Search results for: hydrological processes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5834

Search results for: hydrological processes

5834 Geospatial Analysis of Hydrological Response to Forest Fires in Small Mediterranean Catchments

Authors: Bojana Horvat, Barbara Karleusa, Goran Volf, Nevenka Ozanic, Ivica Kisic

Abstract:

Forest fire is a major threat in many regions in Croatia, especially in coastal areas. Although they are often caused by natural processes, the most common cause is the human factor, intentional or unintentional. Forest fires drastically transform landscapes and influence natural processes. The main goal of the presented research is to analyse and quantify the impact of the forest fire on hydrological processes and propose the model that best describes changes in hydrological patterns in the analysed catchments. Keeping in mind the spatial component of the processes, geospatial analysis is performed to gain better insight into the spatial variability of the hydrological response to disastrous events. In that respect, two catchments that experienced severe forest fire were delineated, and various hydrological and meteorological data were collected both attribute and spatial. The major drawback is certainly the lack of hydrological data, common in small torrential karstic streams; hence modelling results should be validated with the data collected in the catchment that has similar characteristics and established hydrological monitoring. The event chosen for the modelling is the forest fire that occurred in July 2019 and burned nearly 10% of the analysed area. Surface (land use/land cover) conditions before and after the event were derived from the two Sentinel-2 images. The mapping of the burnt area is based on a comparison of the Normalized Burn Index (NBR) computed from both images. To estimate and compare hydrological behaviour before and after the event, curve number (CN) values are assigned to the land use/land cover classes derived from the satellite images. Hydrological modelling resulted in surface runoff generation and hence prediction of hydrological responses in the catchments to a forest fire event. The research was supported by the Croatian Science Foundation through the project 'Influence of Open Fires on Water and Soil Quality' (IP-2018-01-1645).

Keywords: Croatia, forest fire, geospatial analysis, hydrological response

Procedia PDF Downloads 136
5833 Drying and Transport Processes in Distributed Hydrological Modelling Based on Finite Volume Schemes (Iber Model)

Authors: Carlos Caro, Ernest Bladé, Pedro Acosta, Camilo Lesmes

Abstract:

The drying-wet process is one of the topics to be more careful in distributed hydrological modeling using finite volume schemes as a means of solving the equations of Saint Venant. In a hydrologic and hydraulic computer model, surface flow phenomena depend mainly on the different flow accumulation and subsequent runoff generation. These accumulations are generated by routing, cell by cell, from the heights of water, which begin to appear due to the rain at each instant of time. Determine when it is considered a dry cell and when considered wet to include in the full calculation is an issue that directly affects the quantification of direct runoff or generation of flow at the end of a zone of contribution by accumulations flow generated from cells or finite volume.

Keywords: hydrology, transport processes, hydrological modelling, finite volume schemes

Procedia PDF Downloads 386
5832 Heterogeneity of Soil Moisture and Its Impacts on the Mountainous Watershed Hydrology in Northwest China

Authors: Chansheng He, Zhongfu Wang, Xiao Bai, Jie Tian, Xin Jin

Abstract:

Heterogeneity of soil hydraulic properties directly affects hydrological processes at different scales. Understanding heterogeneity of soil hydraulic properties such as soil moisture is therefore essential for modeling watershed ecohydrological processes, particularly in hard to access, topographically complex mountainous watersheds. This study maps spatial variations of soil moisture by in situ observation network that consists of sampling points, zones, and tributaries, and monitors corresponding hydrological variables of air and soil temperatures, evapotranspiration, infiltration, and runoff in the Upper Reach of the Heihe River Watershed, a second largest inland river (terminal lake) with a drainage area of over 128,000 km² in Northwest China. Subsequently, the study uses a hydrological model, SWAT (Soil and Water Assessment Tool) to simulate the effects of heterogeneity of soil moisture on watershed hydrological processes. The spatial clustering method, Full-Order-CLK was employed to derive five soil heterogeneous zones (Configuration 97, 80, 65, 40, and 20) for soil input to SWAT. Results show the simulations by the SWAT model with the spatially clustered soil hydraulic information from the field sampling data had much better representation of the soil heterogeneity and more accurate performance than the model using the average soil property values for each soil type derived from the coarse soil datasets. Thus, incorporating detailed field sampling soil heterogeneity data greatly improves performance in hydrologic modeling.

Keywords: heterogeneity, soil moisture, SWAT, up-scaling

Procedia PDF Downloads 346
5831 The Visualization of Hydrological and Hydraulic Models Based on the Platform of Autodesk Civil 3D

Authors: Xiyue Wang, Shaoning Yan

Abstract:

Cities in China today is faced with an increasingly serious river ecological crisis accompanying with the development of urbanization: waterlogging on account of the fragmented urban natural hydrological system; the limited ecological function of the hydrological system caused by a destruction of water system and waterfront ecological environment. Additionally, the eco-hydrological processes of rivers are affected by various environmental factors, which are more complex in the context of urban environment. Therefore, efficient hydrological monitoring and analysis tools, accurate and visual hydrological and hydraulic models are becoming more important basis for decision-makers and an important way for landscape architects to solve urban hydrological problems, formulating sustainable and forward-looking schemes. The study mainly introduces the river and flood analysis model based on the platform of Autodesk Civil 3D. Taking the Luanhe River in Qian'an City of Hebei Province as an example, the 3D models of the landform, river, embankment, shoal, pond, underground stream and other land features were initially built, with which the water transfer simulation analysis, river floodplain analysis, and river ecology analysis were carried out, ultimately the real-time visualized simulation and analysis of rivers in various hypothetical scenarios were realized. Through the establishment of digital hydrological and hydraulic model, the hydraulic data can be accurately and intuitively simulated, which provides basis for rational water system and benign urban ecological system design. Though, the hydrological and hydraulic model based on Autodesk Civil3D own its boundedness: the interaction between the model and other data and software is unfavorable; the huge amount of 3D data and the lack of basic data restrict the accuracy and application range. The hydrological and hydraulic model based on Autodesk Civil3D platform provides more possibility to access convenient and intelligent tool for urban planning and monitoring, a solid basis for further urban research and design.

Keywords: visualization, hydrological and hydraulic model, Autodesk Civil 3D, urban river

Procedia PDF Downloads 297
5830 Variability of Hydrological Modeling of the Blue Nile

Authors: Abeer Samy, Oliver C. Saavedra Valeriano, Abdelazim Negm

Abstract:

The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling.

Keywords: Blue Nile Basin, climate change, hydrological modeling, watershed

Procedia PDF Downloads 366
5829 Assessment of Mountain Hydrological Processes in the Gumera Catchment, Ethiopia

Authors: Tewele Gebretsadkan Haile

Abstract:

Mountain terrains are essential to regional water resources by regulating hydrological processes that use downstream water supplies. Nevertheless, limited observed earth data in complex topography poses challenges for water resources regulation. That's why satellite product is implemented in this study. This study evaluates hydrological processes on mountain catchment of Gumera, Ethiopia using HBV-light model with satellite precipitation products (CHIRPS) for the temporal scale of 1996 to 2010 and area coverage of 1289 km2. The catchment is characterized by cultivation dominant and elevation ranges from 1788 to 3606 m above sea level. Three meteorological stations have been used for downscaling of the satellite data and one stream flow for calibration and validation. The result shows total annual water balance showed that precipitation 1410 mm, simulated 828 mm surface runoff compared to 1042 mm observed stream flow with actual evapotranspiration estimate 586mm and 1495mm potential evapotranspiration. The temperature range is 9°C in winter to 21°C. The catchment contributes 74% as quack runoff to the total runoff and 26% as lower groundwater storage, which sustains stream flow during low periods. The model uncertainty was measured using different metrics such as coefficient of determination, model efficiency, efficiency for log(Q) and flow weighted efficiency 0.76, 0.74, 0.66 and 0.70 respectively. The research result highlights that HBV model captures the mountain hydrology simulation and the result indicates quack runoff due to the traditional agricultural system, slope factor of the topography and adaptation measure for water resource management is recommended.

Keywords: mountain hydrology, CHIRPS, Gumera, HBV model

Procedia PDF Downloads 12
5828 Quantification of the Gumera Catchment's Mountain Hydrological Processes in Ethiopia

Authors: Tewele Gebretsadkan Haile

Abstract:

Mountain terrains are essential to regional water resources by regulating hydrological processes that use downstream water supplies. Nevertheless, limited observed earth data in complex topography poses challenges for water resources regulation. That's why satellite product is implemented in this study. This study evaluates hydrological processes on mountain catchment of Gumera, Ethiopia using HBV-light model with satellite precipitation products (CHIRPS) for the temporal scale of 1996 to 2010 and area coverage of 1289 km2. The catchment is characterized by cultivation dominant and elevation ranges from 1788 to 3606 m above sea level. Three meteorological stations have been used for downscaling of the satellite data and one stream flow for calibration and validation. The result shows total annual water balance showed that precipitation 1410 mm, simulated 828 mm surface runoff compared to 1042 mm observed stream flow with actual evapotranspiration estimate 586mm and 1495mm potential evapotranspiration. The temperature range is 9°C in winter to 21°C. The catchment contributes 74% as quack runoff to the total runoff and 26% as lower groundwater storage, which sustains stream flow during low periods. The model uncertainty was measured using different metrics such as coefficient of determination, model efficiency, efficiency for log(Q) and flow weighted efficiency 0.76, 0.74, 0.66 and 0.70 respectively. The research result highlights that HBV model captures the mountain hydrology simulation and the result indicates quack runoff due to the traditional agricultural system, slope factor of the topography and adaptation measure for water resource management is recommended.

Keywords: mountain hydrology, CHIRPS, HBV model, Gumera

Procedia PDF Downloads 11
5827 Hydrological Modeling of Watersheds Using the Only Corresponding Competitor Method: The Case of M’Zab Basin, South East Algeria

Authors: Oulad Naoui Noureddine, Cherif ELAmine, Djehiche Abdelkader

Abstract:

Water resources management includes several disciplines; the modeling of rainfall-runoff relationship is the most important discipline to prevent natural risks. There are several models to study rainfall-runoff relationship in watersheds. However, the majority of these models are not applicable in all basins of the world.  In this study, a new stochastic method called The Only Corresponding Competitor method (OCC) was used for the hydrological modeling of M’ZAB   Watershed (South East of Algeria) to adapt a few empirical models for any hydrological regime.  The results obtained allow to authorize a certain number of visions, in which it would be interesting to experiment with hydrological models that improve collectively or separately the data of a catchment by the OCC method.

Keywords: modelling, optimization, rainfall-runoff relationship, empirical model, OCC

Procedia PDF Downloads 265
5826 Hydrologic Balance and Surface Water Resources of the Cheliff-Zahrez Basin

Authors: Mehaiguene Madjid, Touhari Fadhila, Meddi Mohamed

Abstract:

The Cheliff basin offers a good hydrological example for the possibility of studying the problem which elucidated in the future, because of the unclearity in several aspects and hydraulic installation. Thus, our study of the Cheliff basin is divided into two principal parts: The spatial evaluation of the precipitation: also, the understanding of the modes of the reconstitution of the resource in water supposes a good knowledge of the structuring of the precipitation fields in the studied space. In the goal of a good knowledge of revitalizes them in water and their management integrated one judged necessary to establish a precipitation card of the Cheliff basin for a good understanding of the evolution of the resource in water in the basin and that goes will serve as basis for all study of hydraulic planning in the Cheliff basin. Then, the establishment of the precipitation card of the Cheliff basin answered a direct need of setting to the disposition of the researchers for the region and a document of reference that will be completed therefore and actualized. The hydrological study, based on the statistical hydrometric data processing will lead us to specify the hydrological terms of the assessment hydrological and to clarify the fundamental aspects of the annual flow, seasonal, extreme and thus of their variability and resources surface water.

Keywords: hydrological assessment, surface water resources, Cheliff, Algeria

Procedia PDF Downloads 304
5825 Geographic Information Systems and Remotely Sensed Data for the Hydrological Modelling of Mazowe Dam

Authors: Ellen Nhedzi Gozo

Abstract:

Unavailability of adequate hydro-meteorological data has always limited the analysis and understanding of hydrological behaviour of several dam catchments including Mazowe Dam in Zimbabwe. The problem of insufficient data for Mazowe Dam catchment analysis was solved by extracting catchment characteristics and aerial hydro-meteorological data from ASTER, LANDSAT, Shuttle Radar Topographic Mission SRTM remote sensing (RS) images using ILWIS, ArcGIS and ERDAS Imagine geographic information systems (GIS) software. Available observed hydrological as well as meteorological data complemented the use of the remotely sensed information. Ground truth land cover was mapped using a Garmin Etrex global positioning system (GPS) system. This information was then used to validate land cover classification detail that was obtained from remote sensing images. A bathymetry survey was conducted using a SONAR system connected to GPS. Hydrological modelling using the HBV model was then performed to simulate the hydrological process of the catchment in an effort to verify the reliability of the derived parameters. The model output shows a high Nash-Sutcliffe Coefficient that is close to 1 indicating that the parameters derived from remote sensing and GIS can be applied with confidence in the analysis of Mazowe Dam catchment.

Keywords: geographic information systems, hydrological modelling, remote sensing, water resources management

Procedia PDF Downloads 336
5824 Estimation of the Parameters of Muskingum Methods for the Prediction of the Flood Depth in the Moudjar River Catchment

Authors: Fares Laouacheria, Said Kechida, Moncef Chabi

Abstract:

The objective of the study was based on the hydrological routing modelling for the continuous monitoring of the hydrological situation in the Moudjar river catchment, especially during floods with Hydrologic Engineering Center–Hydrologic Modelling Systems (HEC-HMS). The HEC-GeoHMS was used to transform data from geographic information system (GIS) to HEC-HMS for delineating and modelling the catchment river in order to estimate the runoff volume, which is used as inputs to the hydrological routing model. Two hydrological routing models were used, namely Muskingum and Muskingum routing models, for conducting this study. In this study, a comparison between the parameters of the Muskingum and Muskingum-Cunge routing models in HEC-HMS was used for modelling flood routing in the Moudjar river catchment and determining the relationship between these parameters and the physical characteristics of the river. The results indicate that the effects of input parameters such as the weighting factor "X" and travel time "K" on the output results are more significant, where the Muskingum routing model was more sensitive to input parameters than the Muskingum-Cunge routing model. This study can contribute to understand and improve the knowledge of the mechanisms of river floods, especially in ungauged river catchments.

Keywords: HEC-HMS, hydrological modelling, Muskingum routing model, Muskingum-Cunge routing model

Procedia PDF Downloads 278
5823 Application of Hydrological Model in Support of Streamflow Allocation in Arid Watersheds in Northwestern China

Authors: Chansheng He, Lanhui Zhang, Baoqing Zhang

Abstract:

Spatial heterogeneity of landscape significantly affects watershed hydrological processes, particularly in high elevation and cold mountainous watersheds such as the inland river (terminal lake) basins in Northwest China, where the upper reach mountainous areas are the main source of streamflow for the downstream agricultural oases and desert ecosystems. Thus, it is essential to take into account spatial variations of hydrological processes in streamflow allocation at the watershed scale. This paper adapts the Distributed Large Basin Runoff Model (DLBRM) to the Heihe River Watershed, the second largest inland river with a drainage area of about 128,000 km2 in Northwest China, for understanding the transfer and partitioning mechanism among the glacier and snowmelt, surface runoff, evapotranspiration, and groundwater recharge among the upper, middle, and lower reaches in the study area. Results indicate that the upper reach Qilian Mountain area is the main source of streamflow for the middle reach agricultural oasis and downstream desert areas. Large withdrawals for agricultural irrigation in the middle reach had significantly depleted river flow for the lower reach desert ecosystems. Innovative conservation and enforcement programs need to be undertaken to ensure the successful implementation of water allocation plan of delivering 0.95 x 109 m3 of water downstream annually by the State Council in the Heihe River Watershed.

Keywords: DLBRM, Northwestern China, spatial variation, water allocation

Procedia PDF Downloads 302
5822 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling

Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo

Abstract:

Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.

Keywords: computational modelling, evolutionary algorithms, genetic programming, hydrological modelling

Procedia PDF Downloads 298
5821 Application of Public Access Two-Dimensional Hydrodynamic and Distributed Hydrological Models for Flood Forecasting in Ungauged Basins

Authors: Ahmad Shayeq Azizi, Yuji Toda

Abstract:

In Afghanistan, floods are the most frequent and recurrent events among other natural disasters. On the other hand, lack of monitoring data is a severe problem, which increases the difficulty of making the appropriate flood countermeasures of flood forecasting. This study is carried out to simulate the flood inundation in Harirud River Basin by application of distributed hydrological model, Integrated Flood Analysis System (IFAS) and 2D hydrodynamic model, International River Interface Cooperative (iRIC) based on satellite rainfall combined with historical peak discharge and global accessed data. The results of the simulation can predict the inundation area, depth and velocity, and the hardware countermeasures such as the impact of levee installation can be discussed by using the present method. The methodology proposed in this study is suitable for the area where hydrological and geographical data including river survey data are poorly observed.

Keywords: distributed hydrological model, flood inundation, hydrodynamic model, ungauged basins

Procedia PDF Downloads 166
5820 Influence of Precipitation and Land Use on Extreme Flow in Prek Thnot River Basin of Mekong River in Cambodia

Authors: Chhordaneath Hen, Ty Sok, Ilan Ich, Ratboren Chan, Chantha Oeurng

Abstract:

The damages caused by hydrological extremes such as flooding have been severe globally, and several research studies indicated extreme precipitations play a crucial role. Cambodia is one of the most vulnerable countries exposed to floods and drought as consequences of climate impact. Prek Thnot River Basin in the southwest part of Cambodia, which is in the plate and plateau region and a part of the Mekong Delta, was selected to investigate the changes in extreme precipitation and hydrological extreme. Furthermore, to develop a statistical relationship between these phenomena in this basin from 1995 to 2020 using Multiple Linear Regression. The precipitation and hydrological extreme were assessed via the attributes and trends of rainfall patterns during the study periods. The extreme flow was defined as a dependent variable, while the independent variables are various extreme precipitation indices. The study showed that all extreme precipitations indices (R10, R20, R35, CWD, R95p, R99p, and PRCPTOT) had increasing decency. However, the number of rain days per year had a decreasing tendency, which can conclude that extreme rainfall was more intense in a shorter period of the year. The study showed a similar relationship between extreme precipitation and hydrological extreme and land use change association with hydrological extreme. The direct combination of land use and precipitation equals 37% of the flood causes in this river. This study provided information on these two causes of flood events and an understanding of expectations of climate change consequences for flood and water resources management.

Keywords: extreme precipitation, hydrological extreme, land use, land cover, Prek Thnot river basin

Procedia PDF Downloads 111
5819 Review of Downscaling Methods in Climate Change and Their Role in Hydrological Studies

Authors: Nishi Bhuvandas, P. V. Timbadiya, P. L. Patel, P. D. Porey

Abstract:

Recent perceived climate variability raises concerns with unprecedented hydrological phenomena and extremes. Distribution and circulation of the waters of the Earth become increasingly difficult to determine because of additional uncertainty related to anthropogenic emissions. According to the sixth Intergovernmental Panel on Climate Change (IPCC) Technical Paper on Climate Change and water, changes in the large-scale hydrological cycle have been related to an increase in the observed temperature over several decades. Although many previous research carried on effect of change in climate on hydrology provides a general picture of possible hydrological global change, new tools and frameworks for modelling hydrological series with nonstationary characteristics at finer scales, are required for assessing climate change impacts. Of the downscaling techniques, dynamic downscaling is usually based on the use of Regional Climate Models (RCMs), which generate finer resolution output based on atmospheric physics over a region using General Circulation Model (GCM) fields as boundary conditions. However, RCMs are not expected to capture the observed spatial precipitation extremes at a fine cell scale or at a basin scale. Statistical downscaling derives a statistical or empirical relationship between the variables simulated by the GCMs, called predictors, and station-scale hydrologic variables, called predictands. The main focus of the paper is on the need for using statistical downscaling techniques for projection of local hydrometeorological variables under climate change scenarios. The projections can be then served as a means of input source to various hydrologic models to obtain streamflow, evapotranspiration, soil moisture and other hydrological variables of interest.

Keywords: climate change, downscaling, GCM, RCM

Procedia PDF Downloads 406
5818 Assimilating Multi-Mission Satellites Data into a Hydrological Model

Authors: Mehdi Khaki, Ehsan Forootan, Joseph Awange, Michael Kuhn

Abstract:

Terrestrial water storage, as a source of freshwater, plays an important role in human lives. Hydrological models offer important tools for simulating and predicting water storages at global and regional scales. However, their comparisons with 'reality' are imperfect mainly due to a high level of uncertainty in input data and limitations in accounting for all complex water cycle processes, uncertainties of (unknown) empirical model parameters, as well as the absence of high resolution (both spatially and temporally) data. Data assimilation can mitigate this drawback by incorporating new sets of observations into models. In this effort, we use multi-mission satellite-derived remotely sensed observations to improve the performance of World-Wide Water Resources Assessment system (W3RA) hydrological model for estimating terrestrial water storages. For this purpose, we assimilate total water storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) and surface soil moisture data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) into W3RA. This is done to (i) improve model estimations of water stored in ground and soil moisture, and (ii) assess the impacts of each satellite of data (from GRACE and AMSR-E) and their combination on the final terrestrial water storage estimations. These data are assimilated into W3RA using the Ensemble Square-Root Filter (EnSRF) filtering technique over Mississippi Basin (the United States) and Murray-Darling Basin (Australia) between 2002 and 2013. In order to evaluate the results, independent ground-based groundwater and soil moisture measurements within each basin are used.

Keywords: data assimilation, GRACE, AMSR-E, hydrological model, EnSRF

Procedia PDF Downloads 289
5817 Potential Impacts of Climate Change on Hydrological Droughts in the Limpopo River Basin

Authors: Nokwethaba Makhanya, Babatunde J. Abiodun, Piotr Wolski

Abstract:

Climate change possibly intensifies hydrological droughts and reduces water availability in river basins. Despite this, most research on climate change effects in southern Africa has focused exclusively on meteorological droughts. This thesis projects the potential impact of climate change on the future characteristics of hydrological droughts in the Limpopo River Basin (LRB). The study uses regional climate model (RCM) measurements (from the Coordinated Regional Climate Downscaling Experiment, CORDEX) and a combination of hydrological simulations (using the Soil and Water Assessment Tool Plus model, SWAT+) to predict the impacts at four global warming levels (GWLs: 1.5℃, 2.0℃, 2.5℃, and 3.0℃) under the RCP8.5 future climate scenario. The SWAT+ model was calibrated and validated with a streamflow dataset observed over the basin, and the sensitivity of model parameters was investigated. The performance of the SWAT+LRB model was verified using the Nash-Sutcliffe efficiency (NSE), Percent Bias (PBIAS), Root Mean Square Error (RMSE), and coefficient of determination (R²). The Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Precipitation Index (SPI) have been used to detect meteorological droughts. The Soil Water Index (SSI) has been used to define agricultural drought, while the Water Yield Drought Index (WYLDI), the Surface Run-off Index (SRI), and the Streamflow Index (SFI) have been used to characterise hydrological drought. The performance of the SWAT+ model simulations over LRB is sensitive to the parameters CN2 (initial SCS runoff curve number for moisture condition II) and ESCO (soil evaporation compensation factor). The best simulation generally performed better during the calibration period than the validation period. In calibration and validation periods, NSE is ≤ 0.8, while PBIAS is ≥ ﹣80.3%, RMSE ≥ 11.2 m³/s, and R² ≤ 0.9. The simulations project a future increase in temperature and potential evapotranspiration over the basin, but they do not project a significant future trend in precipitation and hydrological variables. However, the spatial distribution of precipitation reveals a projected increase in precipitation in the southern part of the basin and a decline in the northern part of the basin, with the region of reduced precipitation projected to increase with GWLs. A decrease in all hydrological variables is projected over most parts of the basin, especially over the eastern part of the basin. The simulations predict meteorological droughts (i.e., SPEI and SPI), agricultural droughts (i.e., SSI), and hydrological droughts (i.e., WYLDI, SRI) would become more intense and severe across the basin. SPEI-drought has a greater magnitude of increase than SPI-drought, and agricultural and hydrological droughts have a magnitude of increase between the two. As a result, this research suggests that future hydrological droughts over the LRB could be more severe than the SPI-drought projection predicts but less severe than the SPEI-drought projection. This research can be used to mitigate the effects of potential climate change on basin hydrological drought.

Keywords: climate change, CORDEX, drought, hydrological modelling, Limpopo River Basin

Procedia PDF Downloads 128
5816 An Extensive Review of Drought Indices

Authors: Shamsulhaq Amin

Abstract:

Drought can arise from several hydrometeorological phenomena that result in insufficient precipitation, soil moisture, and surface and groundwater flow, leading to conditions that are considerably drier than the usual water content or availability. Drought is often assessed using indices that are associated with meteorological, agricultural, and hydrological phenomena. In order to effectively handle drought disasters, it is essential to accurately determine the kind, intensity, and extent of the drought using drought characterization. This information is critical for managing the drought before, during, and after the rehabilitation process. Over a hundred drought assessments have been created in literature to evaluate drought disasters, encompassing a range of factors and variables. Some models utilise solely hydrometeorological drivers, while others employ remote sensing technology, and some incorporate a combination of both. Comprehending the entire notion of drought and taking into account drought indices along with their calculation processes are crucial for researchers in this discipline. Examining several drought metrics in different studies requires additional time and concentration. Hence, it is crucial to conduct a thorough examination of approaches used in drought indices in order to identify the most straightforward approach to avoid any discrepancies in numerous scientific studies. In case of practical application in real-world, categorizing indices relative to their usage in meteorological, agricultural, and hydrological phenomena might help researchers maximize their efficiency. Users have the ability to explore different indexes at the same time, allowing them to compare the convenience of use and evaluate the benefits and drawbacks of each. Moreover, certain indices exhibit interdependence, which enhances comprehension of their connections and assists in making informed decisions about their suitability in various scenarios. This study provides a comprehensive assessment of various drought indices, analysing their types and computation methodologies in a detailed and systematic manner.

Keywords: drought classification, drought severity, drought indices, agriculture, hydrological

Procedia PDF Downloads 41
5815 The Effects of Native Forests Conservation and Preservation Scenarios on Two Chilean Basins Water Cycle, under Climate Change Conditions

Authors: Hernández Marieta, Aguayo Mauricio, Pedreros María, Llompart Ovidio

Abstract:

The hydrological cycle is influenced by multiple factors, including climate change, land use changes, and anthropogenic activities, all of which threaten water availability and quality worldwide. In recent decades, numerous investigations have used landscape metrics and hydrological modeling to demonstrate the influence of landscape patterns on the hydrological cycle components' natural dynamics. Many of these investigations have determined the repercussions on the quality and availability of water, sedimentation, and erosion regime, mainly in Asian basins. In fact, there is progress in this branch of science, but there are still unanswered questions for our region. This study examines the hydrological response in Chilean basins under various land use change scenarios (LUCC) and the influence of climate change. The components of the water cycle were modeled using a physically distributed type hydrological and hydraulic simulation model based on and oriented to mountain basins TETIS model. Future climate data were derived from Chilean regional simulations using the WRF-MIROC5 model, forced with the RCP 8.5 scenario, at a 25 km resolution for the periods 2030-2060 and 2061-2091. LUCC scenarios were designed based on nature-based solutions, landscape pattern influences, current national and international water conservation legislation, and extreme scenarios of non-preservation and conservation of native forests. The scenarios that demonstrate greater water availability, even under climate change, are those promoting the restoration of native forests in over 30% of the basins, even alongside agricultural activities. Current legislation promoting the restoration of native forests only in riparian zones (30-60 m or 200 m in steeper areas) will not be resilient enough to address future water shortages. Evapotranspiration, direct runoff, and water availability at basin outlets showed the greatest variations due to LUCC. The relationship between hydrological modeling and landscape configuration is an effective tool for establishing future territorial planning that prioritizes water resource protection.

Keywords: TETIS, landscape pattern, hydrological process, water availability, Chilean basins

Procedia PDF Downloads 36
5814 Hydrological Characterization of a Watershed for Streamflow Prediction

Authors: Oseni Taiwo Amoo, Bloodless Dzwairo

Abstract:

In this paper, we extend the versatility and usefulness of GIS as a methodology for any river basin hydrologic characteristics analysis (HCA). The Gurara River basin located in North-Central Nigeria is presented in this study. It is an on-going research using spatial Digital Elevation Model (DEM) and Arc-Hydro tools to take inventory of the basin characteristics in order to predict water abstraction quantification on streamflow regime. One of the main concerns of hydrological modelling is the quantification of runoff from rainstorm events. In practice, the soil conservation service curve (SCS) method and the Conventional procedure called rational technique are still generally used these traditional hydrological lumped models convert statistical properties of rainfall in river basin to observed runoff and hydrograph. However, the models give little or no information about spatially dispersed information on rainfall and basin physical characteristics. Therefore, this paper synthesizes morphometric parameters in generating runoff. The expected results of the basin characteristics such as size, area, shape, slope of the watershed and stream distribution network analysis could be useful in estimating streamflow discharge. Water resources managers and irrigation farmers could utilize the tool for determining net return from available scarce water resources, where past data records are sparse for the aspect of land and climate.

Keywords: hydrological characteristic, stream flow, runoff discharge, land and climate

Procedia PDF Downloads 341
5813 Hydrological Evaluation of Satellite Precipitation Products Using IHACRES Rainfall-Runoff Model over a Basin in Iran

Authors: Mahmoud Zakeri Niri, Saber Moazami, Arman Abdollahipour, Hossein Ghalkhani

Abstract:

The objective of this research is to hydrological evaluation of four widely-used satellite precipitation products named PERSIANN, TMPA-3B42V7, TMPA-3B42RT, and CMORPH over Zarinehrood basin in Iran. For this aim, at first, daily streamflow of Sarough-cahy river of Zarinehrood basin was simulated using IHACRES rainfall-runoff model with daily rain gauge and temperature as input data from 1988 to 2008. Then, the model was calibrated in two different periods through comparison the simulated discharge with the observed one at hydrometric stations. Moreover, in order to evaluate the performance of satellite precipitation products in streamflow simulation, the calibrated model was validated using daily satellite rainfall estimates from the period of 2003 to 2008. The obtained results indicated that TMPA-3B42V7 with CC of 0.69, RMSE of 5.93 mm/day, MAE of 4.76 mm/day, and RBias of -5.39% performs better simulation of streamflow than those PERSIANN and CMORPH over the study area. It is noteworthy that in Iran, the availability of ground measuring station data is very limited because of the sparse density of hydro-meteorological networks. On the other hand, large spatial and temporal variability of precipitations and lack of a reliable and extensive observing system are the most important challenges to rainfall analysis, flood prediction, and other hydrological applications in this country.

Keywords: hydrological evaluation, IHACRES, satellite precipitation product, streamflow simulation

Procedia PDF Downloads 241
5812 Evaluating the Water Balance of Sokoto Basement Complex to Address Water Security Challenges

Authors: Murtala Gada Abubakar, Aliyu T. Umar

Abstract:

A substantial part of Nigeria is part of semi-arid areas of the world, underlain by basement complex (hard) rocks which are very poor in both transmission and storage of appreciable quantity of water. Recently, a growing attention is being paid on the need to develop water resources in these areas largely due to concerns about increasing droughts and the need to maintain water security challenges. While there is ample body of knowledge that captures the hydrological behaviours of the sedimentary part, reported research which unambiguously illustrates water distribution in the basement complex of the Sokoto basin remains sparse. Considering the growing need to meet the water requirements of those living in this region necessitated the call for accurate water balance estimations that can inform a sustainable planning and development to address water security challenges for the area. To meet this task, a one-dimensional soil water balance model was developed and utilised to assess the state of water distribution within the Sokoto basin basement complex using measured meteorological variables and information about different landscapes within the complex. The model simulated the soil water storage and rates of input and output of water in response to climate and irrigation where applicable using data from 2001 to 2010 inclusive. The results revealed areas within the Sokoto basin basement complex that are rich and deficient in groundwater resource. The high potential areas identified includes the fadama, the fractured rocks and the cultivated lands, while the low potential areas are the sealed surfaces and non-fractured rocks. This study concludes that the modelling approach is a useful tool for assessing the hydrological behaviour and for better understanding the water resource availability within a basement complex.

Keywords: basement complex, hydrological processes, Sokoto Basin, water security

Procedia PDF Downloads 319
5811 Hydrological Modeling and Climate Change Impact Assessment Using HBV Model, A Case Study of Karnali River Basin of Nepal

Authors: Sagar Shiwakoti, Narendra Man Shakya

Abstract:

The lumped conceptual hydrological model HBV is applied to the Karnali River Basin to estimate runoff at several gauging stations and to analyze the changes in catchment hydrology and future flood magnitude due to climate change. The performance of the model is analyzed to assess its suitability to simulate streamflow in snow fed mountainous catchments. Due to the structural complexity, the model shows difficulties in modeling low and high flows accurately at the same time. It is observed that the low flows were generally underestimated and the peaks were correctly estimated except for some sharp peaks due to isolated precipitation events. In this study, attempt has been made to evaluate the importance of snow melt discharge in the runoff regime of the basin. Quantification of contribution of snowmelt to annual, summer and winter runoff has been done. The contribution is highest at the beginning of the hot months as the accumulated snow begins to melt. Examination of this contribution under conditions of increased temperatures indicate that global warming leading to increase in average basin temperature will significantly lead to higher contributions to runoff from snowmelt. Forcing the model with the output of HadCM3 GCM and the A1B scenario downscaled to the station level show significant changes to catchment hydrology in the 2040s. It is observed that the increase in runoff is most extreme in June - July. A shift in the hydrological regime is also observed.

Keywords: hydrological modeling, HBV light, rainfall runoff modeling, snow melt, climate change

Procedia PDF Downloads 540
5810 Determining the Extent and Direction of Relief Transformations Caused by Ski Run Construction Using LIDAR Data

Authors: Joanna Fidelus-Orzechowska, Dominika Wronska-Walach, Jaroslaw Cebulski

Abstract:

Mountain areas are very often exposed to numerous transformations connected with the development of tourist infrastructure. In mountain areas in Poland ski tourism is very popular, so agricultural areas are often transformed into tourist areas. The construction of new ski runs can change the direction and rate of slope development. The main aim of this research was to determine geomorphological and hydrological changes within slopes caused by ski run constructions. The study was conducted in the Remiaszów catchment in the Inner Polish Carpathians (southern Poland). The mean elevation of the catchment is 859 m a.s.l. and the maximum is 946 m a.s.l. The surface area of the catchment is 1.16 km2, of which 16.8% is the area of the two studied ski runs. The studied ski runs were constructed in 2014 and 2015. In order to determine the relief transformations connected with new ski run construction high resolution LIDAR data was analyzed. The general relief changes in the studied catchment were determined on the basis of ALS (Airborne Laser Scanning ) data obtained before (2013) and after (2016) ski run construction. Based on the two sets of ALS data a digital elevation models of differences (DoDs) was created, which made it possible to determine the quantitative relief changes in the entire studied catchment. Additionally, cross and longitudinal profiles were calculated within slopes where new ski runs were built. Detailed data on relief changes within selected test surfaces was obtained based on TLS (Terrestrial Laser Scanning). Hydrological changes within the analyzed catchment were determined based on the convergence and divergence index. The study shows that the construction of the new ski runs caused significant geomorphological and hydrological changes in the entire studied catchment. However, the most important changes were identified within the ski slopes. After the construction of ski runs the entire catchment area lowered about 0.02 m. Hydrological changes in the studied catchment mainly led to the interruption of surface runoff pathways and changes in runoff direction and geometry.

Keywords: hydrological changes, mountain areas, relief transformations, ski run construction

Procedia PDF Downloads 143
5809 Role of Numerical Simulation as a Tool to Enhance Climate Change Adaptation and Resilient Societies: A Case Study from the Philippines

Authors: Pankaj Kumar

Abstract:

Rapid global changes resulted in unfavorable hydrological, ecological, and environmental changes and cumulatively affected natural resources. As a result, the local communities become vulnerable to water stress, poor hygiene, the spread of diseases, food security, etc.. However, the central point for this vulnerability revolves around water resources and the way people interrelate with the hydrological system. Also, most of the efforts to minimize the adverse effect of global changes are centered on the mitigation side. Hence, countries with poor adaptive capacities and poor governance suffer most in case of disasters. However, several transdisciplinary numerical tools are well designed and are capable of answering “what-if questions” through scenario analysis using a system approach. This study has predicted the future water environment in Marikina River in the National Capital Region, Metro Manila of Philippines, using Water Evaluation and Planning (WEAP), an integrated water resource management tool. Obtained results can answer possible adaptation measures along with their associated uncertainties. It also highlighted various challenges for the policy planners to design adaptation countermeasures as well as to track the progress of achieving SDG 6.0.

Keywords: water quality, Philippines, climate change adaptation, hydrological simulation, wastewater management, weap

Procedia PDF Downloads 105
5808 Applications of the Morphological Variability in River Management: A Study of West Rapti River

Authors: Partha Sarathi Mondal, Srabani Sanyal

Abstract:

Different geomorphic agents produce a different landforms pattern. Similarly rivers also have a distinct and diverse landforms pattern. And even, within a river course different and distinct assemblage of landforms i.e. morphological variability are seen. These morphological variability are produced by different river processes. Channel and floodplain morphology helps to interpret river processes. Consequently morphological variability can be used as an important tool for assessing river processes, hydrological connectivity and river health, which will help us to draw inference about river processes and therefore, management of river health. The present study is documented on West Rapti river, a trans-boundary river flowing through Nepal and India, from its source to confluence with Ghaghra river in India. The river shows a significant morphological variability throughout its course. The present study tries to find out factors and processes responsible for the morphological variability of the river and in which way it can be applied in river management practices. For this purpose channel and floodplain morphology of West Rapti river was mapped as accurately as possible and then on the basis of process-form interactions, inferences are drawn to understand factors of morphological variability. The study shows that the valley setting of West Rapti river, in the Himalayan region, is confined and somewhere partly confined whereas, channel of the West Rapti river is single thread in most part of Himalayan region and braided in valley region. In the foothill region valley is unconfined and channel is braided, in middle part channel is meandering and valley is unconfined, whereas, channel is anthropogenically altered in the lower part of the course. Due to this the morphology of West Rapti river is highly diverse. These morphological variability are produced by different geomorphic processes. Therefore, for any river management it is essential to sustain these morphological variability so that the river could not cross the geomorphic threshold and environmental flow of the river along with the biodiversity of riparian region is maintained.

Keywords: channel morphology, environmental flow, floodplain morphology, geomorphic threshold

Procedia PDF Downloads 373
5807 Assessment of the Impacts of Climate Change on Watershed Runoff Using Soil and Water Assessment Tool Model in Southeast Nigeria

Authors: Samuel Emeka Anarah, Kingsley Nnaemeka Ogbu, Obasi Arinze

Abstract:

Quantifying the hydrological response due to changes in climate change is imperative for proper management of water resources within a watershed. The impact of climate change on the hydrology of the Upper Ebony River (UER) watershed, South East Nigeria, was studied using the Soil and Water Assessment Tool (SWAT) hydrological model. A climatological time series analysis from 1985 - 2014 using non-parametric test showed significant negative trends in precipitation and relative humidity trend while minimum and maximum temperature, solar radiation and wind speed showed significant positive trends. Future hypothetical land-use change scenarios (Scenarios 1, 2, 3 and 4) representing urbanization and conversion of forest to agricultural land were combined with future downscaled climate model (CSIRO-Mk3-6-0) and simulated in SWAT model. Relative to the Baseline scenario (2005 - 2014), the results showed a decrease in streamflow by 10.29%, 26.20%, 11.80% and 26.72% for Scenarios 1, 2, 3, and 4 respectively. Model results suggest development of adaptation strategies to cope with the predicted hydrological conditions under future climate change in the watershed.

Keywords: climate change, hydrology, runoff, SWAT model

Procedia PDF Downloads 143
5806 Evaluation of Reliability Flood Control System Based on Uncertainty of Flood Discharge, Case Study Wulan River, Central Java, Indonesia

Authors: Anik Sarminingsih, Krishna V. Pradana

Abstract:

The failure of flood control system can be caused by various factors, such as not considering the uncertainty of designed flood causing the capacity of the flood control system is exceeded. The presence of the uncertainty factor is recognized as a serious issue in hydrological studies. Uncertainty in hydrological analysis is influenced by many factors, starting from reading water elevation data, rainfall data, selection of method of analysis, etc. In hydrological modeling selection of models and parameters corresponding to the watershed conditions should be evaluated by the hydraulic model in the river as a drainage channel. River cross-section capacity is the first defense in knowing the reliability of the flood control system. Reliability of river capacity describes the potential magnitude of flood risk. Case study in this research is Wulan River in Central Java. This river occurring flood almost every year despite some efforts to control floods such as levee, floodway and diversion. The flood-affected areas include several sub-districts, mainly in Kabupaten Kudus and Kabupaten Demak. First step is analyze the frequency of discharge observation from Klambu weir which have time series data from 1951-2013. Frequency analysis is performed using several distribution frequency models such as Gumbel distribution, Normal, Normal Log, Pearson Type III and Log Pearson. The result of the model based on standard deviation overlaps, so the maximum flood discharge from the lower return periods may be worth more than the average discharge for larger return periods. The next step is to perform a hydraulic analysis to evaluate the reliability of river capacity based on the flood discharge resulted from several methods. The selection of the design flood discharge of flood control system is the result of the method closest to bankfull capacity of the river.

Keywords: design flood, hydrological model, reliability, uncertainty, Wulan river

Procedia PDF Downloads 294
5805 Application of Data Driven Based Models as Early Warning Tools of High Stream Flow Events and Floods

Authors: Mohammed Seyam, Faridah Othman, Ahmed El-Shafie

Abstract:

The early warning of high stream flow events (HSF) and floods is an important aspect in the management of surface water and rivers systems. This process can be performed using either process-based models or data driven-based models such as artificial intelligence (AI) techniques. The main goal of this study is to develop efficient AI-based model for predicting the real-time hourly stream flow (Q) and apply it as early warning tool of HSF and floods in the downstream area of the Selangor River basin, taken here as a paradigm of humid tropical rivers in Southeast Asia. The performance of AI-based models has been improved through the integration of the lag time (Lt) estimation in the modelling process. A total of 8753 patterns of Q, water level, and rainfall hourly records representing one-year period (2011) were utilized in the modelling process. Six hydrological scenarios have been arranged through hypothetical cases of input variables to investigate how the changes in RF intensity in upstream stations can lead formation of floods. The initial SF was changed for each scenario in order to include wide range of hydrological situations in this study. The performance evaluation of the developed AI-based model shows that high correlation coefficient (R) between the observed and predicted Q is achieved. The AI-based model has been successfully employed in early warning throughout the advance detection of the hydrological conditions that could lead to formations of floods and HSF, where represented by three levels of severity (i.e., alert, warning, and danger). Based on the results of the scenarios, reaching the danger level in the downstream area required high RF intensity in at least two upstream areas. According to results of applications, it can be concluded that AI-based models are beneficial tools to the local authorities for flood control and awareness.

Keywords: floods, stream flow, hydrological modelling, hydrology, artificial intelligence

Procedia PDF Downloads 248