Search results for: sensing ability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5396

Search results for: sensing ability

5396 Utilizing the RhlR/RhlI Quorum Sensing System to Express the ß-Galactosidase Reporter Gene by Using the N-Butanoyl Homoserine Lactone and N-Hexanoyl Homoserine Lactone

Authors: Ngoc Tu Truong, Nuong T. Bui, Ben Rao, Ya L. Shen

Abstract:

Quorum sensing is a phenomenon present in many gram-negative bacteria that allows bacterial communication and controlled expression of a large suite of genes through quorum sensing signals - N-acyl homoserine lactones (AHLs). In order to investigate the ability of the rhlR/rhlI quorum sensing system in Pseudomonas aeruginosa to express the ß-Galactosidase reporter gene, an engineered E. coli strain EpHL02, was genetically engineered. This engineered E. coli strain EpHL02 responded to the presence of the N-butanoyl homoserine lactone and N-hexanoyl homoserine lactone to express the ß-Galactosidase reporter gene at a concentration limit of 5x10⁻⁸ M. This was also found to be comparable to AHLs extraction from Serratia marcescens H31. Moreover, we examined this ability of this engineered E. coli strain for respond of AHLs from extractions of Pseudomonas aeruginosa ATCC9027. The results demonstrated that the rhlR/rhlI quorum sensing system can express the ß-Galactosidase reporter gene by using the N-butanoyl homoserine lactone, N-hexanoyl homoserine lactone and AHLs from extractions of Serratia marcescens H31 and Pseudomonas aeruginosa ATCC9027 in the engineered E. coli strain EpHL02.

Keywords: N-butanoyl homoserine lactone, C4-HSL, N-hexanoyl homoserine lactone, C6-HSL, Pseudomonas aeruginosa, quorum sensing, Serratia marcescens, ß-galactosidase reporter gene

Procedia PDF Downloads 309
5395 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation

Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov

Abstract:

Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).

Keywords: cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing

Procedia PDF Downloads 252
5394 Integration of GIS with Remote Sensing and GPS for Disaster Mitigation

Authors: Sikander Nawaz Khan

Abstract:

Natural disasters like flood, earthquake, cyclone, volcanic eruption and others are causing immense losses to the property and lives every year. Current status and actual loss information of natural hazards can be determined and also prediction for next probable disasters can be made using different remote sensing and mapping technologies. Global Positioning System (GPS) calculates the exact position of damage. It can also communicate with wireless sensor nodes embedded in potentially dangerous places. GPS provide precise and accurate locations and other related information like speed, track, direction and distance of target object to emergency responders. Remote Sensing facilitates to map damages without having physical contact with target area. Now with the addition of more remote sensing satellites and other advancements, early warning system is used very efficiently. Remote sensing is being used both at local and global scale. High Resolution Satellite Imagery (HRSI), airborne remote sensing and space-borne remote sensing is playing vital role in disaster management. Early on Geographic Information System (GIS) was used to collect, arrange, and map the spatial information but now it has capability to analyze spatial data. This analytical ability of GIS is the main cause of its adaption by different emergency services providers like police and ambulance service. Full potential of these so called 3S technologies cannot be used in alone. Integration of GPS and other remote sensing techniques with GIS has pointed new horizons in modeling of earth science activities. Many remote sensing cases including Asian Ocean Tsunami in 2004, Mount Mangart landslides and Pakistan-India earthquake in 2005 are described in this paper.

Keywords: disaster mitigation, GIS, GPS, remote sensing

Procedia PDF Downloads 486
5393 Capacity Optimization in Cooperative Cognitive Radio Networks

Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis

Abstract:

Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.

Keywords: cooperative networks, normalized capacity, sensing time

Procedia PDF Downloads 641
5392 Biocompatibility and Sensing Ability of Highly Luminescent Synthesized Core-Shell Quantum Dots

Authors: Mohan Singh Mehata, R. K. Ratnesh

Abstract:

CdSe, CdSe/ZnS, and CdSe/CdS core-shell quantum dots (QDs) of 3-4 nm were developed by using chemical route and following successive ion layer adsorption and reaction (SILAR) methods. The prepared QDs have been examined by using X-ray diffraction, high-resolution electron microscopy and optical spectroscopy. The photoluminescence (PL) quantum yield (QY) of core-shell QDs increases with respect to the core, indicating that the radiative rate increases by the formation of shell around core, as evident by the measurement of PL lifetime. Further, the PL of bovine serum albumin is quenched strongly by the presence of core-shall QDs and follow the Stern-Volmer (S-V) relation, whereas the lifetime does not follow the S-V relation, demonstrating that the observed quenching is predominantly static in nature. Among all the QDs, the CdSe/ZnS QDs shows the least cytotoxicity hence most biocompatibility.

Keywords: biocompatibility, core-shell quantum dots, photoluminescence and lifetime, sensing ability

Procedia PDF Downloads 242
5391 Effect of Using a Mixture of Al2O3 Nanoparticles and 3-Aminopropyltriethoxysilane as the Sensing Membrane for Polysilicon Wire on pH Sensing

Authors: You-Lin Wu, Zong-Xian Wu, Jing-Jenn Lin, Shih-Hung Lin

Abstract:

In this work, a polysilicon wire (PSW) coated with a mixture of 3-aminopropyltriethoxysilane (r-APTES) and Al2O3 nanoparticles as the sensing membrane prepared with various Al2O3/r-APTES and dispersing agent/r-APTES ratios for pH sensing is studied. The r-APTES and dispersed Al2O3 nanoparticles mixture was directly transferred to PSW surface by solution phase deposition (SPD). It is found that using a mixture of Al2O3 nanoparticles and r-APTES as the sensing membrane help in improving the pH sensing of the PSW sensor and a 5 min SPD deposition time is the best. Dispersing agent is found to be necessary for better pH sensing when preparing the mixture of Al2O3 nanoparticles and r-APTES. The optimum condition for preparing the mixture is found to be Al2O3/r-APTES ratio of 2% and dispersing agent/r-APTES ratio of 0.3%.

Keywords: al2o3 nanoparticles, ph sensing, polysilicon wire sensor, r-aptes

Procedia PDF Downloads 423
5390 Reliability Factors Based Fuzzy Logic Scheme for Spectrum Sensing

Authors: Tallataf Rasheed, Adnan Rashdi, Ahmad Naeem Akhtar

Abstract:

The accurate spectrum sensing is a fundamental requirement of dynamic spectrum access for deployment of Cognitive Radio Network (CRN). To acheive this requirement a Reliability factors based Fuzzy Logic (RFL) Scheme for Spectrum Sensing has been proposed in this paper. Cognitive Radio User (CRU) predicts the presence or absence of Primary User (PU) using energy detector and calculates the Reliability factors which are SNR of sensing node, threshold of energy detector and decision difference of each node with other nodes in a cooperative spectrum sensing environment. Then the decision of energy detector is combined with Reliability factors of sensing node using Fuzzy Logic. These Reliability Factors used in RFL Scheme describes the reliability of decision made by a CRU to improve the local spectrum sensing. This Fuzzy combining scheme provides the accuracy of decision made by sensornode. The simulation results have shown that the proposed technique provide better PU detection probability than existing Spectrum Sensing Techniques.

Keywords: cognitive radio, spectrum sensing, energy detector, reliability factors, fuzzy logic

Procedia PDF Downloads 490
5389 Performance of Nakagami Fading Channel over Energy Detection Based Spectrum Sensing

Authors: M. Ranjeeth, S. Anuradha

Abstract:

Spectrum sensing is the main feature of cognitive radio technology. Spectrum sensing gives an idea of detecting the presence of the primary users in a licensed spectrum. In this paper we compare the theoretical results of detection probability of different fading environments like Rayleigh, Rician, Nakagami-m fading channels with the simulation results using energy detection based spectrum sensing. The numerical results are plotted as P_f Vs P_d for different SNR values, fading parameters. It is observed that Nakagami fading channel performance is better than other fading channels by using energy detection in spectrum sensing. A MATLAB simulation test bench has been implemented to know the performance of energy detection in different fading channel environment.

Keywords: spectrum sensing, energy detection, fading channels, probability of detection, probability of false alarm

Procedia PDF Downloads 535
5388 Radio-Frequency Technologies for Sensing and Imaging

Authors: Cam Nguyen

Abstract:

Rapid, accurate, and safe sensing and imaging of physical quantities or structures finds many applications and is of significant interest to society. Sensing and imaging using radio-frequency (RF) techniques, particularly, has gone through significant development and subsequently established itself as a unique territory in the sensing world. RF sensing and imaging has played a critical role in providing us many sensing and imaging abilities beyond our human capabilities, benefiting both civilian and military applications - for example, from sensing abnormal conditions underneath some structures’ surfaces to detection and classification of concealed items, hidden activities, and buried objects. We present the developments of several sensing and imaging systems implementing RF technologies like ultra-wide band (UWB), synthetic-pulse, and interferometry. These systems are fabricated completely using RF integrated circuits. The UWB impulse system operates over multiple pulse durations from 450 to 1170 ps with 5.5-GHz RF bandwidth. It performs well through tests of various samples, demonstrating its usefulness for subsurface sensing. The synthetic-pulse system operating from 0.6 to 5.6 GHz can assess accurately subsurface structures. The synthetic-pulse system operating from 29.72-37.7 GHz demonstrates abilities for various surface and near-surface sensing such as profile mapping, liquid-level monitoring, and anti-personnel mine locating. The interferometric system operating at 35.6 GHz demonstrates its multi-functional capability for measurement of displacements and slow velocities. These RF sensors are attractive and useful for various surface and subsurface sensing applications. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: RF sensors, radars, surface sensing, subsurface sensing

Procedia PDF Downloads 321
5387 Highly Sensitive and Selective H2 Gas Sensor Based on Pd-Pt Decorated Nanostructured Silicon Carbide Thin Films for Extreme Environment Application

Authors: Satyendra Mourya, Jyoti Jaiswal, Gaurav Malik, Brijesh Kumar, Ramesh Chandra

Abstract:

Present work describes the fabrication and sensing characteristics of the Pd-Pt decorated nanostructured silicon carbide (SiC) thin films on anodized porous silicon (PSi) substrate by RF magnetron sputtering. The gas sensing performance of Pd-Pt/SiC/PSi sensing electrode towards H2 gas under low (10–400 ppm) detection limit and high operating temperature regime (25–600 °C) were studied in detail. The chemiresistive sensor exhibited high selectivity, good sensing response, fast response/recovery time with excellent stability towards H2 at high temperature. The selectivity measurement of the sensing electrode was done towards different oxidizing and reducing gases and proposed sensing mechanism discussed in detail. Therefore, the investigated Pd-Pt/SiC/PSi structure may be a highly sensitive and selective hydrogen gas sensing electrode for deployment in extreme environment applications.

Keywords: RF Sputtering, silicon carbide, porous silicon, hydrogen gas sensor

Procedia PDF Downloads 310
5386 Quorum Quenching Activities of Bacteria Isolated from Red Sea Sediments

Authors: Zahid Rehman, TorOve Leiknes

Abstract:

Quorum sensing (QS) is the process by which bacteria communicate with each other through small signaling molecules, such as N-acylhomoserine lactones (AHLs). Also, certain bacteria have the ability to degrade AHL molecules by a process referred to as quorum quenching (QQ); therefore, QQ can be used to control bacterial infections and biofilm formation. In this study, we aimed to identify new species of bacteria with QQ activities. To achieve this, sediments from Red Sea were collected either in the close vicinity of Sea grass or from area with no vegetation. From these samples, we isolated 72 bacterial strains and tested their ability to degrade/inactivate AHL molecules. Chromobacterium violaceum based bioassay was used in initial screening of isolates for QQ activity. The QQ activity of the positive isolates was further confirmed and quantified by employing liquid chromatography and mass spectrometry. These analyses showed that isolated bacterial strain could degrade AHL molecules with different acyl chain length and modifications. Sequencing of 16S-rRNA genes of positive isolates revealed that they belong to three different genera. Specifically, two isolates belong to genus Erythrobacter, four to Labrenzia and one isolate belongs to Bacterioplanes. Time course experiment showed that isolate belonging to genus Erythrobacter could degrade AHLs faster than other isolates. Furthermore, these isolates were tested for their ability to inhibit formation of biofilm and degradation of 3OXO-C12 AHLs produced by P. aeruginosa PAO1. Our results showed that isolate VG12 is better at controlling biofilm formation. This aligns with the ability of VG12 to cause at least 10-fold reduction in the amount of different AHLs tested.

Keywords: quorum sensing, biofilm, quorum quenching, anti-biofouling

Procedia PDF Downloads 170
5385 Rapid Assessment the Ability of Forest Vegetation in Kulonprogo to Store Carbon Using Multispectral Satellite Imagery and Vegetation Index

Authors: Ima Rahmawati, Nur Hafizul Kalam

Abstract:

Development of industrial and economic sectors in various countries very rapidly caused raising the greenhouse gas (GHG) emissions. Greenhouse gases are dominated by carbon dioxide (CO2) and methane (CH4) in the atmosphere that make the surface temperature of the earth always increase. The increasing gases caused by incomplete combustion of fossil fuels such as petroleum and coals and also high rate of deforestation. Yogyakarta Special Province which every year always become tourist destination, has a great potency in increasing of greenhouse gas emissions mainly from the incomplete combustion. One of effort to reduce the concentration of gases in the atmosphere is keeping and empowering the existing forests in the Province of Yogyakarta, especially forest in Kulonprogro is to be maintained the greenness so that it can absorb and store carbon maximally. Remote sensing technology can be used to determine the ability of forests to absorb carbon and it is connected to the density of vegetation. The purpose of this study is to determine the density of the biomass of forest vegetation and determine the ability of forests to store carbon through Photo-interpretation and Geographic Information System approach. Remote sensing imagery that used in this study is LANDSAT 8 OLI year 2015 recording. LANDSAT 8 OLI imagery has 30 meters spatial resolution for multispectral bands and it can give general overview the condition of the carbon stored from every density of existing vegetation. The method is the transformation of vegetation index combined with allometric calculation of field data then doing regression analysis. The results are model maps of density and capability level of forest vegetation in Kulonprogro, Yogyakarta in storing carbon.

Keywords: remote sensing, carbon, kulonprogo, forest vegetation, vegetation index

Procedia PDF Downloads 399
5384 Multifunctional Composite Structural Elements for Sensing and Energy Harvesting

Authors: Amir H. Alavi, Kaveh Barri, Qianyun Zhang

Abstract:

This study presents a new generation of lightweight and mechanically tunable structural composites with sensing and energy harvesting functionalities. This goal is achieved by integrating metamaterial and triboelectric energy harvesting concepts. Proof-of-concept polymeric beam prototypes are fabricated using 3D printing methods based on the proposed concept. Experiments and theoretical analyses are conducted to quantitatively investigate the mechanical and electrical properties of the designed multifunctional beams. The results show that these integrated structural elements can serve as nanogenerators and distributed sensing mediums without a need to incorporating any external sensing modules and electronics. The feasibility of design self-sensing and self-powering structural elements at multiscale for next generation infrastructure systems is further discussed.

Keywords: multifunctional structures, composites, metamaterial, triboelectric nanogenerator, sensors, structural health monitoring, energy harvesting

Procedia PDF Downloads 201
5383 Condition Monitoring of Railway Earthworks using Distributed Rayleigh Sensing

Authors: Andrew Hall, Paul Clarkson

Abstract:

Climate change is predicted to increase the number of extreme weather events intensifying the strain on Railway Earthworks. This paper describes the use of Distributed Rayleigh Sensing to monitor low frequency activity on a vulnerable earthworks sectionprone to landslides alongside a railway line in Northern Spain. The vulnerable slope is instrumented with conventional slope stability sensors allowing an assessment to be conducted of the application of Distributed Rayleigh Sensing as an earthwork condition monitoring tool to enhance the resilience of railway networks.

Keywords: condition monitoring, railway earthworks, distributed rayleigh sensing, climate change

Procedia PDF Downloads 212
5382 Optimal Sensing Technique for Estimating Stress Distribution of 2-D Steel Frame Structure Using Genetic Algorithm

Authors: Jun Su Park, Byung Kwan Oh, Jin Woo Hwang, Yousok Kim, Hyo Seon Park

Abstract:

For the structural safety, the maximum stress calculated from the stress distribution of a structure is widely used. The stress distribution can be estimated by deformed shape of the structure obtained from measurement. Although the estimation of stress is strongly affected by the location and number of sensing points, most studies have conducted the stress estimation without reasonable basis on sensing plan such as the location and number of sensors. In this paper, an optimal sensing technique for estimating the stress distribution is proposed. This technique proposes the optimal location and number of sensing points for a 2-D frame structure while minimizing the error of stress distribution between analytical model and estimation by cubic smoothing splines using genetic algorithm. To verify the proposed method, the optimal sensor measurement technique is applied to simulation tests on 2-D steel frame structure. The simulation tests are performed under various loading scenarios. Through those tests, the optimal sensing plan for the structure is suggested and verified.

Keywords: genetic algorithm, optimal sensing, optimizing sensor placements, steel frame structure

Procedia PDF Downloads 540
5381 PSRR Enhanced LDO Regulator Using Noise Sensing Circuit

Authors: Min-ju Kwon, Chae-won Kim, Jeong-yun Seo, Hee-guk Chae, Yong-seo Koo

Abstract:

In this paper, we presented the LDO (low-dropout) regulator which enhanced the PSRR by applying the constant current source generation technique through the BGR (Band Gap Reference) to form the noise sensing circuit. The current source through the BGR has a constant current value even if the applied voltage varies. Then, the noise sensing circuit, which is composed of the current source through the BGR, operated between the error amplifier and the pass transistor gate of the LDO regulator. As a result, the LDO regulator has a PSRR of -68.2 dB at 1k Hz, -45.85 dB at 1 MHz and -45 dB at 10 MHz. the other performance of the proposed LDO was maintained at the same level of the conventional LDO regulator.

Keywords: LDO regulator, noise sensing circuit, current reference, pass transistor

Procedia PDF Downloads 289
5380 Elevating Environmental Impact Assessment through Remote Sensing in Engineering

Authors: Spoorthi Srupad

Abstract:

Environmental Impact Assessment (EIA) stands as a critical engineering application facilitated by Earth Resources and Environmental Remote Sensing. Employing advanced technologies, this process enables a systematic evaluation of potential environmental impacts arising from engineering projects. Remote sensing techniques, including satellite imagery and geographic information systems (GIS), play a pivotal role in providing comprehensive data for assessing changes in land cover, vegetation, water bodies, and air quality. This abstract delves into the significance of EIA in engineering, emphasizing its role in ensuring sustainable and environmentally responsible practices. The integration of remote sensing technologies enhances the accuracy and efficiency of impact assessments, contributing to informed decision-making and the mitigation of adverse environmental consequences associated with engineering endeavors.

Keywords: environmental impact assessment, engineering applications, sustainability, environmental monitoring, remote sensing, geographic information systems, environmental management

Procedia PDF Downloads 96
5379 A Selective and Fast Hydrogen Sensor Using Doped-LaCrO₃ as Sensing Electrode

Authors: He Zhang, Jianxin Yi

Abstract:

As a clean energy, hydrogen shows many advantages such as renewability, high heat value, and extensive sources and may play an important role in the future society. However, hydrogen is a combustible gas because of its low ignition energy (0.02mJ) and wide explosive limit (4% ~ 74% in air). It is very likely to cause fire hazard or explosion once leakage is happened and not detected in time. Mixed-potential type sensor has attracted much attention in monitoring and detecting hydrogen due to its high response, simple support electronics and long-term stability. Typically, this kind of sensor is consisted of a sensing electrode (SE), a reference electrode (RE) and a solid electrolyte. The SE and RE materials usually display different electrocatalytic abilities to hydrogen. So hydrogen could be detected by measuring the EMF change between the two electrodes. Previous reports indicate that a high-performance sensing electrode is important for improving the sensing characteristics of the sensor. In this report, a planar type mixed-potential hydrogen sensor using La₀.₈Sr₀.₂Cr₀.₅Mn₀.₅O₃₋δ (LSCM) as SE, Pt as RE and yttria-stabilized zirconia (YSZ) as solid electrolyte was developed. The reason for selecting LSCM as sensing electrode is that it shows the high electrocatalytic ability to hydrogen in solid oxide fuel cells. The sensing performance of the fabricated LSCM/YSZ/Pt sensor was tested systemically. The experimental results show that the sensor displays high response to hydrogen. The response values for 100ppm and 1000ppm hydrogen at 450 ºC are -70 mV and -118 mV, respectively. The response time is an important parameter to evaluate a sensor. In this report, the sensor response time decreases with increasing hydrogen concentration and get saturated above 500ppm. The steady response time at 450 ºC is as short as 4s, indicating the sensor shows great potential in practical application to monitor hydrogen. An excellent response repeatability to 100ppm hydrogen at 450 ˚C and a good sensor reproducibility among three sensors were also observed. Meanwhile, the sensor exhibits excellent selectivity to hydrogen compared with several interfering gases such as NO₂, CH₄, CO, C₃H₈ and NH₃. Polarization curves were tested to investigate the sensing mechanism and the results indicated the sensor abide by the mixed-potential mechanism.

Keywords: fire hazard, H₂ sensor, mixed-potential, perovskite

Procedia PDF Downloads 189
5378 Advancing Horizons: Standardized Future Trends in LiDAR and Remote Sensing Technologies

Authors: Spoorthi Sripad

Abstract:

Rapid advancements in LiDAR (Light Detection and Ranging) technology, coupled with the synergy of remote sensing, have revolutionized Earth observation methodologies. This paper delves into the transformative impact of integrated LiDAR and remote sensing systems. Focusing on miniaturization, cost reduction, and improved resolution, the study explores the evolving landscape of terrestrial and aquatic environmental monitoring. The integration of multi-wavelength and dual-mode LiDAR systems, alongside collaborative efforts with other remote sensing technologies, presents a comprehensive approach. The paper highlights the pivotal role of LiDAR in environmental assessment, urban planning, and infrastructure development. As the amalgamation of LiDAR and remote sensing reshapes Earth observation, this research anticipates a paradigm shift in our understanding of dynamic planetary processes.

Keywords: LiDAR, remote sensing, earth observation, advancements, integration, environmental monitoring, multi-wavelength, dual-mode, technology, urban planning, infrastructure, resolution, miniaturization

Procedia PDF Downloads 89
5377 Fe-Doped Graphene Nanoparticles for Gas Sensing Applications

Authors: Shivani A. Singh, Pravin S. More

Abstract:

In the present inspection, we indicate the falsification of Fe-doped graphene nanoparticles by modified Hummers method. Structural and physiochemical properties of the resulting pallets were explored with the help of ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), Photoluminescence spectroscopy (PL) for graphene sample exhibits absorption peaks ~248nm. Pure graphene shows PL peak at 348 nm. After doping of Fe with graphene the PL peak shifted from 348 nm to 332 nm. The oxidation degree, i.e. the relative amount of oxygen functional groups was estimated from the relative intensities of the oxygen related bands (ORB) in the FTIR measurements. These analyses show that this modified material can be useful for gas sensing applications and to be used in diverse areas.

Keywords: chemical doping, graphene, gas sensing, sensing

Procedia PDF Downloads 220
5376 Artificial Neural Networks for Cognitive Radio Network: A Survey

Authors: Vishnu Pratap Singh Kirar

Abstract:

The main aim of the communication system is to achieve maximum performance. In cognitive radio, any user or transceiver have the ability to sense best suitable channel, while the channel is not in use. It means an unlicensed user can share the spectrum of licensed user without any interference. Though the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper, we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision-making capacity of CRN without affecting bandwidth, cost and signal rate.

Keywords: artificial neural network, cognitive radio, cognitive radio networks, back propagation, spectrum sensing

Procedia PDF Downloads 615
5375 Cooperative Spectrum Sensing Using Hybrid IWO/PSO Algorithm in Cognitive Radio Networks

Authors: Deepa Das, Susmita Das

Abstract:

Cognitive Radio (CR) is an emerging technology to combat the spectrum scarcity issues. This is achieved by consistently sensing the spectrum, and detecting the under-utilized frequency bands without causing undue interference to the primary user (PU). In soft decision fusion (SDF) based cooperative spectrum sensing, various evolutionary algorithms have been discussed, which optimize the weight coefficient vector for maximizing the detection performance. In this paper, we propose the hybrid invasive weed optimization and particle swarm optimization (IWO/PSO) algorithm as a fast and global optimization method, which improves the detection probability with a lesser sensing time. Then, the efficiency of this algorithm is compared with the standard invasive weed optimization (IWO), particle swarm optimization (PSO), genetic algorithm (GA) and other conventional SDF based methods on the basis of convergence and detection probability.

Keywords: cognitive radio, spectrum sensing, soft decision fusion, GA, PSO, IWO, hybrid IWO/PSO

Procedia PDF Downloads 473
5374 2D Nanomaterials-Based Geopolymer as-Self-Sensing Buildings in Construction Industry

Authors: Maryam Kiani

Abstract:

The self-sensing capability opens up new possibilities for structural health monitoring, offering real-time information on the condition and performance of constructions. The synthesis and characterization of these functional 2D material geopolymers will be explored in this study. Various fabrication techniques, including mixing, dispersion, and coating methods, will be employed to ensure uniform distribution and integration of the 2D materials within the geopolymers. The resulting composite materials will be evaluated for their mechanical strength, electrical conductivity, and sensing capabilities through rigorous testing and analysis. The potential applications of these self-sensing geopolymers are vast. They can be used in infrastructure projects, such as bridges, tunnels, and buildings, to provide continuous monitoring and early detection of structural damage or degradation. This proactive approach to maintenance and safety can significantly improve the lifespan and efficiency of constructions, ultimately reducing maintenance costs and enhancing overall sustainability. In conclusion, the development of functional 2D material geopolymers as self-sensing materials presents an exciting advancement in the construction industry. By integrating these innovative materials into structures, we can create a new generation of intelligent, self-monitoring constructions that can adapt and respond to their environment.

Keywords: 2D materials, geopolymers, electrical properties, self-sensing

Procedia PDF Downloads 142
5373 Exploring the Gas Sensing Performance of Cu-Doped Iron Oxide Derived from Metal-Organic Framework

Authors: Annu Sheokand, Vinay Kumar

Abstract:

Hydrogen sulfide (H₂S) detection is essential for environmental monitoring and industrial safety due to its high toxicity, even at low concentrations. This study explores the H₂S gas sensing properties of Cu-doped Fe₂O₃ materials derived from metal-organic frameworks (MOFs), which offer high surface area and controlled porosity for optimized gas sensing. The structural and morphological characteristics of the synthesized material were thoroughly analyzed using techniques such as X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis Spectroscopy. The resulting sensor exhibited remarkable sensitivity and selectivity, achieving a detection limit at the ppb level for H₂S. The study indicates that Cu doping significantly enhances the gas sensing performance of Fe₂O₃ by introducing abundant active sites within the material. These enhanced sensing properties emphasize the potential of MOF-derived Cu-doped Fe₂O₃ as a highly effective material for H₂S gas sensors in various applications.

Keywords: detection limit, doping, MOF, sensitivity, sensor

Procedia PDF Downloads 24
5372 Uniform Porous Multilayer-Junction Thin Film for Enhanced Gas-Sensing Performance

Authors: Ping-Ping Zhang, Hui-Zhang, Xu-Hui Sun

Abstract:

Highly-uniform In2O3/CuO bilayer and multilayer porous thin films were successfully fabricated using self-assembled soft template and simple sputtering deposition technique. The sensor based on the In2O3/CuO bilayer porous thin film shows obviously improved sensing performance to ethanol at the lower working temperature, compared to single layer counterpart sensors. The response of In2O3/CuO bilayer sensors exhibits nearly 3 and 5 times higher than those of the single layer In2O3 and CuO porous film sensors over the same ethanol concentration, respectively. The sensing mechanism based on p-n hetero-junction, which contributed to the enhanced sensing performance was also experimentally confirmed by a control experiment which the SiO2 insulation layer was inserted between the In2O3 and CuO layers to break the p-n junction. In addition, the sensing performance can be further enhanced by increasing the number of In2O3/CuO junction layers. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors for practical sensing applications.

Keywords: gas sensor, multilayer porous thin films, In2O3/CuO, p-n junction

Procedia PDF Downloads 327
5371 Landscape Classification in North of Jordan by Integrated Approach of Remote Sensing and Geographic Information Systems

Authors: Taleb Odeh, Nizar Abu-Jaber, Nour Khries

Abstract:

The southern part of Wadi Al Yarmouk catchment area covers north of Jordan. It locates within latitudes 32° 20’ to 32° 45’N and longitudes 35° 42’ to 36° 23’ E and has an area of about 1426 km2. However, it has high relief topography where the elevation varies between 50 to 1100 meter above sea level. The variations in the topography causes different units of landforms, climatic zones, land covers and plant species. As a results of these different landscapes units exists in that region. Spatial planning is a major challenge in such a vital area for Jordan which could not be achieved without determining landscape units. However, an integrated approach of remote sensing and geographic information Systems (GIS) is an optimized tool to investigate and map landscape units of such a complicated area. Remote sensing has the capability to collect different land surface data, of large landscape areas, accurately and in different time periods. GIS has the ability of storage these land surface data, analyzing them spatially and present them in form of professional maps. We generated a geo-land surface data that include land cover, rock units, soil units, plant species and digital elevation model using ASTER image and Google Earth while analyzing geo-data spatially were done by ArcGIS 10.2 software. We found that there are twenty two different landscape units in the study area which they have to be considered for any spatial planning in order to avoid and environmental problems.

Keywords: landscape, spatial planning, GIS, spatial analysis, remote sensing

Procedia PDF Downloads 532
5370 A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images

Authors: Lee Jeong Min, Lee Mi Hee, Eo Yang Dam

Abstract:

Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques.

Keywords: remote sensing, artificial neural network, decision tree, maximum likelihood classification

Procedia PDF Downloads 351
5369 Distributed Optical Fiber Vibration Sensing Using Phase Generated Carrier Demodulation Algorithm

Authors: Zhihua Yu, Qi Zhang, Mingyu Zhang, Haolong Dai

Abstract:

Distributed fiber-optic vibration sensors are gaining extensive attention, for the advantages of high sensitivity, accurate location, light weight, large-scale monitoring, good concealment, and etc. In this paper, a novel optical fiber distributed vibration sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson Interferometry (MI) to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000m sensing fiber and demodulated correctly. Experiments show that the spatial resolution of is 10 m, and the noise level of the Φ-OTDR system is about 10-3 rad/√Hz, and the signal to noise ratio (SNR) is about 30.34dB. This vibration measurement scheme can be applied at surface, seabed or downhole for vibration measurements or distributed acoustic sensing (DAS).

Keywords: fiber optics sensors, Michelson interferometry, MI, phase-sensitive optical time domain reflectometry, Φ-OTDR, phase generated carrier, PGC

Procedia PDF Downloads 194
5368 Linear Frequency Modulation-Frequency Shift Keying Radar with Compressive Sensing

Authors: Ho Jeong Jin, Chang Won Seo, Choon Sik Cho, Bong Yong Choi, Kwang Kyun Na, Sang Rok Lee

Abstract:

In this paper, a radar signal processing technique using the LFM-FSK (Linear Frequency Modulation-Frequency Shift Keying) is proposed for reducing the false alarm rate based on the compressive sensing. The LFM-FSK method combines FMCW (Frequency Modulation Continuous Wave) signal with FSK (Frequency Shift Keying). This shows an advantage which can suppress the ghost phenomenon without the complicated CFAR (Constant False Alarm Rate) algorithm. Moreover, the parametric sparse algorithm applying the compressive sensing that restores signals efficiently with respect to the incomplete data samples is also integrated, leading to reducing the burden of ADC in the receiver of radars. 24 GHz FMCW signal is applied and tested in the real environment with FSK modulated data for verifying the proposed algorithm along with the compressive sensing.

Keywords: compressive sensing, LFM-FSK radar, radar signal processing, sparse algorithm

Procedia PDF Downloads 488
5367 Membrane Spanning DNA Origami Nanopores for Protein Translocation

Authors: Genevieve Pugh, Johnathan Burns, Stefan Howorka

Abstract:

Single-molecule sensing via protein nanopores has achieved a step-change in portable and label-free DNA sequencing. However, protein pores of both natural or engineered origin are not able to produce the tunable diameters needed for effective protein sensing. Here, we describe a generic strategy to build synthetic DNA nanopores that are wide enough to accommodate folded protein. The pores are composed of interlinked DNA duplexes and carry lipid anchors to achieve the required membrane insertion. Our demonstrator pore has a contiguous cross-sectional channel area of 50 nm2 which is 6-times larger than the largest protein pore. Consequently, transport of folded protein across bilayers is possible. The modular design is amenable for different pore dimensions and can be adapted for protein sensing or to create molecular gates in synthetic biology.

Keywords: biosensing, DNA nanotechnology, DNA origami, nanopore sensing

Procedia PDF Downloads 327