performance is demonstrated through the simulation of a number of non-linear functions.Keywords: modelling and simulation, analog function generator, polynomial approximation, CMOS transistors
Procedia PDF Downloads 4622108 Design of Chaos Algorithm Based Optimal PID Controller for SVC
Authors: Saeid Jalilzadeh
Abstract:
SVC is one of the most significant devices in FACTS technology which is used in parallel compensation, enhancing the transient stability, limiting the low frequency oscillations and etc. designing a proper controller is effective in operation of svc. In this paper the equations that describe the proposed system have been linearized and then the optimum PID controller has been designed for svc which its optimal coefficients have been earned by chaos algorithm. Quick damping of oscillations of generator is the aim of designing of optimum PID controller for svc whether the input power of generator has been changed suddenly. The system with proposed controller has been simulated for a special disturbance and the dynamic responses of generator have been presented. The simulation results showed that a system composed with proposed controller has suitable operation in fast damping of oscillations of generator.Keywords: chaos, PID controller, SVC, frequency oscillation
Procedia PDF Downloads 4452107 Automatic Approach for Estimating the Protection Elements of Electric Power Plants
Authors: Mahmoud Mohammad Salem Al-Suod, Ushkarenko O. Alexander, Dorogan I. Olga
Abstract:
New algorithms using microprocessor systems have been proposed for protection the diesel-generator unit in autonomous power systems. The software structure is designed to enhance the control automata of the system, in which every protection module of diesel-generator encapsulates the finite state machine.Keywords: diesel-generator unit, protection, state diagram, control system, algorithm, software components
Procedia PDF Downloads 4222106 Applicability of Linearized Model of Synchronous Generator for Power System Stability Analysis
Authors: J. Ritonja, B. Grcar
Abstract:
For the synchronous generator simulation and analysis and for the power system stabilizer design and synthesis a mathematical model of synchronous generator is needed. The model has to accurately describe dynamics of oscillations, while at the same time has to be transparent enough for an analysis and sufficiently simplified for design of control system. To study the oscillations of the synchronous generator against to the rest of the power system, the model of the synchronous machine connected to an infinite bus through a transmission line having resistance and inductance is needed. In this paper, the linearized reduced order dynamic model of the synchronous generator connected to the infinite bus is presented and analysed in details. This model accurately describes dynamics of the synchronous generator only in a small vicinity of an equilibrium state. With the digression from the selected equilibrium point the accuracy of this model is decreasing considerably. In this paper, the equations’ descriptions and the parameters’ determinations for the linearized reduced order mathematical model of the synchronous generator are explained and summarized and represent the useful origin for works in the areas of synchronous generators’ dynamic behaviour analysis and synchronous generator’s control systems design and synthesis. The main contribution of this paper represents the detailed analysis of the accuracy of the linearized reduced order dynamic model in the entire synchronous generator’s operating range. Borders of the areas where the linearized reduced order mathematical model represents accurate description of the synchronous generator’s dynamics are determined with the systemic numerical analysis. The thorough eigenvalue analysis of the linearized models in the entire operating range is performed. In the paper, the parameters of the linearized reduced order dynamic model of the laboratory salient poles synchronous generator were determined and used for the analysis. The theoretical conclusions were confirmed with the agreement of experimental and simulation results.Keywords: eigenvalue analysis, mathematical model, power system stability, synchronous generator
Procedia PDF Downloads 2482105 Hyperchaos-Based Video Encryption for Device-To-Device Communications
Authors: Samir Benzegane, Said Sadoudi, Mustapha Djeddou
Abstract:
In this paper, we present a software development of video streaming encryption for Device-to-Device (D2D) communications by using Hyperchaos-based Random Number Generator (HRNG) implemented in C#. The software implements and uses the proposed HRNG to generate key stream for encrypting and decrypting real-time video data. The used HRNG consists of Hyperchaos Lorenz system which produces four signal outputs taken as encryption keys. The generated keys are characterized by high quality randomness which is confirmed by passing standard NIST statistical tests. Security analysis of the proposed encryption scheme confirms its robustness against different attacks.Keywords: hyperchaos Lorenz system, hyperchaos-based random number generator, D2D communications, C#
Procedia PDF Downloads 379