Search results for: extreme precipitation events
3474 Changes in Temperature and Precipitation Extremes in Northern Thailand
Authors: Chakrit Chotamonsak
Abstract:
This study was analyzed changes in temperature and precipitation extremes in northern Thailand for the period 1981-2011.The study includes an analysis of the average and trends of changes in temperature and precipitation using 22 climate indices, related to the intensity, frequency and duration of extreme climate events. The results showed that the averaged trend of maximum, minimum and mean temperature is likely to increase over the study area in rate of 0.5, 0.9 and 0.7 °C in last 30 years. Changes in temperature at nighttime, then rising at a rate higher daytime is resulting to decline of diurnal temperature range throughout the area. Trend of changes in average precipitation during the year 1981-2011 is expected to increase at an average rate of 21%. The intensity of extreme temperature events is increasing almost all station. In particular, the changes of the night were unusually hot has intensified throughout the region. In some provinces such as Chiang Mai and Lampang are likely be faced with the severity of hot days and hot nights in increasing rate. Frequency of extreme temperature events are likely to increase each station, especially hot days, and hot nights are increasing at a rate of 2.38 and 3.58 days per decade. Changes in the cold days and cold nights are declining at a rate of 0.82 and 3.03 days per decade. The duration of extreme temperature events is expected to increase the events hot in every station. An average of 17.8 days per decade for the number of consecutive cold winter nights likely shortens the rate of 2.90 days per decade. The analysis of the precipitation indices reveals the intensity of extreme precipitation is increasing almost across the region. The intensify expressed the heavy rain in one day (Rx1day) and very heavy rain accumulated in 5 days (RX5day) which is likely to increase, and very heavy rainfall is likely to increase in intensity. Frequency of extreme precipitation events is likely to increase over the station. The average frequency of heavy precipitation events increased xxx days per decade. The duration of extreme precipitation events, such as the consecutive dry days are likely to reduce the numbers almost all station while the consecutive wet days tends to increase and decrease at different numbers in different areas.Keywords: climate extreme, temperature extreme, precipitation extreme, Northern Thailand
Procedia PDF Downloads 2833473 A Machine Learning-Based Approach to Capture Extreme Rainfall Events
Authors: Willy Mbenza, Sho Kenjiro
Abstract:
Increasing efforts are directed towards a better understanding and foreknowledge of extreme precipitation likelihood, given the adverse effects associated with their occurrence. This knowledge plays a crucial role in long-term planning and the formulation of effective emergency response. However, predicting extreme events reliably presents a challenge to conventional empirical/statistics due to the involvement of numerous variables spanning different time and space scales. In the recent time, Machine Learning has emerged as a promising tool for predicting the dynamics of extreme precipitation. ML techniques enables the consideration of both local and regional physical variables that have a strong influence on the likelihood of extreme precipitation. These variables encompasses factors such as air temperature, soil moisture, specific humidity, aerosol concentration, among others. In this study, we develop an ML model that incorporates both local and regional variables while establishing a robust relationship between physical variables and precipitation during the downscaling process. Furthermore, the model provides valuable information on the frequency and duration of a given intensity of precipitation.Keywords: machine learning (ML), predictions, rainfall events, regional variables
Procedia PDF Downloads 883472 Influence of Precipitation and Land Use on Extreme Flow in Prek Thnot River Basin of Mekong River in Cambodia
Authors: Chhordaneath Hen, Ty Sok, Ilan Ich, Ratboren Chan, Chantha Oeurng
Abstract:
The damages caused by hydrological extremes such as flooding have been severe globally, and several research studies indicated extreme precipitations play a crucial role. Cambodia is one of the most vulnerable countries exposed to floods and drought as consequences of climate impact. Prek Thnot River Basin in the southwest part of Cambodia, which is in the plate and plateau region and a part of the Mekong Delta, was selected to investigate the changes in extreme precipitation and hydrological extreme. Furthermore, to develop a statistical relationship between these phenomena in this basin from 1995 to 2020 using Multiple Linear Regression. The precipitation and hydrological extreme were assessed via the attributes and trends of rainfall patterns during the study periods. The extreme flow was defined as a dependent variable, while the independent variables are various extreme precipitation indices. The study showed that all extreme precipitations indices (R10, R20, R35, CWD, R95p, R99p, and PRCPTOT) had increasing decency. However, the number of rain days per year had a decreasing tendency, which can conclude that extreme rainfall was more intense in a shorter period of the year. The study showed a similar relationship between extreme precipitation and hydrological extreme and land use change association with hydrological extreme. The direct combination of land use and precipitation equals 37% of the flood causes in this river. This study provided information on these two causes of flood events and an understanding of expectations of climate change consequences for flood and water resources management.Keywords: extreme precipitation, hydrological extreme, land use, land cover, Prek Thnot river basin
Procedia PDF Downloads 1113471 The Impacts of Land Use Change and Extreme Precipitation Events on Ecosystem Services
Authors: Szu-Hua Wang
Abstract:
Urban areas contain abundant potential biochemical storages and renewable and non-renewable flows. Urban natural environments for breeding natural assets and urban economic development for maintaining urban functions can be analyzed form the concept of ecological economic system. Land use change and ecosystem services change are resulting from the interactions between human activities and environments factually. Land use change due to human activities is the major cause of climate change, leading to serious impacts on urban ecosystem services, including provisioning services, regulating services, cultural services and supporting services. However, it lacks discussion on the interactions among urban land use change, ecosystem services change, and extreme precipitation events. Energy synthesis can use the same measure standard unit, solar energy, for different energy resources (e.g. sunlight, water, fossil fuels, minerals, etc.) and analyze contributions of various natural environmental resources on human economic systems. Therefore, this research adopts the concept of ecological, economic systems and energy synthesis for analyzing dynamic spatial impacts of land use change on ecosystem services, using the Taipei area as a case study. The analysis results show that changes in land use in the Taipei area, especially the conversion of natural lands and agricultural lands to urban lands, affect the ecosystem services negatively. These negative effects become more significant during the extreme precipitation events.Keywords: urban ecological economic system, extreme precipitation events, ecosystem services, energy
Procedia PDF Downloads 1903470 Prediction of Extreme Precipitation in East Asia Using Complex Network
Authors: Feng Guolin, Gong Zhiqiang
Abstract:
In order to study the spatial structure and dynamical mechanism of extreme precipitation in East Asia, a corresponding climate network is constructed by employing the method of event synchronization. It is found that the area of East Asian summer extreme precipitation can be separated into two regions: one with high area weighted connectivity receiving heavy precipitation mostly during the active phase of the East Asian Summer Monsoon (EASM), and another one with low area weighted connectivity receiving heavy precipitation during both the active and the retreat phase of the EASM. Besides,a way for the prediction of extreme precipitation is also developed by constructing a directed climate networks. The simulation accuracy in East Asia is 58% with a 0-day lead, and the prediction accuracy is 21% and average 12% with a 1-day and an n-day (2≤n≤10) lead, respectively. Compare to the normal EASM year, the prediction accuracy is lower in a weak year and higher in a strong year, which is relevant to the differences in correlations and extreme precipitation rates in different EASM situations. Recognizing and identifying these effects is good for understanding and predicting extreme precipitation in East Asia.Keywords: synchronization, climate network, prediction, rainfall
Procedia PDF Downloads 4423469 Major Mechanisms of Atmospheric Moisture Transport and Their Role in Precipitation Extreme Events in the Amazonia
Authors: Luis Gimeno, Rosmeri da Rocha, Raquel Nieto, Tercio Ambrizzi, Alex Ramos, Anita Drumond
Abstract:
The transport of moisture from oceanic sources to the continents represents the atmospheric branch of the water cycle, forming the connection between evaporation from the ocean and precipitation over the continents. In this regard two large scale dynamical/meteorological structures appear to play a key role, namely Low Level Jet (LLJ) systems and Atmospheric Rivers (ARs). The former are particularly important in tropical and subtropical regions; the latter is mostly confined to extratropical regions. A key question relates to the anomalies in the transport of moisture observed during natural hazards related to extremes of precipitation (i.e., drought or wet spells). In this study we will be focused on these two major atmospheric moisture transport mechanisms (LLJs and ARs) and its role in precipitation extreme events (droughts and wet spells) in the Amazonia paying particular attention to i) intensification (decreasing) of moisture transport by them and its role in wet spells (droughts), and ii) changes in their positions and occurrence with associated flooding and wet spells.Keywords: droughts, wet spells, amazonia, LLJs, atmospheric rivers
Procedia PDF Downloads 3023468 Nonstationary Modeling of Extreme Precipitation in the Wei River Basin, China
Authors: Yiyuan Tao
Abstract:
Under the impact of global warming together with the intensification of human activities, the hydrological regimes may be altered, and the traditional stationary assumption was no longer satisfied. However, most of the current design standards of water infrastructures were still based on the hypothesis of stationarity, which may inevitably result in severe biases. Many critical impacts of climate on ecosystems, society, and the economy are controlled by extreme events rather than mean values. Therefore, it is of great significance to identify the non-stationarity of precipitation extremes and model the precipitation extremes in a nonstationary framework. The Wei River Basin (WRB), located in a continental monsoon climate zone in China, is selected as a case study in this study. Six extreme precipitation indices were employed to investigate the changing patterns and stationarity of precipitation extremes in the WRB. To identify if precipitation extremes are stationary, the Mann-Kendall trend test and the Pettitt test, which is used to examine the occurrence of abrupt changes are adopted in this study. Extreme precipitation indices series are fitted with non-stationary distributions that selected from six widely used distribution functions: Gumbel, lognormal, Weibull, gamma, generalized gamma and exponential distributions by means of the time-varying moments model generalized additive models for location, scale and shape (GAMLSS), where the distribution parameters are defined as a function of time. The results indicate that: (1) the trends were not significant for the whole WRB, but significant positive/negative trends were still observed in some stations, abrupt changes for consecutive wet days (CWD) mainly occurred in 1985, and the assumption of stationarity is invalid for some stations; (2) for these nonstationary extreme precipitation indices series with significant positive/negative trends, the GAMLSS models are able to capture well the temporal variations of the indices, and perform better than the stationary model. Finally, the differences between the quantiles of nonstationary and stationary models are analyzed, which highlight the importance of nonstationary modeling of precipitation extremes in the WRB.Keywords: extreme precipitation, GAMLSSS, non-stationary, Wei River Basin
Procedia PDF Downloads 1243467 The Effects of Extreme Precipitation Events on Ecosystem Services
Authors: Szu-Hua Wang, Yi-Wen Chen
Abstract:
Urban ecosystems are complex coupled human-environment systems. They contain abundant natural resources for producing natural assets and attract urban assets to consume natural resources for urban development. Urban ecosystems provide several ecosystem services, including provisioning services, regulating services, cultural services, and supporting services. Rapid global climate change makes urban ecosystems and their ecosystem services encountering various natural disasters. Lots of natural disasters have occurred around the world under the constant changes in the frequency and intensity of extreme weather events in the past two decades. In Taiwan, hydrological disasters have been paid more attention due to the potential high sensitivity of Taiwan’s cities to climate change, and it impacts. However, climate change not only causes extreme weather events directly but also affects the interactions among human, ecosystem services and their dynamic feedback processes indirectly. Therefore, this study adopts a systematic method, solar energy synthesis, based on the concept of the eco-energy analysis. The Taipei area, the most densely populated area in Taiwan, is selected as the study area. The changes of ecosystem services between 2015 and Typhoon Soudelor have been compared in order to investigate the impacts of extreme precipitation events on ecosystem services. The results show that the forest areas are the largest contributions of energy to ecosystem services in the Taipei area generally. Different soil textures of different subsystem have various upper limits of water contents or substances. The major contribution of ecosystem services of the study area is natural hazard regulation provided by the surface water resources areas. During the period of Typhoon Soudelor, the freshwater supply in the forest areas had become the main contribution. Erosion control services were the main ecosystem service affected by Typhoon Soudelor. The second and third main ecosystem services were hydrologic regulation and food supply. Due to the interactions among ecosystem services, fresh water supply, water purification, and waste treatment had been affected severely.Keywords: ecosystem, extreme precipitation events, ecosystem services, solar energy synthesis
Procedia PDF Downloads 1483466 Regional Changes under Extreme Meteorological Events
Authors: Renalda El Samra, Elie Bou-Zeid, Hamza Kunhu Bangalath, Georgiy Stenchikov, Mutasem El Fadel
Abstract:
The regional-scale impact of climate change over complex terrain was examined through high-resolution dynamic downscaling conducted using the Weather Research and Forecasting (WRF) model, with initial and boundary conditions from a High-Resolution Atmospheric Model (HiRAM). The analysis was conducted over the eastern Mediterranean, with a focus on the country of Lebanon, which is characterized by a challenging complex topography that magnifies the effect of orographic precipitation. Four year-long WRF simulations, selected based on HiRAM time series, were performed to generate future climate projections of extreme temperature and precipitation over the study area under the conditions of the Representative Concentration Pathway (RCP) 4.5. One past WRF simulation year, 2008, was selected as a baseline to capture dry extremes of the system. The results indicate that the study area might be exposed to a temperature increase between 1.0 and 3ºC in summer mean values by 2050, in comparison to 2008. For extreme years, the decrease in average annual precipitation may exceed 50% at certain locations in comparison to 2008.Keywords: HiRAM, regional climate modeling, WRF, Representative Concentration Pathway (RCP)
Procedia PDF Downloads 3973465 Studying the Moisture Sources and the Stable Isotope Characteristic of Moisture in Northern Khorasan Province, North-Eastern Iran
Authors: Mojtaba Heydarizad, Hamid Ghalibaf Mohammadabadi
Abstract:
Iran is a semi-arid and arid country in south-western Asia in the Middle East facing intense climatological drought from the early times. Therefore, studying the precipitation events and the moisture sources and air masses causing precipitation has great importance in this region. In this study, the moisture sources and stable isotope content of precipitation moisture in three main events in 2015 have been studied in North-Eastern Iran. HYSPLIT model backward trajectories showed that the Caspian Sea and the mixture of the Caspian and Mediterranean Seas are dominant moisture sources for the studied events. This showed the role of cP (Siberian) and Mediterranean (MedT) air masses. Stable isotope studies showed that precipitation events originated from the Caspian Sea with lower Sea Surface Temperature (SST) have more depleted isotope values. However, precipitation events sourced from the mixture of the Caspian and the Mediterranean Seas (with higher SST) showed more enriched isotope values.Keywords: HYSPLIT, Iran, Northern Khorasan, stable isotopes
Procedia PDF Downloads 1323464 The Event of Extreme Precipitation Occurred in the Metropolitan Mesoregion of the Capital of Para
Authors: Natasha Correa Vitória Bandeira, Lais Cordeiro Soares, Claudineia Brazil, Luciane Teresa Salvi
Abstract:
The intense rain event that occurred between February 16 and 18, 2018, in the city of Barcarena in Pará, located in the North region of Brazil, demonstrates the importance of analyzing this type of event. The metropolitan mesoregion of Belem was severely punished by rains much above the averages normally expected for that time of year; this phenomenon affected, in addition to the capital, the municipalities of Barcarena, Murucupi and Muruçambá. Resulting in a great flood in the rivers of the region, whose basins were affected with great intensity of precipitation, causing concern for the local population because in this region, there are located companies that accumulate ore tailings, and in this specific case, the dam of any of these companies, leaching the ore to the water bodies of the Murucupi River Basin. This article aims to characterize this phenomenon through a special analysis of the distribution of rainfall, using data from atmospheric soundings, satellite images, radar images and data from the GPCP (Global Precipitation Climatology Project), in addition to rainfall stations located in the study region. The results of the work demonstrated a dissociation between the data measured in the meteorological stations and the other forms of analysis of this extreme event. Monitoring carried out solely on the basis of data from pluviometric stations is not sufficient for monitoring and/or diagnosing extreme weather events, and investment by the competent bodies is important to install a larger network of pluviometric stations sufficient to meet the demand in a given region.Keywords: extreme precipitation, great flood, GPCP, ore dam
Procedia PDF Downloads 1073463 Statistical Analysis of Extreme Flow (Regions of Chlef)
Authors: Bouthiba Amina
Abstract:
The estimation of the statistics bound to the precipitation represents a vast domain, which puts numerous challenges to meteorologists and hydrologists. Sometimes, it is necessary, to approach in value the extreme events for sites where there is little, or no datum, as well as their periods of return. The search for a model of the frequency of the heights of daily rains dresses a big importance in operational hydrology: It establishes a basis for predicting the frequency and intensity of floods by estimating the amount of precipitation in past years. The most known and the most common approach is the statistical approach, It consists in looking for a law of probability that fits best the values observed by the random variable " daily maximal rain " after a comparison of various laws of probability and methods of estimation by means of tests of adequacy. Therefore, a frequent analysis of the annual series of daily maximal rains was realized on the data of 54 pluviometric stations of the pond of high and average. This choice was concerned with five laws usually applied to the study and the analysis of frequent maximal daily rains. The chosen period is from 1970 to 2013. It was of use to the forecast of quantiles. The used laws are the law generalized by extremes to three components, those of the extreme values to two components (Gumbel and log-normal) in two parameters, the law Pearson typifies III and Log-Pearson III in three parameters. In Algeria, Gumbel's law has been used for a long time to estimate the quantiles of maximum flows. However, and we will check and choose the most reliable law.Keywords: return period, extreme flow, statistics laws, Gumbel, estimation
Procedia PDF Downloads 783462 Understanding Regional Circulations That Modulate Heavy Precipitations in the Kulfo Watershed
Authors: Tesfay Mekonnen Weldegerima
Abstract:
Analysis of precipitation time series is a fundamental undertaking in meteorology and hydrology. The extreme precipitation scenario of the Kulfo River watershed is studied using wavelet analysis and atmospheric transport, a lagrangian trajectory model. Daily rainfall data for the 1991-2020 study periods are collected from the office of the Ethiopian Meteorology Institute. Meteorological fields on a three-dimensional grid at 0.5o x 0.5o spatial resolution and daily temporal resolution are also obtained from the Global Data Assimilation System (GDAS). Wavelet analysis of the daily precipitation processed with the lag-1 coefficient reveals some high power recurred once every 38 to 60 days with greater than 95% confidence for red noise. The analysis also identified inter-annual periodicity in the periods 2002 - 2005 and 2017 - 2019. Back trajectory analysis for 3-day periods up to May 19/2011, indicates the Indian Ocean source; trajectories crossed the eastern African escarpment to arrive at the Kulfo watershed. Atmospheric flows associated with the Western Indian monsoon redirected by the low-level Somali winds and Arabian ridge are responsible for the moisture supply. The time-localization of the wavelet power spectrum yields valuable hydrological information, and the back trajectory approaches provide useful characterization of air mass source.Keywords: extreme precipitation events, power spectrum, back trajectory, kulfo watershed
Procedia PDF Downloads 703461 Estimation of the Drought Index Based on the Climatic Projections of Precipitation of the Uruguay River Basin
Authors: José Leandro Melgar Néris, Claudinéia Brazil, Luciane Teresa Salvi, Isabel Cristina Damin
Abstract:
The impact the climate change is not recent, the main variable in the hydrological cycle is the sequence and shortage of a drought, which has a significant impact on the socioeconomic, agricultural and environmental spheres. This study aims to characterize and quantify, based on precipitation climatic projections, the rainy and dry events in the region of the Uruguay River Basin, through the Standardized Precipitation Index (SPI). The database is the image that is part of the Intercomparison of Model Models, Phase 5 (CMIP5), which provides condition prediction models, organized according to the Representative Routes of Concentration (CPR). Compared to the normal set of climates in the Uruguay River Watershed through precipitation projections, seasonal precipitation increases for all proposed scenarios, with a low climate trend. From the data of this research, the idea is that this article can be used to support research and the responsible bodies can use it as a subsidy for mitigation measures in other hydrographic basins.Keywords: climate change, climatic model, dry events, precipitation projections
Procedia PDF Downloads 1443460 Assessing Missouri State Park Employee Perceptions of Vulnerability and Resilience to Extreme Weather Events
Authors: Ojetunde Ojewola, Mark Morgan, Sonja Wilhelm-Stanis
Abstract:
State parks and historic sites are vulnerable to extreme weather events which can affect visitor experiences, management priorities, and legislative requests for disaster relief funds. Recently, global attention has been focused on the perceptions of global warming and how the presence of extreme weather events might impact protected areas, both now and in the future. The effects of climate change are not equally distributed across the United States, leading to varied perceptions based on personal experience with extreme weather events. This study describes employee perceptions of vulnerability and resilience in Missouri State Parks & Historic Sites due to extreme weather events that occur across the state but grouped according to physiographic provinces. Using a four-point rating scale, perceptions of vulnerability and resilience were divided into high and low sub-groups, thus allowing researchers to construct a two by two typology of employee responses. Subsequently, this data was used to develop a three-point continuum of environmental concern (higher scores meant more concern). Employee scores were then compared against a statewide assessment which combined social, economic, infrastructural and environmental indicators of vulnerability and resilience. State park employees thought the system was less vulnerable and more resilient to climate change than data found in statewide assessment This result was also consistent in three out of five physiographic regions across Missouri. Implications suggest that Missouri state park should develop a climate change adaptation strategy for emergency preparedness.Keywords: extreme weather events, resilience, state parks, vulnerability
Procedia PDF Downloads 1243459 Exploration of Classic Models of Precipitation in Iran: A Case Study of Sistan and Baluchestan Province
Authors: Mohammad Borhani, Ahmad Jamshidzaei, Mehdi Koohsari
Abstract:
The study of climate has captivated human interest throughout history. In response to this fascination, individuals historically organized their daily activities in alignment with prevailing climatic conditions and seasonal variations. Understanding the elements and specific climatic parameters of each region, such as precipitation, which directly impacts human life, is essential because, in recent years, there has been a significant increase in heavy rainfall in various parts of the world attributed to the effects of climate change. Climate prediction models suggest a future scenario characterized by an increase in severe precipitation events and related floods on a global scale. This is a result of human-induced greenhouse gas emissions causing changes in the natural precipitation patterns. The Intergovernmental Panel on Climate Change reported global warming in 2001. The average global temperature has shown an increasing trend since 1861. In the 20th century, this increase has been between (0/2 ± 0/6) °C. The present study focused on examining the trend of monthly, seasonal, and annual precipitation in Sistan and Baluchestan provinces. The study employed data obtained from 13 precipitation measurement stations managed by the Iran Water Resources Management Company, encompassing daily precipitation records spanning the period from 1997 to 2016. The results indicated that the total monthly precipitation at the studied stations in Sistan and Baluchestan province follows a sinusoidal trend. The highest intense precipitation was observed in January, February, and March, while the lowest occurred in September, October, and then November. The investigation of the trend of seasonal precipitation in this province showed that precipitation follows an upward trend in the autumn season, reaching its peak in winter, and then shows a decreasing trend in spring and summer. Also, the examination of average precipitation indicated that the highest yearly precipitation occurred in 1997 and then in 2004, while the lowest annual precipitation took place between 1999 and 2001. The analysis of the annual precipitation trend demonstrates a decrease in precipitation from 1997 to 2016 in Sistan and Baluchestan province.Keywords: climate change, extreme precipitation, greenhouse gas, trend analysis
Procedia PDF Downloads 673458 Statistical Analysis of Rainfall Change over the Blue Nile Basin
Authors: Hany Mustafa, Mahmoud Roushdi, Khaled Kheireldin
Abstract:
Rainfall variability is an important feature of semi-arid climates. Climate change is very likely to increase the frequency, magnitude, and variability of extreme weather events such as droughts, floods, and storms. The Blue Nile Basin is facing extreme climate change-related events such as floods and droughts and its possible impacts on ecosystem, livelihood, agriculture, livestock, and biodiversity are expected. Rainfall variability is a threat to food production in the Blue Nile Basin countries. This study investigates the long-term variations and trends of seasonal and annual precipitation over the Blue Nile Basin for 102-year period (1901-2002). Six statistical trend analysis of precipitation was performed with nonparametric Mann-Kendall test and Sen's slope estimator. On the other hands, four statistical absolute homogeneity tests: Standard Normal Homogeneity Test, Buishand Range test, Pettitt test and the Von Neumann ratio test were applied to test the homogeneity of the rainfall data, using XLSTAT software, which results of p-valueless than alpha=0.05, were significant. The percentages of significant trends obtained for each parameter in the different seasons are presented. The study recommends adaptation strategies to be streamlined to relevant policies, enhancing local farmers’ adaptive capacity for facing future climate change effects.Keywords: Blue Nile basin, climate change, Mann-Kendall test, trend analysis
Procedia PDF Downloads 5503457 Gradient-Based Reliability Optimization of Integrated Energy Systems Under Extreme Weather Conditions: A Case Study in Ningbo, China
Abstract:
Recent extreme weather events, such as the 2021 European floods and North American heatwaves, have exposed the vulnerability of energy systems to both extreme demand scenarios and potential physical damage. Current integrated energy system designs often overlook performance under these challenging conditions. This research, focusing on a regional integrated energy system in Ningbo, China, proposes a distinct design method to optimize system reliability during extreme events. A multi-scenario model was developed, encompassing various extreme load conditions and potential system damages caused by severe weather. Based on this model, a comprehensive reliability improvement scheme was designed, incorporating a gradient approach to address different levels of disaster severity through the integration of advanced technologies like distributed energy storage. The scheme's effectiveness was validated through Monte Carlo simulations. Results demonstrate significant enhancements in energy supply reliability and peak load reduction capability under extreme scenarios. The findings provide several insights for improving energy system adaptability in the face of climate-induced challenges, offering valuable references for building reliable energy infrastructure capable of withstanding both extreme demands and physical threats across a spectrum of disaster intensities.Keywords: extreme weather events, integrated energy systems, reliability improvement, climate change adaptation
Procedia PDF Downloads 253456 Climate Change Effects in a Mediterranean Island and Streamflow Changes for a Small Basin Using Euro-Cordex Regional Climate Simulations Combined with the SWAT Model
Authors: Pier Andrea Marras, Daniela Lima, Pedro Matos Soares, Rita Maria Cardoso, Daniela Medas, Elisabetta Dore, Giovanni De Giudici
Abstract:
Climate change effects on the hydrologic cycle are the main concern for the evaluation of water management strategies. Climate models project scenarios of precipitation changes in the future, considering greenhouse emissions. In this study, the EURO-CORDEX (European Coordinated Regional Downscaling Experiment) climate models were first evaluated in a Mediterranean island (Sardinia) against observed precipitation for a historical reference period (1976-2005). A weighted multi-model ensemble (ENS) was built, weighting the single models based on their ability to reproduce observed rainfall. Future projections (2071-2100) were carried out using the 8.5 RCP emissions scenario to evaluate changes in precipitations. ENS was then used as climate forcing for the SWAT model (Soil and Water Assessment Tool), with the aim to assess the consequences of such projected changes on streamflow and runoff of two small catchments located in the South-West Sardinia. Results showed that a decrease of mean rainfall values, up to -25 % at yearly scale, is expected for the future, along with an increase of extreme precipitation events. Particularly in the eastern and southern areas, extreme events are projected to increase by 30%. Such changes reflect on the hydrologic cycle with a decrease of mean streamflow and runoff, except in spring, when runoff is projected to increase by 20-30%. These results stress that the Mediterranean is a hotspot for climate change, and the use of model tools can provide very useful information to adopt water and land management strategies to deal with such changes.Keywords: EURO-CORDEX, climate change, hydrology, SWAT model, Sardinia, multi-model ensemble
Procedia PDF Downloads 2133455 Peak Constituent Fluxes from Small Arctic Rivers Generated by Late Summer Episodic Precipitation Events
Authors: Shawn G. Gallaher, Lilli E. Hirth
Abstract:
As permafrost thaws with the continued warming of the Alaskan North Slope, a progressively thicker active thaw layer is evidently releasing previously sequestered nutrients, metals, and particulate matter exposed to fluvial transport. In this study, we estimate material fluxes on the North Slope of Alaska during the 2019-2022 melt seasons. The watershed of the Alaskan North Slope can be categorized into three regions: mountains, tundra, and coastal plain. Precipitation and discharge data were collected from repeat visits to 14 sample sites for biogeochemical surface water samples, 7 point discharge measurements, 3 project deployed meteorology stations, and 2 U. S. Geological Survey (USGS) continuous discharge observation sites. The timing, intensity, and spatial distribution of precipitation determine the material flux composition in the Sagavanirktok and surrounding bodies of water, with geogenic constituents (e.g., dissolved inorganic carbon (DIC)) expected from mountain flushed events and biogenic constituents (e.g., dissolved organic compound (DOC)) expected from transitional tundra precipitation events. Project goals include connecting late summer precipitation events to peak discharge to determine the responses of the watershed to localized atmospheric forcing. Field study measurements showed widespread precipitation in August 2019, generating an increase in total suspended solids, dissolved organic carbon, and iron fluxes from the tundra, shifting the main-stem mountain river biogeochemistry toward tundra source characteristics typically only observed during the spring floods. Intuitively, a large-scale precipitation event (as defined by this study as exceeding 12.5 mm of precipitation on a single observation day) would dilute a body of water; however, in this study, concentrations increased with higher discharge responses on several occasions. These large-scale precipitation events continue to produce peak constituent fluxes as the thaw layer increases in depth and late summer precipitation increases, evidenced by 6 large-scale events in July 2022 alone. This increase in late summer events is in sharp contrast to the 3 or fewer large events in July in each of the last 10 years. Changes in precipitation intensity, timing, and location have introduced late summer peak constituent flux events previously confined to the spring freshet.Keywords: Alaska North Slope, arctic rivers, material flux, precipitation
Procedia PDF Downloads 753454 Progress Toward More Resilient Infrastructures
Authors: Amir Golalipour
Abstract:
In recent years, resilience emerged as an important topic in transportation infrastructure practice, planning, and design to address the myriad stressors of future climate facing the Nation. Climate change has increased the frequency of extreme weather events and also causes climate and weather patterns to diverge from historic trends, culminating in circumstances where transportation infrastructure and assets are operating outside the scope of their design. To design and maintain transportation infrastructure that can continue meeting objectives over the infrastructure’s design life, these systems must be made adaptable to the changing climate by incorporating resilience wherever practically and financially feasible. This study is focused on the adaptation strategies and incorporation of resilience in infrastructure construction, maintenance, rehabilitation, and preservation processes. This study will include highlights from some of the recent FHWA activities on resilience. This study describes existing resilience planning and decision-making practices related to transportation infrastructure; mechanisms to identify, analyze, and prioritize adaptation options; and the strain that future climate and extreme weather event pressures place on existing transportation assets and the stressors these systems face for both single and combined stressor scenarios. Results of two case studies from Transportation Engineering Approaches to Climate Resiliency (TEACR) projects with focus on temperature and precipitation impacts on transportation infrastructures will be presented. These case studies looked at the impact of infrastructure performance using future temperature and precipitation compared to traditional climate design parameters. The research team used the adaptation decision making assessment and Coupled Model Intercomparison Project (CMIP) processing tool to determine which solution is best to pursue. The CMIP tool provided project climate data for temperature and precipitation which then could be incorporated into the design procedure to estimate the performance. As a result, using the future climate scenarios would impact the design. These changes were noted to have only a slight increase in costs, however it is acknowledged that network wide these costs could be significant. This study will also focus on what we have learned from recent storms, floods, and climate related events that will help us be better prepared to ensure our communities have a resilient transportation network. It should be highlighted that standardized mechanisms to incorporate resilience practices are required to encourage widespread implementation, mitigate the effects of climate stressors, and ensure the continuance of transportation systems and assets in an evolving climate.Keywords: adaptation strategies, extreme events, resilience, transportation infrastructure
Procedia PDF Downloads 33453 Evaluation of Best-Fit Probability Distribution for Prediction of Extreme Hydrologic Phenomena
Authors: Karim Hamidi Machekposhti, Hossein Sedghi
Abstract:
The probability distributions are the best method for forecasting of extreme hydrologic phenomena such as rainfall and flood flows. In this research, in order to determine suitable probability distribution for estimating of annual extreme rainfall and flood flows (discharge) series with different return periods, precipitation with 40 and discharge with 58 years time period had been collected from Karkheh River at Iran. After homogeneity and adequacy tests, data have been analyzed by Stormwater Management and Design Aid (SMADA) software and residual sum of squares (R.S.S). The best probability distribution was Log Pearson Type III with R.S.S value (145.91) and value (13.67) for peak discharge and Log Pearson Type III with R.S.S values (141.08) and (8.95) for maximum discharge in Jelogir Majin and Pole Zal stations, respectively. The best distribution for maximum precipitation in Jelogir Majin and Pole Zal stations was Log Pearson Type III distribution with R.S.S values (1.74&1.90) and then Pearson Type III distribution with R.S.S values (1.53&1.69). Overall, the Log Pearson Type III distributions are acceptable distribution types for representing statistics of extreme hydrologic phenomena in Karkheh River at Iran with the Pearson Type III distribution as a potential alternative.Keywords: Karkheh River, Log Pearson Type III, probability distribution, residual sum of squares
Procedia PDF Downloads 1973452 Extreme Value Theory Applied in Reliability Analysis: Case Study of Diesel Generator Fans
Authors: Jelena Vucicevic
Abstract:
Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. In this paper, the results for the reliability of diesel generator fans were calculated through Extreme Value Theory. The Extreme Value Theory is not widely used in the engineering field. Its usage is well known in other areas such as hydrology, meteorology, finance. The significance of this theory is in the fact that unlike the other statistical methods it is focused on rare and extreme values, and not on average. It should be noted that this theory is not designed exclusively for extreme events, but for extreme values in any event. Therefore, this is a great opportunity to apply the theory and test if it could be applied in this situation. The significance of the work is the calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know the time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. The results achieved in this method will show the approximation of time for which the fans will work as they should, and the percentage of probability of fans working more than certain estimated time. Extreme Value Theory can be applied not only for rare and extreme events, but for any event that has values which we can consider as extreme.Keywords: extreme value theory, lifetime, reliability analysis, statistic, time to failure
Procedia PDF Downloads 3283451 Climate Change and Extreme Weather: Understanding Interconnections and Implications
Authors: Johnstone Walubengo Wangusi
Abstract:
Climate change is undeniably altering the frequency, intensity, and geographic distribution of extreme weather events worldwide. In this paper, we explore the complex interconnections between climate change and extreme weather phenomena, drawing upon research from atmospheric science, geology, and climatology. We examine the underlying mechanisms driving these changes, the impacts on natural ecosystems and human societies, and strategies for adaptation and mitigation. By synthesizing insights from interdisciplinary research, this paper aims to provide a comprehensive understanding of the multifaceted relationship between climate change and extreme weather, informing efforts to address the challenges posed by a changing climate.Keywords: climate change, extreme weather, atmospheric science, geology, climatology, impacts, adaptation, mitigation
Procedia PDF Downloads 643450 Reverse Impact of Temperature as Climate Factor on Milk Production in ChaharMahal and Bakhtiari
Abstract:
When long-term changes in normal weather patterns happen in a certain area, it generally could be identified as climate change. Concentration of principal's greenhouse gases such as carbon dioxide, nitrous oxide, methane, ozone, and water vapor will cause climate change and perhaps climate variability. Main climate factors are temperature, precipitation, air pressure, and humidity. Extreme events may be the result of the changing of carbon dioxide concentration levels in the atmosphere which cause a change in temperature. Extreme events in some ways will affect the productivity of crop and dairy livestock. In this research, the correlation of milk production and temperature as the main climate factor in ChaharMahal and Bakhtiari province in Iran has been considered. The methodology employed for this study consists, collect reports and published national and provincial data, available recorded data on climate factors and analyzing collected data using statistical software. Milk production in ChaharMahal and Bakhtiari province is in the same pattern as national milk production in Iran. According to the current study results, there is a significant negative correlation between milk production in ChaharMahal and Bakhtiari provinces and temperature as the main climate change factor.Keywords: Chaharmahal and Bakhtiari, climate change, impacts, Iran, milk production
Procedia PDF Downloads 1663449 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea
Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro
Abstract:
Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting
Procedia PDF Downloads 1353448 Drought Risk Analysis Using Neural Networks for Agri-Businesses and Projects in Lejweleputswa District Municipality, South Africa
Authors: Bernard Moeketsi Hlalele
Abstract:
Drought is a complicated natural phenomenon that creates significant economic, social, and environmental problems. An analysis of paleoclimatic data indicates that severe and extended droughts are inevitable part of natural climatic circle. This study characterised drought in Lejweleputswa using both Standardised Precipitation Index (SPI) and neural networks (NN) to quantify and predict respectively. Monthly 37-year long time series precipitation data were obtained from online NASA database. Prior to the final analysis, this dataset was checked for outliers using SPSS. Outliers were removed and replaced by Expectation Maximum algorithm from SPSS. This was followed by both homogeneity and stationarity tests to ensure non-spurious results. A non-parametric Mann Kendall's test was used to detect monotonic trends present in the dataset. Two temporal scales SPI-3 and SPI-12 corresponding to agricultural and hydrological drought events showed statistically decreasing trends with p-value = 0.0006 and 4.9 x 10⁻⁷, respectively. The study area has been plagued with severe drought events on SPI-3, while on SPI-12, it showed approximately a 20-year circle. The concluded the analyses with a seasonal analysis that showed no significant trend patterns, and as such NN was used to predict possible SPI-3 for the last season of 2018/2019 and four seasons for 2020. The predicted drought intensities ranged from mild to extreme drought events to come. It is therefore recommended that farmers, agri-business owners, and other relevant stakeholders' resort to drought resistant crops as means of adaption.Keywords: drought, risk, neural networks, agri-businesses, project, Lejweleputswa
Procedia PDF Downloads 1263447 Effects of Climate Change on Hydraulic Design Methods of Railway Infrastructures
Authors: Chiara Cesali
Abstract:
The effects of climate change are increasingly evident: increases in temperature (i.e. global warming), greater frequency of extreme weather events, i.e. storms, floods, which often affect transport infrastructures. Large-scale climatological models with long-term horizons (up to 2100) show the possibility of significant increases in precipitation in the future, according to the greenhouse gas emissions scenarios from IPCC. Consequently, the insufficiency of existing hydraulic works (i.e. bridges, culverts, drainage systems) may be more frequent, or those currently being designed may become insufficient in the future. Thus, the hydraulic design methods of transport infrastructure must begin to take into account the influence of climate change. To this purpose, criteria for applying to the hydraulic design of a railway infrastructure some of the approaches currently available for determining design rainfall intensity and/or peak discharge flow on the basis of possible climate change scenarios are defined and proposed in the paper. Some application cases are also described.Keywords: climate change, hydraulic design, precipitation, railway
Procedia PDF Downloads 1793446 Extreme Value Modelling of Ghana Stock Exchange Indices
Authors: Kwabena Asare, Ezekiel N. N. Nortey, Felix O. Mettle
Abstract:
Modelling of extreme events has always been of interest in fields such as hydrology and meteorology. However, after the recent global financial crises, appropriate models for modelling of such rare events leading to these crises have become quite essential in the finance and risk management fields. This paper models the extreme values of the Ghana Stock Exchange All-Shares indices (2000-2010) by applying the Extreme Value Theory to fit a model to the tails of the daily stock returns data. A conditional approach of the EVT was preferred and hence an ARMA-GARCH model was fitted to the data to correct for the effects of autocorrelation and conditional heteroscedastic terms present in the returns series, before EVT method was applied. The Peak Over Threshold (POT) approach of the EVT, which fits a Generalized Pareto Distribution (GPD) model to excesses above a certain selected threshold, was employed. Maximum likelihood estimates of the model parameters were obtained and the model’s goodness of fit was assessed graphically using Q-Q, P-P and density plots. The findings indicate that the GPD provides an adequate fit to the data of excesses. The size of the extreme daily Ghanaian stock market movements were then computed using the Value at Risk (VaR) and Expected Shortfall (ES) risk measures at some high quantiles, based on the fitted GPD model.Keywords: extreme value theory, expected shortfall, generalized pareto distribution, peak over threshold, value at risk
Procedia PDF Downloads 5573445 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction
Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju
Abstract:
The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.Keywords: comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events
Procedia PDF Downloads 261