Search results for: dam-break flows
831 Magnetohydrodynamic Flows in a Misaligned Duct under a Uniform Magnetic Field
Authors: Mengqi Zhu, Chang Nyung Kim
Abstract:
This study numerically investigates three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a misaligned duct under a uniform magnetic field. The duct consists of two misaligned horizontal channels (one is inflow channel, the other is outflow channel) and one central vertical channel. Computational fluid dynamics simulations are performed to predict the behavior of the MHD flows, using commercial code CFX. In the current study, a case with Hartmann number 1000 is considered. The electromagnetic features of LM MHD flows are elucidated to examine the interdependency of the flow velocity, current density, electric potential, pressure drop and Lorentz force. The results show that pressure decreases linearly along the main flow direction.Keywords: CFX, liquid-metal magnetohydrodynamic flows, misaligned duct, pressure drop
Procedia PDF Downloads 284830 Numerical Analysis of Liquid Metal Magnetohydrodynamic Flows in a Manifold with Three Sub-Channels
Authors: Meimei Wen, Chang Nyung Kim
Abstract:
In the current study, three-dimensional liquid metal (LM) magneto-hydrodynamic (MHD) flows in a manifold with three sub-channels under a uniform magnetic field are numerically investigated. In the manifold, the electrical current can cross channel walls, thus having influence on the flow distribution in each sub-channel. A case with various arrangements of electric conductivity for different parts of channel walls is considered, yielding different current distributions as well as flow distributions in each sub-channel. Here, the imbalance of mass flow rates in the three sub-channels is addressed. Meanwhile, predicted are detailed behaviors of the flow velocity, pressure, current and electric potential of LM MHD flows with three sub-channels. Commercial software CFX is used for the numerical simulation of LM MHD flows.Keywords: CFX, liquid metal, manifold, MHD flow
Procedia PDF Downloads 344829 Estimating Knowledge Flow Patterns of Business Method Patents with a Hidden Markov Model
Authors: Yoonjung An, Yongtae Park
Abstract:
Knowledge flows are a critical source of faster technological progress and stouter economic growth. Knowledge flows have been accelerated dramatically with the establishment of a patent system in which each patent is required by law to disclose sufficient technical information for the invention to be recreated. Patent analysis, thus, has been widely used to help investigate technological knowledge flows. However, the existing research is limited in terms of both subject and approach. Particularly, in most of the previous studies, business method (BM) patents were not covered although they are important drivers of knowledge flows as other patents. In addition, these studies usually focus on the static analysis of knowledge flows. Some use approaches that incorporate the time dimension, yet they still fail to trace a true dynamic process of knowledge flows. Therefore, we investigate dynamic patterns of knowledge flows driven by BM patents using a Hidden Markov Model (HMM). An HMM is a popular statistical tool for modeling a wide range of time series data, with no general theoretical limit in regard to statistical pattern classification. Accordingly, it enables characterizing knowledge patterns that may differ by patent, sector, country and so on. We run the model in sets of backward citations and forward citations to compare the patterns of knowledge utilization and knowledge dissemination.Keywords: business method patents, dynamic pattern, Hidden-Markov Model, knowledge flow
Procedia PDF Downloads 328828 Magnetohydrodynamic Flows in a Conduit with Multiple Channels under a Magnetic Field Applied Perpendicular to the Plane of Flow
Authors: Yang Luo, Chang Nyung Kim
Abstract:
This study numerically analyzes a steady-state, three-dimensional liquid-metal magnetohydrodynamic flows in a conduit with multiple channels under a uniform magnetic field. The geometry of the conduit is of a four-parallel-channels system including one inflow channel and three outflow channels. The liquid-metal flows in the inflow channel, then turns 1800 in the transition segment, finally flows into three different outflow channels simultaneously. This kind of channel system can induce counter flow and co-flow, which is rarely investigated before. The axial velocity in the side layer near the first partitioning wall, which is located between the inflow channel and the first outflow channel, is the highest. ‘M-shaped’ velocity profiles are obtained in the side layers of the inflow and outflow channels. The interdependency of the current, fluid velocity, pressure, electric potential is examined in order to describe the electromagnetic characteristics of the liquid-metal flows.Keywords: liquid-metal, multiple channels, magnetic field, magnetohydrodynamic
Procedia PDF Downloads 281827 Oxygenation in Turbulent Flows over Block Ramps
Authors: Thendiyath Roshni, Stefano Pagliara
Abstract:
Block ramps (BR) or rock chutes are eco-friendly natural river restoration structures. BR are made of ramp of rocks and flows over BR develop turbulence and helps in the entrainment of ambient air. These act as natural aerators in river flow and therefore leads to oxygenation of water. As many of the hydraulic structures in rivers, hinders the natural path for aquatic habitat. However, flows over BR ascertains a natural rocky flow and ensures safe and natural movement for aquatic habitat. Hence, BR is considered as a better alternative for drop structures. As water quality is concerned, turbulent and aerated flows over BR or macro-roughness conditions improves aeration and thereby oxygenation. Hence, the objective of this paper is to study the oxygenation in the turbulent flows over BR. Experimental data were taken for a slope (S) of 27.5% for three discharges (Q = 9, 15 and 21 lps) conditions. Air concentration were measured with the help of air concentration probe for three different discharges in the uniform flow region. Oxygen concentration is deduced from the air concentration as ambient air is entrained in the flows over BR. Air concentration profiles and oxygen profiles are plotted in the uniform flow region for three discharges and found that air concentration and oxygen concentration does not show any remarkable variation in properties in the longitudinal profile in uniform flow region. An empirical relation is developed for finding the average oxygen concentration (Oₘ) for S = 27.5% in the uniform flow region for 9 < Q < 21 lps. The results show that as the discharge increases over BR, there is a reduction of oxygen concentration in the uniform flow region.Keywords: aeration, block ramps, oxygenation, turbulent flows
Procedia PDF Downloads 174826 PIV Measurements of the Instantaneous Velocities for Single and Two-Phase Flows in an Annular Duct
Authors: Marlon M. Hernández Cely, Victor E. C. Baptistella, Oscar M. H. Rodríguez
Abstract:
Particle Image Velocimetry (PIV) is a well-established technique in the field of fluid flow measurement and provides instantaneous velocity fields over global domains. It has been applied to external and internal flows and in single and two-phase flows. Regarding internal flow, works about the application of PIV in annular ducts are scanty. An experimental work is presented, where flow of water is studied in an annular duct of inner diameter of 60 mm and outer diameter of 155 mm and 10.5-m length, with the goal of obtaining detailed velocity measurements. Depending on the flow rates of water, it can be laminar, transitional or turbulent. In this study, the water flow rate was kept at three different values for the annular duct, allowing the analysis of one laminar and two turbulent flows. Velocity fields and statistic quantities of the turbulent flow were calculated.Keywords: PIV, annular duct, laminar, turbulence, velocity profile
Procedia PDF Downloads 351825 Bifurcations of the Rotations in the Thermocapillary Flows
Authors: V. Batishchev, V. Getman
Abstract:
We study the self-similar fluid flows in the Marangoni layers with the axial symmetry. Such flows are induced by the radial gradients of the temperatures whose distributions along the free boundary obey some power law. The self-similar solutions describe thermo-capillar flows both in the thin layers and in the case of infinite thickness. We consider both positive and negative temperature gradients. In the former case the cooling of free boundary nearby the axis of symmetry gives rise to the rotation of fluid. The rotating flow concentrates itself inside the Marangoni layer while outside of it the fluid does not revolve. In the latter case we observe no rotating flows at all. In the layers of infinite thickness the separation of the rotating flow creates two zones where the flows are directed oppositely. Both the longitudinal velocity and the temperature have exactly one critical point inside the boundary layer. It is worth to note that the profiles are monotonic in the case of non-swirling flows. We describe the flow outside the boundary layer with the use of self-similar solution of the Euler equations. This flow is slow and non-swirling. The introducing of an outer flow gives rise to the branching of swirling flows from the non-swirling ones. There is such the critical velocity of the outer flow that a non-swirling flow exists for supercritical velocities and cannot be extended to the sub-critical velocities. For the positive temperature gradients there are two non-swirling flows. For the negative temperature gradients the non-swirling flow is unique. We determine the critical velocity of the outer flow for which the branching of the swirling flows happens. In the case of a thin layer confined within free boundaries we show that the cooling of the free boundaries near the axis of symmetry leads to the separating of the layer and creates two sub-layers with opposite rotations inside. This makes sharp contrast with the case of infinite thickness. We show that such rotation arises provided the thickness of the layer exceed some critical value. In the case of a thin layer confined within free and rigid boundaries we construct the branching equation and the asymptotic approximation for the secondary swirling flows near the bifurcation point. It turns out that the bifurcation gives rise to one pair of the secondary swirling flows with different directions of swirl.Keywords: free surface, rotation, fluid flow, bifurcation, boundary layer, Marangoni layer
Procedia PDF Downloads 344824 On Flow Consolidation Modelling in Urban Congested Areas
Authors: Serban Stere, Stefan Burciu
Abstract:
The challenging and continuously growing competition in the urban freight transport market emphasizes the need for optimal planning of transportation processes in terms of identifying the solution of consolidating traffic flows in congested urban areas. The aim of the present paper is to present the mathematical framework and propose a methodology of combining urban traffic flows between the distribution centers located at the boundary of a congested urban area. The three scenarios regarding traffic flow between consolidation centers that are taken into consideration in the paper are based on the same characteristics of traffic flows. The scenarios differ in terms of the accessibility of the four consolidation centers given by the infrastructure, the connections between them, and the possibility of consolidating traffic flows for one or multiple destinations. Also, synthetical indicators will allow us to compare the scenarios considered and chose the indicated for our distribution system.Keywords: distribution system, single and multiple destinations, urban consolidation centers, traffic flow consolidation schemes
Procedia PDF Downloads 156823 Optimizing Network Latency with Fast Path Assignment for Incoming Flows
Abstract:
Various flows in the network require to go through different types of middlebox. The improper placement of network middlebox and path assignment for flows could greatly increase the network latency and also decrease the performance of network. Minimizing the total end to end latency of all the ows requires to assign path for the incoming flows. In this paper, the flow path assignment problem in regard to the placement of various kinds of middlebox is studied. The flow path assignment problem is formulated to a linear programming problem, which is very time consuming. On the other hand, a naive greedy algorithm is studied. Which is very fast but causes much more latency than the linear programming algorithm. At last, the paper presents a heuristic algorithm named FPA, which takes bottleneck link information and estimated bandwidth occupancy into consideration, and achieves near optimal latency in much less time. Evaluation results validate the effectiveness of the proposed algorithm.Keywords: flow path, latency, middlebox, network
Procedia PDF Downloads 207822 Persistent Homology of Convection Cycles in Network Flows
Authors: Minh Quang Le, Dane Taylor
Abstract:
Convection is a well-studied topic in fluid dynamics, yet it is less understood in the context of networks flows. Here, we incorporate techniques from topological data analysis (namely, persistent homology) to automate the detection and characterization of convective/cyclic/chiral flows over networks, particularly those that arise for irreversible Markov chains (MCs). As two applications, we study convection cycles arising under the PageRank algorithm, and we investigate chiral edges flows for a stochastic model of a bi-monomer's configuration dynamics. Our experiments highlight how system parameters---e.g., the teleportation rate for PageRank and the transition rates of external and internal state changes for a monomer---can act as homology regularizers of convection, which we summarize with persistence barcodes and homological bifurcation diagrams. Our approach establishes a new connection between the study of convection cycles and homology, the branch of mathematics that formally studies cycles, which has diverse potential applications throughout the sciences and engineering.Keywords: homology, persistent homolgy, markov chains, convection cycles, filtration
Procedia PDF Downloads 136821 Numerical Prediction of Wall Eroded Area by Cavitation
Authors: Ridha Zgolli, Ahmed Belhaj, Maroua Ennouri
Abstract:
This study presents a new method to predict cavitation area that may be eroded. It is based on the post-treatment of URANS simulations in cavitant flows. The most RANS calculations with incompressible consideration are based on cavitation model using mixture fluid with density (ρm) calculated as a function of liquid density (ρliq), vapour or gas density (ρvap) and vapour or gas volume fraction α (ρm = αρvap + (1-α) ρliq). The calculations are performed on hydrofoil geometries and compared with experimental works concerning flows characteristics (size of pocket, pressure, velocity). We present here the used cavitation model and the approach followed to evaluate the value of α fixing the shape of pocket around wall before collapsing.Keywords: flows, CFD, cavitation, erosion
Procedia PDF Downloads 338820 Modelling of Polymeric Fluid Flows between Two Coaxial Cylinders Taking into Account the Heat Dissipation
Authors: Alexander Blokhin, Ekaterina Kruglova, Boris Semisalov
Abstract:
Mathematical model based on the mesoscopic theory of polymer dynamics is developed for numerical simulation of the flows of polymeric liquid between two coaxial cylinders. This model is a system of nonlinear partial differential equations written in the cylindrical coordinate system and coupled with the heat conduction equation including a specific dissipation term. The stationary flows similar to classical Poiseuille ones are considered, and the resolving equations for the velocity of flow and for the temperature are obtained. For solving them, a fast pseudospectral method is designed based on Chebyshev approximations, that enables one to simulate the flows through the channels with extremely small relative values of the radius of inner cylinder. The numerical analysis of the dependance of flow on this radius and on the values of dissipation constant is done.Keywords: dynamics of polymeric liquid, heat dissipation, singularly perturbed problem, pseudospectral method, Chebyshev polynomials, stabilization technique
Procedia PDF Downloads 290819 Numerical Investigation of the Effect of Sidewalls on Low-Speed Finite Width Cavity Flows
Authors: Foo Kok, Varun Thangamani
Abstract:
Rectangular cavities with a full-span or finite-width configuration have been the basis of much previous research on cavity flows. However, much less attention has been given to the influence of sidewalls, in particular, on low-speed cavity flows. In this study, the flow characteristics of two separate low-speed finite-width cavities with a Reynolds number of 𝑅𝑒𝐷 = 10⁴ are examined using large eddy simulations. Two different lateral boundary conditions are used to investigate the influence of sidewalls on the self-sustaining oscillations and the three-dimensional flow fields inside the cavities. The results show that the full-span finite width cavities are less sensitive to the sidewall effect at a low length-to-width ratio 𝐿/𝐷. The increase in 𝐿/𝐷 leads to a departure from two-dimensional instability and results in the loss of spanwise homogeneity. The analysis of the spanwise flow structures shows that these effects correspond closely to the declination of the centrifugal force from the primary recirculation zone. Such effects are also reflected in the distinct modulation of the secondary vortices in the primary recirculation zone, which suggests that the instabilities observed in the full-span finite-width cavity flows are predominantly dependent on the secondary motion from the primary recirculation zone.Keywords: LES, cavity flows, unsteady shear layer, instability modes, secondary flow
Procedia PDF Downloads 65818 Micro-Channel Flows Simulation Based on Nonlinear Coupled Constitutive Model
Authors: Qijiao He
Abstract:
MicroElectrical-Mechanical System (MEMS) is one of the most rapidly developing frontier research field both in theory study and applied technology. Micro-channel is a very important link component of MEMS. With the research and development of MEMS, the size of the micro-devices and the micro-channels becomes further smaller. Compared with the macroscale flow, the flow characteristics of gas in the micro-channel have changed, and the rarefaction effect appears obviously. However, for the rarefied gas and microscale flow, Navier-Stokes-Fourier (NSF) equations are no longer appropriate due to the breakup of the continuum hypothesis. A Nonlinear Coupled Constitutive Model (NCCM) has been derived from the Boltzmann equation to describe the characteristics of both continuum and rarefied gas flows. We apply the present scheme to simulate continuum and rarefied gas flows in a micro-channel structure. And for comparison, we apply other widely used methods which based on particle simulation or direct solution of distribution function, such as Direct simulation of Monte Carlo (DSMC), Unified Gas-Kinetic Scheme (UGKS) and Lattice Boltzmann Method (LBM), to simulate the flows. The results show that the present solution is in better agreement with the experimental data and the DSMC, UGKS and LBM results than the NSF results in rarefied cases but is in good agreement with the NSF results in continuum cases. And some characteristics of both continuum and rarefied gas flows are observed and analyzed.Keywords: continuum and rarefied gas flows, discontinuous Galerkin method, generalized hydrodynamic equations, numerical simulation
Procedia PDF Downloads 172817 An Analytical Approach of Computational Complexity for the Method of Multifluid Modelling
Authors: A. K. Borah, A. K. Singh
Abstract:
In this paper we deal building blocks of the computer simulation of the multiphase flows. Whole simulation procedure can be viewed as two super procedures; The implementation of VOF method and the solution of Navier Stoke’s Equation. Moreover, a sequential code for a Navier Stoke’s solver has been studied.Keywords: Bi-conjugate gradient stabilized (Bi-CGSTAB), ILUT function, krylov subspace, multifluid flows preconditioner, simple algorithm
Procedia PDF Downloads 528816 A Proposal to Integrate Spatially Explicit Ecosystem Services with Urban Metabolic Modelling
Authors: Thomas Elliot, Javier Babi Almenar, Benedetto Rugani
Abstract:
The integration of urban metabolism (UM) with spatially explicit ecosystem service (ES) stocks has the potential to advance sustainable urban development. It will correct the lack of spatially specificity of current urban metabolism models. Furthermore, it will include into UM not only the physical properties of material and energy stocks and flows, but also the implications to the natural capital that provides and maintains human well-being. This paper presents the first stages of a modelling framework by which urban planners can assess spatially the trade-offs of ES flows resulting from urban interventions of different character and scale. This framework allows for a multi-region assessment which takes into account sustainability burdens consequent to an urban planning event occurring elsewhere in the environment. The urban boundary is defined as the Functional Urban Audit (FUA) method to account for trans-administrative ES flows. ES are mapped using CORINE land use within the FUA. These stocks and flows are incorporated into a UM assessment method to demonstrate the transfer and flux of ES arising from different urban planning implementations.Keywords: ecological economics, ecosystem services, spatial planning, urban metabolism
Procedia PDF Downloads 332815 CFD Study of Free Surface Flows Resulting from a Dam-Breaking
Authors: Sonia Ben Hamza, Sabra Habli, Nejla Mahjoub Saïd, Hervé Bournot, Georges Le Palec
Abstract:
Free surface flows caused by dam breaks in channels or rivers is an attention-getting subject to the engineering practice, however, the studies are few to be reported. In this paper, a numerical investigation of unsteady free surface flows resulting from a dam-breaking in a rectangular channel is studied. Numerical computations were carried out using ANSYS Fluent which is based on the finite volume approach. The air/water interface was modeled with the volume of fluid method (VOF). Verification for a typical dam-break problem is analyzed by comparing the present results with others and very good agreement is obtained. The present approach is then used to predict the characteristics of free surface flow due to the dam breaking in channel. The characteristics of complex unsteady free surface flow in these examples are clearly explained. The numerical results show that the flow became more disturbed after impacting the vertical wall, then a recirculation zone, as well as turbulence phenomena, were created. At this instant, a cavity of air was included on the flow. The results agree well with the experimental data found in the literature.Keywords: CFD, dam-break, free surface, turbulent flows, VOF
Procedia PDF Downloads 308814 Dambreak Flood Analysis Using HEC-RAS and GIS Technologies
Authors: Oussama Derdous, Lakhdar Djemili, Hamza Bouchehed
Abstract:
The potential risks associated with dam break flooding could be considerable and result in major damage, including loss of life and property destruction. In the past, Algeria experienced such flood disasters; let’s recall the failure of Fergoug dam in 1881, this accident cost 200 lives, many houses and bridges were destroyed by the flooding. Recently the Algerian government have obligated to dam owners the development of detailed dam break Emergency Action Plans for its 64 major dams. The research presented here was conducted within this framework, Zardezas dam which is located in the city of Skikda in the North East of Algeria was the case of study. The model HEC-RAS was used for the hydrodynamic routing of the dam break flood wave. In addition, Geographic Information System (GIS) was used to create inundation maps and produce a visualization of the flood propagation in the Saf-Saf River.The simulation results that demonstrate the significance of Zardezas dam break flooding; constitute a real tool for developing emergency response plans and assisting territorial communities in land use planning.Keywords: dam break, HEC-RAS, GIS, inundation maps, Emergency Action Plan
Procedia PDF Downloads 395813 Compressible Lattice Boltzmann Method for Turbulent Jet Flow Simulations
Authors: K. Noah, F.-S. Lien
Abstract:
In Computational Fluid Dynamics (CFD), there are a variety of numerical methods, of which some depend on macroscopic model representatives. These models can be solved by finite-volume, finite-element or finite-difference methods on a microscopic description. However, the lattice Boltzmann method (LBM) is considered to be a mesoscopic particle method, with its scale lying between the macroscopic and microscopic scales. The LBM works well for solving incompressible flow problems, but certain limitations arise from solving compressible flows, particularly at high Mach numbers. An improved lattice Boltzmann model for compressible flow problems is presented in this research study. A higher-order Taylor series expansion of the Maxwell equilibrium distribution function is used to overcome limitations in LBM when solving high-Mach-number flows. Large eddy simulation (LES) is implemented in LBM to simulate turbulent jet flows. The results have been validated with available experimental data for turbulent compressible free jet flow at subsonic speeds.Keywords: compressible lattice Boltzmann method, multiple relaxation times, large eddy simulation, turbulent jet flows
Procedia PDF Downloads 274812 A Convergent Interacting Particle Method for Computing Kpp Front Speeds in Random Flows
Authors: Tan Zhang, Zhongjian Wang, Jack Xin, Zhiwen Zhang
Abstract:
We aim to efficiently compute the spreading speeds of reaction-diffusion-advection (RDA) fronts in divergence-free random flows under the Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We study a stochastic interacting particle method (IPM) for the reduced principal eigenvalue (Lyapunov exponent) problem of an associated linear advection-diffusion operator with spatially random coefficients. The Fourier representation of the random advection field and the Feynman-Kac (FK) formula of the principal eigenvalue (Lyapunov exponent) form the foundation of our method implemented as a genetic evolution algorithm. The particles undergo advection-diffusion and mutation/selection through a fitness function originated in the FK semigroup. We analyze the convergence of the algorithm based on operator splitting and present numerical results on representative flows such as 2D cellular flow and 3D Arnold-Beltrami-Childress (ABC) flow under random perturbations. The 2D examples serve as a consistency check with semi-Lagrangian computation. The 3D results demonstrate that IPM, being mesh-free and self-adaptive, is simple to implement and efficient for computing front spreading speeds in the advection-dominated regime for high-dimensional random flows on unbounded domains where no truncation is needed.Keywords: KPP front speeds, random flows, Feynman-Kac semigroups, interacting particle method, convergence analysis
Procedia PDF Downloads 46811 Oxygen Transport in Blood Flows Pasts Staggered Fiber Arrays: A Computational Fluid Dynamics Study of an Oxygenator in Artificial Lung
Authors: Yu-Chen Hsu, Kuang C. Lin
Abstract:
The artificial lung called extracorporeal membrane oxygenation (ECMO) is an important medical machine that supports persons whose heart and lungs dysfunction. Previously, investigation of steady deoxygenated blood flows passing through hollow fibers for oxygen transport was carried out experimentally and computationally. The present study computationally analyzes the effect of biological pulsatile flow on the oxygen transport in blood. A 2-D model with a pulsatile flow condition is employed. The power law model is used to describe the non-Newtonian flow and the Hill equation is utilized to simulate the oxygen saturation of hemoglobin. The dimensionless parameters for the physical model include Reynolds numbers (Re), Womersley parameters (α), pulsation amplitudes (A), Sherwood number (Sh) and Schmidt number (Sc). The present model with steady-state flow conditions is well validated against previous experiment and simulations. It is observed that pulsating flow amplitudes significantly influence the velocity profile, pressure of oxygen (PO2), saturation of oxygen (SO2) and the oxygen mass transfer rates (m ̇_O2). In comparison between steady-state and pulsating flows, our findings suggest that the consideration of pulsating flow in the computational model is needed when Re is raised from 2 to 10 in a typical range for flow in artificial lung.Keywords: artificial lung, oxygen transport, non-Newtonian flows, pulsating flows
Procedia PDF Downloads 311810 Estimation of Pressure Loss Coefficients in Combining Flows Using Artificial Neural Networks
Authors: Shahzad Yousaf, Imran Shafi
Abstract:
This paper presents a new method for calculation of pressure loss coefficients by use of the artificial neural network (ANN) in tee junctions. Geometry and flow parameters are feed into ANN as the inputs for purpose of training the network. Efficacy of the network is demonstrated by comparison of the experimental and ANN based calculated data of pressure loss coefficients for combining flows in a tee junction. Reynolds numbers ranging from 200 to 14000 and discharge ratios varying from minimum to maximum flow for calculation of pressure loss coefficients have been used. Pressure loss coefficients calculated using ANN are compared to the models from literature used in junction flows. The results achieved after the application of ANN agrees reasonably to the experimental values.Keywords: artificial neural networks, combining flow, pressure loss coefficients, solar collector tee junctions
Procedia PDF Downloads 389809 Robust ResNets for Chemically Reacting Flows
Authors: Randy Price, Harbir Antil, Rainald Löhner, Fumiya Togashi
Abstract:
Chemically reacting flows are common in engineering applications such as hypersonic flow, combustion, explosions, manufacturing process, and environmental assessments. The number of reactions in combustion simulations can exceed 100, making a large number of flow and combustion problems beyond the capabilities of current supercomputers. Motivated by this, deep neural networks (DNNs) will be introduced with the goal of eventually replacing the existing chemistry software packages with DNNs. The DNNs used in this paper are motivated by the Residual Neural Network (ResNet) architecture. In the continuum limit, ResNets become an optimization problem constrained by an ODE. Such a feature allows the use of ODE control techniques to enhance the DNNs. In this work, DNNs are constructed, which update the species un at the nᵗʰ timestep to uⁿ⁺¹ at the n+1ᵗʰ timestep. Parallel DNNs are trained for each species, taking in uⁿ as input and outputting one component of uⁿ⁺¹. These DNNs are applied to multiple species and reactions common in chemically reacting flows such as H₂-O₂ reactions. Experimental results show that the DNNs are able to accurately replicate the dynamics in various situations and in the presence of errors.Keywords: chemical reacting flows, computational fluid dynamics, ODEs, residual neural networks, ResNets
Procedia PDF Downloads 119808 Air Flows along Perforated Metal Plates with the Heat Transfer
Authors: Karel Frana, Sylvio Simon
Abstract:
The objective of the paper is a numerical study of heat transfer between perforated metal plates and the surrounding air flows. Different perforation structures can nowadays be found in various industrial products. Besides improving the mechanical properties, the perforations can intensify the heat transfer as well. The heat transfer coefficient depends on a wide range of parameters such as type of perforation, size, shape, flow properties of the surrounding air etc. The paper was focused on three different perforation structures which have been investigated from the point of the view of the production in the previous studies. To determine the heat coefficients and the Nusselt numbers, the numerical simulation approach was adopted. The calculations were performed using the OpenFOAM software. The three-dimensional, unstable, turbulent and incompressible air flow around the perforated surface metal plate was considered.Keywords: perforations, convective heat transfers, turbulent flows, numerical simulations
Procedia PDF Downloads 580807 Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices
Authors: Mirvat Shamseddine, Issam Lakkis
Abstract:
We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows.Keywords: DSMC, oct-tree hierarchical grid, ray tracing, spatial-temporal adaptivity scheme, unsteady rarefied gas flows
Procedia PDF Downloads 299806 Nonlinear Waves in Two-Layer Systems with Heat Release/Consumption at the Interface
Authors: Ilya Simanovskii
Abstract:
Nonlinear convective flows developed under the joint action of buoyant and thermo-capillary effects in a two-layer system with periodic boundary conditions on the lateral walls have been investigated. The influence of an interfacial heat release on oscillatory regimes has been studied. The computational regions with different lengths have been considered. It is shown that the development of oscillatory instability can lead to the appearance of different no steady flows.Keywords: interface, instabilities, two-layer systems, bioinformatics, biomedicine
Procedia PDF Downloads 401805 Temporal Trends in the Urban Metabolism of Riyadh, Saudi Arabia
Authors: Naif Albelwi, Alan Kwan, Yacine Rezgui
Abstract:
Cities with rapid growth face tremendous challenges not only to provide services to meet this growth but also to assure that this growth occurs in a sustainable way. The consumption of material, energy, and water resources is inextricably linked to population growth with a unique impact in urban areas, especially in light of significant investments in infrastructure to support urban development. Urban Metabolism (UM) is becoming popular as it provides a framework accounting the mass and energy flows through a city. The objective of this study is to determine the energy and material flows of Riyadh, Saudi Arabia using locally generated data from 1996 and 2012 and analyzing the temporal trends of energy and material flows. Preliminary results show that while the population of Riyadh grew 90% since 1996, the input and output flows have increased at higher rate. Results also show increasing in energy mobile consumption from 61k TJ in 1996 to 157k TJ in 2012 which points to Riyadh’s inefficient urban form. The study findings highlight the importance to develop effective policies for improving the use of resources.Keywords: energy and water consumption, sustainability, urban development, urban metabolism
Procedia PDF Downloads 272804 A Sociocybernetics Data Analysis Using Causality in Tourism Networks
Authors: M. Lloret-Climent, J. Nescolarde-Selva
Abstract:
The aim of this paper is to propose a mathematical model to determine invariant sets, set covering, orbits and, in particular, attractors in the set of tourism variables. Analysis was carried out based on a pre-designed algorithm and applying our interpretation of chaos theory developed in the context of General Systems Theory. This article sets out the causal relationships associated with tourist flows in order to enable the formulation of appropriate strategies. Our results can be applied to numerous cases. For example, in the analysis of tourist flows, these findings can be used to determine whether the behaviour of certain groups affects that of other groups and to analyse tourist behaviour in terms of the most relevant variables. Unlike statistical analyses that merely provide information on current data, our method uses orbit analysis to forecast, if attractors are found, the behaviour of tourist variables in the immediate future.Keywords: attractor, invariant set, tourist flows, orbits, social responsibility, tourism, tourist variables
Procedia PDF Downloads 508803 Application of Universal Distribution Factors for Real-Time Complex Power Flow Calculation
Authors: Abdullah M. Alodhaiani, Yasir A. Alturki, Mohamed A. Elkady
Abstract:
Complex power flow distribution factors, which relate line complex power flows to the bus injected complex powers, have been widely used in various power system planning and analysis studies. In particular, AC distribution factors have been used extensively in the recent power and energy pricing studies in free electricity market field. As was demonstrated in the existing literature, many of the electricity market related costing studies rely on the use of the distribution factors. These known distribution factors, whether the injection shift factors (ISF’s) or power transfer distribution factors (PTDF’s), are linear approximations of the first order sensitivities of the active power flows with respect to various variables. This paper presents a novel model for evaluating the universal distribution factors (UDF’s), which are appropriate for an extensive range of power systems analysis and free electricity market studies. These distribution factors are used for the calculations of lines complex power flows and its independent of bus power injections, they are compact matrix-form expressions with total flexibility in determining the position on the line at which line flows are measured. The proposed approach was tested on IEEE 9-Bus system. Numerical results demonstrate that the proposed approach is very accurate compared with exact method.Keywords: distribution factors, power system, sensitivity factors, electricity market
Procedia PDF Downloads 473802 Numerical Investigation of Incompressible Turbulent Flows by Method of Characteristics
Authors: Ali Atashbar Orang, Carlo Massimo Casciola
Abstract:
A novel numerical approach for the steady incompressible turbulent flows is presented in this paper. The artificial compressibility method (ACM) is applied to the Reynolds Averaged Navier-Stokes (RANS) equations. A new Characteristic-Based Turbulent (CBT) scheme is developed for the convective fluxes. The well-known Spalart–Allmaras turbulence model is employed to check the effectiveness of this new scheme. Comparing the proposed scheme with previous studies, it is found that the present CBT scheme demonstrates accurate results, high stability and faster convergence. In addition, the local time stepping and implicit residual smoothing are applied as the convergence acceleration techniques. The turbulent flows past a backward facing step, circular cylinder, and NACA0012 hydrofoil are studied as benchmarks. Results compare favorably with those of other available schemes.Keywords: incompressible turbulent flow, method of characteristics, finite volume, Spalart–Allmaras turbulence model
Procedia PDF Downloads 412