Search results for: rapidly exploring random trees
5546 Determining Optimal Number of Trees in Random Forests
Authors: Songul Cinaroglu
Abstract:
Background: Random Forest is an efficient, multi-class machine learning method using for classification, regression and other tasks. This method is operating by constructing each tree using different bootstrap sample of the data. Determining the number of trees in random forests is an open question in the literature for studies about improving classification performance of random forests. Aim: The aim of this study is to analyze whether there is an optimal number of trees in Random Forests and how performance of Random Forests differ according to increase in number of trees using sample health data sets in R programme. Method: In this study we analyzed the performance of Random Forests as the number of trees grows and doubling the number of trees at every iteration using “random forest” package in R programme. For determining minimum and optimal number of trees we performed Mc Nemar test and Area Under ROC Curve respectively. Results: At the end of the analysis it was found that as the number of trees grows, it does not always means that the performance of the forest is better than forests which have fever trees. In other words larger number of trees only increases computational costs but not increases performance results. Conclusion: Despite general practice in using random forests is to generate large number of trees for having high performance results, this study shows that increasing number of trees doesn’t always improves performance. Future studies can compare different kinds of data sets and different performance measures to test whether Random Forest performance results change as number of trees increase or not.Keywords: classification methods, decision trees, number of trees, random forest
Procedia PDF Downloads 3955545 Real-Time Path Planning for Unmanned Air Vehicles Using Improved Rapidly-Exploring Random Tree and Iterative Trajectory Optimization
Authors: A. Ramalho, L. Romeiro, R. Ventura, A. Suleman
Abstract:
A real-time path planning framework for Unmanned Air Vehicles, and in particular multi-rotors is proposed. The framework is designed to provide feasible trajectories from the current UAV position to a goal state, taking into account constraints such as obstacle avoidance, problem kinematics, and vehicle limitations such as maximum speed and maximum acceleration. The framework computes feasible paths online, allowing to avoid new, unknown, dynamic obstacles without fully re-computing the trajectory. These features are achieved using an iterative process in which the robot computes and optimizes the trajectory while performing the mission objectives. A first trajectory is computed using a modified Rapidly-Exploring Random Tree (RRT) algorithm, that provides trajectories that respect a maximum curvature constraint. The trajectory optimization is accomplished using the Interior Point Optimizer (IPOPT) as a solver. The framework has proven to be able to compute a trajectory and optimize to a locally optimal with computational efficiency making it feasible for real-time operations.Keywords: interior point optimization, multi-rotors, online path planning, rapidly exploring random trees, trajectory optimization
Procedia PDF Downloads 1355544 Algorithm for Recognizing Trees along Power Grid Using Multispectral Imagery
Authors: C. Hamamura, V. Gialluca
Abstract:
Much of the Eclectricity Distributors has about 70% of its electricity interruptions arising from cause "trees", alone or associated with wind and rain and with or without falling branch and / or trees. This contributes inexorably and significantly to outages, resulting in high costs as compensation in addition to the operation and maintenance costs. On the other hand, there is little data structure and solutions to better organize the trees pruning plan effectively, minimizing costs and environmentally friendly. This work describes the development of an algorithm to provide data of trees associated to power grid. The method is accomplished on several steps using satellite imagery and geographically vectorized grid. A sliding window like approach is performed to seek the area around the grid. The proposed method counted 764 trees on a patch of the grid, which was very close to the 738 trees counted manually. The trees data was used as a part of a larger project that implements a system to optimize tree pruning plan.Keywords: image pattern recognition, trees pruning, trees recognition, neural network
Procedia PDF Downloads 4995543 Heritage Tree Expert Assessment and Classification: Malaysian Perspective
Authors: B.-Y.-S. Lau, Y.-C.-T. Jonathan, M.-S. Alias
Abstract:
Heritage trees are natural large, individual trees with exceptionally value due to association with age or event or distinguished people. In Malaysia, there is an abundance of tropical heritage trees throughout the country. It is essential to set up a repository of heritage trees to prevent valuable trees from being cut down. In this cross domain study, a web-based online expert system namely the Heritage Tree Expert Assessment and Classification (HTEAC) is developed and deployed for public to nominate potential heritage trees. Based on the nomination, tree care experts or arborists would evaluate and verify the nominated trees as heritage trees. The expert system automatically rates the approved heritage trees according to pre-defined grades via Delphi technique. Features and usability test of the expert system are presented. Preliminary result is promising for the system to be used as a full scale public system.Keywords: arboriculture, Delphi, expert system, heritage tree, urban forestry
Procedia PDF Downloads 3125542 Segmentation of Liver Using Random Forest Classifier
Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir
Abstract:
Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.Keywords: CT images, image validation, random forest, segmentation
Procedia PDF Downloads 3135541 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem
Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães
Abstract:
This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.Keywords: path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart
Procedia PDF Downloads 1665540 A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms
Authors: Divya Agarwal, Pushpendra S. Bharti
Abstract:
Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc.Keywords: path planning, obstacle avoidance, autonomous mobile robots, algorithms
Procedia PDF Downloads 2325539 Relationship between Chlorophyl Content and Calculated Index Values of Citrus Trees
Authors: Namik Kemal Sonmez
Abstract:
Based passive remote sensing technologies have been widely used in many plant species. However, use of these techniques in orange trees is limited. In this study, the relationships between chlorophyll content (Chl) and calculated red edge (RE) and vegetation index values of the citrus leave at different growth stages were formed the basis for the analysis. Canopy reflectance by hand-held spectroradiometer and total Chl analysis at the lab were measured simultaneously, from the random samples taken from four different parts of an orange orchard. Plant materials consisted of four different age groups of 15, 20, 25, and 30 years old orange trees. Reflectance measurements were conducted between 450 and 900 nanometer (nm) wavelength at four different bands (3 visible bands and 1 near-infrared band) at the four basic physiological periods (flowering, fruit setting, fruit maturity, and dormancy) of orange trees. According to the statistical analysis conducted, there was a strong relationship between the chlorophyll content and calculated indexes (p ≤ 0.01; R²= 0.925 at red edge and R²= 0.986 at vegetation index) at the fruit setting stage of 20 years old trees. Again at this stage, fruit setting, total Chl content values among all orange trees were significantly correlated at the RE and VI with the R² values of 0.672 and 0.635 at the 0.001 level, respectively. This indicated that the relationships between Chl content and index values were very strong at this stage, in comparison to the other stages.Keywords: spectroradiometer, citrus, chlorophyll, reflectance, index
Procedia PDF Downloads 3735538 Estimation of Carbon Uptake of Seoul City Street Trees in Seoul and Plans for Increase Carbon Uptake by Improving Species
Authors: Min Woo Park, Jin Do Chung, Kyu Yeol Kim, Byoung Uk Im, Jang Woo Kim, Hae Yeul Ryu
Abstract:
Nine representative species of trees among all the street trees were selected to estimate the absorption amount of carbon dioxide emitted from street trees in Seoul calculating the biomass, amount of carbon saved, and annual absorption amount of carbon dioxide in each of the species. Planting distance of street trees in Seoul was 1,851,180 m, the number of planting lines was 1,287, the number of planted trees was 284,498 and 46 species of trees were planted as of 2013. According to the result of plugging the quantity of species of street trees in Seoul on the absorption amount of each of the species, 120,097 ton of biomass, 60,049.8 ton of amount of carbon saved, and 11,294 t CO2/year of annual absorption amount of carbon dioxide were calculated. Street ratio mentioned on the road statistics in Seoul in 2022 is 23.13%. If the street trees are assumed to be increased in the same rate, the number of street trees in Seoul was calculated to be 294,823. The planting distance was estimated to be 1,918,360 m, and the annual absorption amount of carbon dioxide was measured to be 11,704 t CO2/year. Plans for improving the annual absorption amount of carbon dioxide from street trees were established based on the expected amount of absorption. First of all, it is to improve the annual absorption amount of carbon dioxide by increasing the number of planted street trees after adjusting the planting distance of street trees. If adjusting the current planting distance to 6 m, it was turned out that 12,692.7 t CO2/year was absorbed on an annual basis. Secondly, it is to change the species of trees to tulip trees that represent high absorption rate. If increasing the proportion of tulip trees to 30% up to 2022, the annual absorption rate of carbon dioxide was calculated to be 17804.4 t CO2/year.Keywords: absorption of carbon dioxide, source of absorbing carbon dioxide, trees in city, improving species
Procedia PDF Downloads 3615537 Infestation in Omani Date Palm Orchards by Dubas Bug Is Related to Tree Density
Authors: Lalit Kumar, Rashid Al Shidi
Abstract:
Phoenix dactylifera (date palm) is a major crop in many middle-eastern countries, including Oman. The Dubas bug Ommatissus lybicus is the main pest that affects date palm crops. However not all plantations are infested. It is still uncertain why some plantations get infested while others are not. This research investigated whether tree density and the system of planting (random versus systematic) had any relationship with infestation and levels of infestation. Remote Sensing and Geographic Information Systems were used to determine the density of trees (number of trees per unit area) while infestation levels were determined by manual counting of insects on 40 leaflets from two fronds on each tree, with a total of 20-60 trees in each village. The infestation was recorded as the average number of insects per leaflet. For tree density estimation, WorldView-3 scenes, with eight bands and 2m spatial resolution, were used. The Local maxima method, which depends on locating of the pixel of highest brightness inside a certain exploration window, was used to identify the trees in the image and delineating individual trees. This information was then used to determine whether the plantation was random or systematic. The ordinary least square regression (OLS) was used to test the global correlation between tree density and infestation level and the Geographic Weight Regression (GWR) was used to find the local spatial relationship. The accuracy of detecting trees varied from 83–99% in agricultural lands with systematic planting patterns to 50–70% in natural forest areas. Results revealed that the density of the trees in most of the villages was higher than the recommended planting number (120–125 trees/hectare). For infestation correlations, the GWR model showed a good positive significant relationship between infestation and tree density in the spring season with R² = 0.60 and medium positive significant relationship in the autumn season, with R² = 0.30. In contrast, the OLS model results showed a weaker positive significant relationship in the spring season with R² = 0.02, p < 0.05 and insignificant relationship in the autumn season with R² = 0.01, p > 0.05. The results showed a positive correlation between infestation and tree density, which suggests the infestation severity increased as the density of date palm trees increased. The correlation result showed that the density alone was responsible for about 60% of the increase in the infestation. This information can be used by the relevant authorities to better control infestations as well as to manage their pesticide spraying programs.Keywords: dubas bug, date palm, tree density, infestation levels
Procedia PDF Downloads 1935536 Walmart Sales Forecasting using Machine Learning in Python
Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad
Abstract:
Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error
Procedia PDF Downloads 1495535 Valuing Public Urban Street Trees and Their Environmental Spillover Benefits
Authors: Sofia F. Franco, Jacob Macdonald
Abstract:
This paper estimates the value of urban public street trees and their complementary and substitution value with other broader urban amenities and dis-amenities via the residential housing market. We estimate a lower bound value on a city’s tree amenities under instrumental variable and geographic regression discontinuity approaches with an application to Lisbon, Portugal. For completeness, we also explore how urban trees and in particular public street trees impact house prices across the city. Finally, we jointly analyze the planting and maintenance costs and benefits of urban street trees. The estimated value of all public trees in Lisbon is €8.84M. When considering specifically trees planted alongside roads and in public squares, the value is €6.06M or €126.64 per tree. This value is conditional on the distribution of trees in terms of their broader density, with higher effects coming from the overall greening of larger areas of the city compared to the greening of the direct neighborhood. Detrimental impacts are found when the number of trees is higher near street canyons, where they may exacerbate the stagnation of air pollution from traffic. Urban street trees also have important spillover benefits due to pollution mitigation around €6.21 million, or an additional €129.93 per tree. There are added benefits of €26.32 and €28.58 per tree in terms of flooding and heat mitigation, respectively. With significant resources and policies aimed at urban greening, the value obtained is shown to be important for discussions on the benefits of urban trees as compared to mitigation and abatement costs undertaken by a municipality.Keywords: urban public goods, urban street trees, spatial boundary discontinuities, geospatial and remote sensing methods
Procedia PDF Downloads 1775534 Effect of Different Spacings on Growth Yield and Fruit Quality of Peach in the Sub-Tropics of India
Authors: Harminder Singh, Rupinder Kaur
Abstract:
Peach is primarily a temperate fruit, but its low chilling cultivars are grown quite successfully in the sub-tropical climate as well. The area under peach cultivation is picking up rapidly in the sub tropics of northern India due to higher return on a unit area basis, availability of suitable peach cultivar and their production technology. Information on the use of different training systems on peach in the sub tropics is inadequate. In this investigation, conducted at Punjab Agricultural University, Ludhiana (Punjab), India, the trees of the Shan-i-Punjab peach were planted at four different spacings i.e. 6.0x3.0m, 6.0x2.5m, 4.5x3.0m and 4.5x2.5m and were trained to central leader system. The total radiation interception and penetration in the upper and lower canopy parts were higher in 6x3.0m and 6x2.5m planted trees as compared to other spacings. Average radiation interception was maximum in the upper part of the tree canopy, and it decreased significantly with the depth of the canopy in all the spacings. Tree planted at wider spacings produced more vegetative (tree height, tree girth, tree spread and canopy volume) and reproductive growth (flower bud density, number of fruits and fruit yield) per tree but productivity was maximum in the closely planted trees. Fruits harvested from the wider spaced trees were superior in fruit quality (size, weight, colour, TSS and acidity) and matured earlier than those harvested from closed spaced trees.Keywords: quality, radiation, spacings, yield
Procedia PDF Downloads 1885533 Random Forest Classification for Population Segmentation
Authors: Regina Chua
Abstract:
To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling
Procedia PDF Downloads 945532 Improving University Operations with Data Mining: Predicting Student Performance
Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević
Abstract:
The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.Keywords: data mining, knowledge discovery in databases, prediction models, student success
Procedia PDF Downloads 4065531 Evaluation of Monumental Trees in Bursa City in Terms of Cultural Landscape
Authors: Murat Zencirkiran, Nilufer Seyidoglu Akdeniz, Elvan Ender Altay, Zeynep Pirselimoglu Batman
Abstract:
Monumental trees make an important contribution to the cultural interaction between societies. At the same time, monument trees, which are considered as symbols of some beliefs, are living beings that are transmitted from generation to generation. Mystical, folkloric and dimensional aspects of our cultural heritage and the link between the past and present, the memorial trees of the generations of the stories conveyed the story of the legends at the same time with the aesthetic features of the objects attract attention. There are many monumental trees that witness historical processes in Bursa, which is a land of very different cultures from the Prusias (BC 232-192). Within this scope, monumental trees located within the boundaries of Bursa province and their contribution to urban culture were evaluated. Monument plane trees recorded in Bursa and its districts were determined by the Ministry of Environment and Urbanization, the Governorship of Bursa, the Provincial Directorate of Environment and Urbanism, the Directorate of Protection of Natural Assets, and these trees were examined in situ. As a result of the inspections made, the monument trees living today are classified according to their species. Within the scope of the study, it was determined that there were 1001 monumental tree species in different species within the boundaries of Bursa province. 71.83% of the recorded species were Platanus species and 11.79% were Pinus species. On the other hand, the stories about the contribution of cultural landscapes to the examples of living or now-disappearing examples of Bursa history from these monumental trees have been compiled and presented in the study.Keywords: Bursa, cultural landscape, landscape, monumental trees
Procedia PDF Downloads 4265530 Experimental Evaluation of Succinct Ternary Tree
Authors: Dmitriy Kuptsov
Abstract:
Tree data structures, such as binary or in general k-ary trees, are essential in computer science. The applications of these data structures can range from data search and retrieval to sorting and ranking algorithms. Naive implementations of these data structures can consume prohibitively large volumes of random access memory limiting their applicability in certain solutions. Thus, in these cases, more advanced representation of these data structures is essential. In this paper we present the design of the compact version of ternary tree data structure and demonstrate the results for the experimental evaluation using static dictionary problem. We compare these results with the results for binary and regular ternary trees. The conducted evaluation study shows that our design, in the best case, consumes up to 12 times less memory (for the dictionary used in our experimental evaluation) than a regular ternary tree and in certain configuration shows performance comparable to regular ternary trees. We have evaluated the performance of the algorithms using both 32 and 64 bit operating systems.Keywords: algorithms, data structures, succinct ternary tree, per- formance evaluation
Procedia PDF Downloads 1605529 WSN System Warns Atta Cephalotes Climbing in Mango Fruit Trees
Authors: Federico Hahn Schlam, Fermín Martínez Solís
Abstract:
Leaf-cutting ants (Atta cephalotes) forage from mango tree leaves and flowers to feed their colony. Farmers find it difficult to control ants due to the great quantity of trees grown in commercial orchards. In this article, IoT can support farmers for ant detection in real time, as production losses can be considered of 324 US per tree.A wireless sensor network, WSN, was developed to warn the farmer from ant presence in trees during a night. Mango trees were gathered into groups of 9 trees, where the central tree holds the master microcontroller, and the other eight trees presented slave microcontrollers (nodes). At each node, anemitter diode-photodiode unitdetects ants climbing up. A capacitor is chargedand discharged after being sampled every ten minutes. The system usesBLE (Bluetooth Low Energy) to communicate between the master microcontroller by BLE.When ants were detected the number of the tree was transmitted via LoRa from the masterto the producer smartphone to warn him. In this paper, BLE, LoRa, and energy consumption were studied under variable vegetation in the orchard. During 2018, 19 trees were attacked by ants, and ants fed 26.3% of flowers and 73.7% of leaves.Keywords: BLE, atta cephalotes, LoRa, WSN-smartphone, energy consumption
Procedia PDF Downloads 1585528 Stochastic Simulation of Random Numbers Using Linear Congruential Method
Authors: Melvin Ballera, Aldrich Olivar, Mary Soriano
Abstract:
Digital computers nowadays must be able to have a utility that is capable of generating random numbers. Usually, computer-generated random numbers are not random given predefined values such as starting point and end points, making the sequence almost predictable. There are many applications of random numbers such business simulation, manufacturing, services domain, entertainment sector and other equally areas making worthwhile to design a unique method and to allow unpredictable random numbers. Applying stochastic simulation using linear congruential algorithm, it shows that as it increases the numbers of the seed and range the number randomly produced or selected by the computer becomes unique. If this implemented in an environment where random numbers are very much needed, the reliability of the random number is guaranteed.Keywords: stochastic simulation, random numbers, linear congruential algorithm, pseudorandomness
Procedia PDF Downloads 3165527 Joint Path and Push Planning among Moveable Obstacles
Authors: Victor Emeli, Akansel Cosgun
Abstract:
This paper explores the navigation among movable obstacles (NAMO) problem and proposes joint path and push planning: which path to take and in what direction the obstacles should be pushed at, given a start and goal position. We present a planning algorithm for selecting a path and the obstacles to be pushed, where a rapidly-exploring random tree (RRT)-based heuristic is employed to calculate a minimal collision path. When it is necessary to apply a pushing force to slide an obstacle out of the way, the planners leverage means-end analysis through a dynamic physics simulation to determine the sequence of linear pushes to clear the necessary space. Simulation experiments show that our approach finds solutions in higher clutter percentages (up to 49%) compared to the straight-line push planner (37%) and RRT without pushing (18%).Keywords: motion planning, path planning, push planning, robot navigation
Procedia PDF Downloads 1645526 Existence Result of Third Order Functional Random Integro-Differential Inclusion
Authors: D. S. Palimkar
Abstract:
The FRIGDI (functional random integrodifferential inclusion) seems to be new and includes several known random differential inclusions already studied in the literature as special cases have been discussed in the literature for various aspects of the solutions. In this paper, we prove the existence result for FIGDI under the non-convex case of multi-valued function involved in it.Using random fixed point theorem of B. C. Dhage and caratheodory condition. This result is new to the theory of differential inclusion.Keywords: caratheodory condition, random differential inclusion, random solution, integro-differential inclusion
Procedia PDF Downloads 4665525 A Data-Mining Model for Protection of FACTS-Based Transmission Line
Authors: Ashok Kalagura
Abstract:
This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines.Keywords: distance relaying, fault-zone identification, random forests, RFs, support vector machine, SVM, thyristor-controlled series compensator, TCSC, unified power-flow controller, UPFC
Procedia PDF Downloads 4225524 Optimization of Machine Learning Regression Results: An Application on Health Expenditures
Authors: Songul Cinaroglu
Abstract:
Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure
Procedia PDF Downloads 2265523 Existence Theory for First Order Functional Random Differential Equations
Authors: Rajkumar N. Ingle
Abstract:
In this paper, the existence of a solution of nonlinear functional random differential equations of the first order is proved under caratheodory condition. The study of the functional random differential equation has got importance in the random analysis of the dynamical systems of universal phenomena. Objectives: Nonlinear functional random differential equation is useful to the scientists, engineers, and mathematicians, who are engaged in N.F.R.D.E. analyzing a universal random phenomenon, govern by nonlinear random initial value problems of D.E. Applications of this in the theory of diffusion or heat conduction. Methodology: Using the concepts of probability theory, functional analysis, generally the existence theorems for the nonlinear F.R.D.E. are prove by using some tools such as fixed point theorem. The significance of the study: Our contribution will be the generalization of some well-known results in the theory of Nonlinear F.R.D.E.s. Further, it seems that our study will be useful to scientist, engineers, economists and mathematicians in their endeavors to analyses the nonlinear random problems of the universe in a better way.Keywords: Random Fixed Point Theorem, functional random differential equation, N.F.R.D.E., universal random phenomenon
Procedia PDF Downloads 5015522 Count of Trees in East Africa with Deep Learning
Authors: Nubwimana Rachel, Mugabowindekwe Maurice
Abstract:
Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization
Procedia PDF Downloads 715521 Trees in Different Vegetation Types of Mt. Hamiguitan Range, Davao Oriental, Mindanao Island, Philippines
Authors: Janece Jean A. Polizon, Victor B. Amoroso
Abstract:
Mt. Hamiguitan Range in Davao Oriental, Mindanao Island, Philippines is the only protected area with pygmy forest and a priority site for protection and conservation. This range harbors different vegetation types such as agroecosystem, dipterocarp forest, montane forest and mossy forest. This study was conducted to determine the diversity of trees and shrubs in different vegetation types of Mt. Hamiguitan Range. Transect walk and 16 sampling plots of 20 x 20 m were established in the different vegetation types. Specimens collected were classified and identified using the Flora Malesiana and type images. Assessment of status was determined based on International Union for the Conservation of Nature (IUCN). There were 223 species of trees, 141 genera and 71 families. Of the vegetation types, the pygmy forest obtained a comparatively high diversity value of H=1.348 followed by montane forest with H=1.284. The high species importance value (SIV) of Diospyros philippinensis for trees indicates that these species have an important role in regulating the stability of the ecosystem. The tree profile of the pygmy forest is different due to the ultramafic substrate causing the dwarfness of the trees. These forest types should be given high priority for protection and conservation.Keywords: diversity, Mt Hamiguitan, vegetation, trees, shrubs
Procedia PDF Downloads 4095520 Effect of Chilling Accumulation on Fruit Yield of Olive Trees in Egypt
Authors: Mohamed H. El-Sheikh, Hoda F. Zahran
Abstract:
Olive tree (Olea europaea L.) is considered as a Mediterranean tree which belongs to genus Olea that may comprise about 35 species. In fact, the crop requires mild to cool winters with a chilling accumulation from November to February with average temperatures varying between two groups of accumulated chilling hours (h1) of less than 7.2 °C (C1) and other group (h2) of less than 10 °C (C2) for flower bud differentiation. This work aims at studying the impact of chilling accumulation hours on the fruit yield of olive trees in Borg El Arab City, Alexandria Governorate, Egypt as a case study. Trees were aged around 7 years in 2010 and were exposed to chilling accumulation hours of h1, which was average of 280 hours under C1, and average h2 was around 150 hours under C2 the resulted fruit yield was around 0.5 kg/tree. On the hand, trees were aged around 7 years at 2016 showed that when average of h1 was around 390 hours under C1 and average h2 was around 220 hours under C2 then fruit yield was around 10 kg/tree. Increasing of fruit yield proved chilling accumulation effect on olive trees.Keywords: chilling accumulation, fruit yield, Olea europaea, olive
Procedia PDF Downloads 2905519 A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables
Authors: M. Hamdi, R. Rhouma, S. Belghith
Abstract:
Generating random numbers are mainly used to create secret keys or random sequences. It can be carried out by various techniques. In this paper we present a very simple and efficient pseudo-random number generator (PRNG) based on chaotic maps and S-Box tables. This technique adopted two main operations one to generate chaotic values using two logistic maps and the second to transform them into binary words using random S-Box tables. The simulation analysis indicates that our PRNG possessing excellent statistical and cryptographic properties.Keywords: Random Numbers, Chaotic map, S-box, cryptography, statistical tests
Procedia PDF Downloads 3655518 Segregation Patterns of Trees and Grass Based on a Modified Age-Structured Continuous-Space Forest Model
Authors: Jian Yang, Atsushi Yagi
Abstract:
Tree-grass coexistence system is of great importance for forest ecology. Mathematical models are being proposed to study the dynamics of tree-grass coexistence and the stability of the systems. However, few of the models concentrates on spatial dynamics of the tree-grass coexistence. In this study, we modified an age-structured continuous-space population model for forests, obtaining an age-structured continuous-space population model for the tree-grass competition model. In the model, for thermal competitions, adult trees can out-compete grass, and grass can out-compete seedlings. We mathematically studied the model to make sure tree-grass coexistence solutions exist. Numerical experiments demonstrated that a fraction of area that trees or grass occupies can affect whether the coexistence is stable or not. We also tried regulating the mortality of adult trees with other parameters and the fraction of area trees and grass occupies were fixed; results show that the mortality of adult trees is also a factor affecting the stability of the tree-grass coexistence in this model.Keywords: population-structured models, stabilities of ecosystems, thermal competitions, tree-grass coexistence systems
Procedia PDF Downloads 1595517 Tree-Based Inference for Regionalization: A Comparative Study of Global Topological Perturbation Methods
Authors: Orhun Aydin, Mark V. Janikas, Rodrigo Alves, Renato Assuncao
Abstract:
In this paper, a tree-based perturbation methodology for regionalization inference is presented. Regionalization is a constrained optimization problem that aims to create groups with similar attributes while satisfying spatial contiguity constraints. Similar to any constrained optimization problem, the spatial constraint may hinder convergence to some global minima, resulting in spatially contiguous members of a group with dissimilar attributes. This paper presents a general methodology for rigorously perturbing spatial constraints through the use of random spanning trees. The general framework presented can be used to quantify the effect of the spatial constraints in the overall regionalization result. We compare several types of stochastic spanning trees used in inference problems such as fuzzy regionalization and determining the number of regions. Performance of stochastic spanning trees is juxtaposed against the traditional permutation-based hypothesis testing frequently used in spatial statistics. Inference results for fuzzy regionalization and determining the number of regions is presented on the Local Area Personal Incomes for Texas Counties provided by the Bureau of Economic Analysis.Keywords: regionalization, constrained clustering, probabilistic inference, fuzzy clustering
Procedia PDF Downloads 228