Search results for: Newton transformations
473 Some Results for F-Minimal Hypersurfaces in Manifolds with Density
Authors: M. Abdelmalek
Abstract:
In this work, we study the hypersurfaces of constant weighted mean curvature embedded in weighted manifolds. We give a condition about these hypersurfaces to be minimal. This condition is given by the ellipticity of the weighted Newton transformations. We especially prove that two compact hypersurfaces of constant weighted mean curvature embedded in space forms and with the intersection in at least a point of the boundary must be transverse. The method is based on the calculus of the matrix of the second fundamental form in a boundary point and then the matrix associated with the Newton transformations. By equality, we find the weighted elementary symmetric function on the boundary of the hypersurface. We give in the end some examples and applications. Especially in Euclidean space, we use the above result to prove the Alexandrov spherical caps conjecture for the weighted case.Keywords: weighted mean curvature, weighted manifolds, ellipticity, Newton transformations
Procedia PDF Downloads 93472 Transformations between Bivariate Polynomial Bases
Authors: Dimitris Varsamis, Nicholas Karampetakis
Abstract:
It is well known that any interpolating polynomial P(x,y) on the vector space Pn,m of two-variable polynomials with degree less than n in terms of x and less than m in terms of y has various representations that depends on the basis of Pn,m that we select i.e. monomial, Newton and Lagrange basis etc. The aim of this paper is twofold: a) to present transformations between the coordinates of the polynomial P(x,y) in the aforementioned basis and b) to present transformations between these bases.Keywords: bivariate interpolation polynomial, polynomial basis, transformations, interpolating polynomial
Procedia PDF Downloads 405471 Modification of Newton Method in Two Points Block Differentiation Formula
Authors: Khairil Iskandar Othman, Nadhirah Kamal, Zarina Bibi Ibrahim
Abstract:
Block methods for solving stiff systems of ordinary differential equations (ODEs) are based on backward differential formulas (BDF) with PE(CE)2 and Newton method. In this paper, we introduce Modified Newton as a new strategy to get more efficient result. The derivation of BBDF using modified block Newton method is presented. This new block method with predictor-corrector gives more accurate result when compared to the existing BBDF.Keywords: modified Newton, stiff, BBDF, Jacobian matrix
Procedia PDF Downloads 378470 Evaluation of Quasi-Newton Strategy for Algorithmic Acceleration
Authors: T. Martini, J. M. Martínez
Abstract:
An algorithmic acceleration strategy based on quasi-Newton (or secant) methods is displayed for address the practical problem of accelerating the convergence of the Newton-Lagrange method in the case of convergence to critical multipliers. Since the Newton-Lagrange iteration converges locally at a linear rate, it is natural to conjecture that quasi-Newton methods based on the so called secant equation and some minimal variation principle, could converge superlinearly, thus restoring the convergence properties of Newton's method. This strategy can also be applied to accelerate the convergence of algorithms applied to fixed-points problems. Computational experience is reported illustrating the efficiency of this strategy to solve fixed-point problems with linear convergence rate.Keywords: algorithmic acceleration, fixed-point problems, nonlinear programming, quasi-newton method
Procedia PDF Downloads 488469 Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform Lagrange and Newton Curves
Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong
Abstract:
Newton-Lagrange Interpolations are widely used in numerical analysis. However, it requires a quadratic computational time for their constructions. In computer aided geometric design (CAGD), there are some polynomial curves: Wang-Ball, DP and Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong algorithms, first, it is necessary to convert Newton-Lagrange polynomials into Wang-Ball, DP or Dejdumrong polynomials. In this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational time for representing Newton-Lagrange polynomials can be reduced into linear complexity. In addition, the other utilizations of using CAGD curves to modify the Newton-Lagrange curves can be taken.Keywords: Lagrange interpolation, linear complexity, monomial matrix, Newton interpolation
Procedia PDF Downloads 234468 Data Transformations in Data Envelopment Analysis
Authors: Mansour Mohammadpour
Abstract:
Data transformation refers to the modification of any point in a data set by a mathematical function. When applying transformations, the measurement scale of the data is modified. Data transformations are commonly employed to turn data into the appropriate form, which can serve various functions in the quantitative analysis of the data. This study addresses the investigation of the use of data transformations in Data Envelopment Analysis (DEA). Although data transformations are important options for analysis, they do fundamentally alter the nature of the variable, making the interpretation of the results somewhat more complex.Keywords: data transformation, data envelopment analysis, undesirable data, negative data
Procedia PDF Downloads 20467 Modification of Newton Method in Two Point Block Backward Differentiation Formulas
Authors: Khairil I. Othman, Nur N. Kamal, Zarina B. Ibrahim
Abstract:
In this paper, we present modified Newton method as a new strategy for improving the efficiency of Two Point Block Backward Differentiation Formulas (BBDF) when solving stiff systems of ordinary differential equations (ODEs). These methods are constructed to produce two approximate solutions simultaneously at each iteration The detailed implementation of the predictor corrector BBDF with PE(CE)2 with modified Newton are discussed. The proposed modification of BBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with the existing Block Backward Differentiation Formula. Numerical results show the advantage of using the new strategy for solving stiff ODEs in improving the accuracy of the solution.Keywords: newton method, two point, block, accuracy
Procedia PDF Downloads 357466 Parameter Estimation of Gumbel Distribution with Maximum-Likelihood Based on Broyden Fletcher Goldfarb Shanno Quasi-Newton
Authors: Dewi Retno Sari Saputro, Purnami Widyaningsih, Hendrika Handayani
Abstract:
Extreme data on an observation can occur due to unusual circumstances in the observation. The data can provide important information that can’t be provided by other data so that its existence needs to be further investigated. The method for obtaining extreme data is one of them using maxima block method. The distribution of extreme data sets taken with the maxima block method is called the distribution of extreme values. Distribution of extreme values is Gumbel distribution with two parameters. The parameter estimation of Gumbel distribution with maximum likelihood method (ML) is difficult to determine its exact value so that it is necessary to solve the approach. The purpose of this study was to determine the parameter estimation of Gumbel distribution with quasi-Newton BFGS method. The quasi-Newton BFGS method is a numerical method used for nonlinear function optimization without constraint so that the method can be used for parameter estimation from Gumbel distribution whose distribution function is in the form of exponential doubel function. The quasi-New BFGS method is a development of the Newton method. The Newton method uses the second derivative to calculate the parameter value changes on each iteration. Newton's method is then modified with the addition of a step length to provide a guarantee of convergence when the second derivative requires complex calculations. In the quasi-Newton BFGS method, Newton's method is modified by updating both derivatives on each iteration. The parameter estimation of the Gumbel distribution by a numerical approach using the quasi-Newton BFGS method is done by calculating the parameter values that make the distribution function maximum. In this method, we need gradient vector and hessian matrix. This research is a theory research and application by studying several journals and textbooks. The results of this study obtained the quasi-Newton BFGS algorithm and estimation of Gumbel distribution parameters. The estimation method is then applied to daily rainfall data in Purworejo District to estimate the distribution parameters. This indicates that the high rainfall that occurred in Purworejo District decreased its intensity and the range of rainfall that occurred decreased.Keywords: parameter estimation, Gumbel distribution, maximum likelihood, broyden fletcher goldfarb shanno (BFGS)quasi newton
Procedia PDF Downloads 323465 Strengthening Urban Governance and Planning Practices for Urban Sustainability Transformations in Cambodia
Authors: Fiona Lord
Abstract:
This paper presents research on strengthening urban governance and planning practices for sustainable and regenerative city transformations looking at urban governance in Cambodia as a case study. Transformations to urban sustainability and regeneration require systemic and long-term transformation processes, across multiple levels of society and inclusive of multiple urban actors. This paper presents the emerging findings of a qualitative case study comparing the urban governance and planning practices in two of Cambodia's secondary cities - Battambang and Sihanoukville. The lessons learned have broader implications for how governance and planning can be strengthened to initiate and sustain urban sustainability transformations in other developing country cities of Cambodia and the Southeast Asia region.Keywords: Cambodia, planning practices, urban governance, urban sustainability transformations
Procedia PDF Downloads 232464 Descent Algorithms for Optimization Algorithms Using q-Derivative
Authors: Geetanjali Panda, Suvrakanti Chakraborty
Abstract:
In this paper, Newton-like descent methods are proposed for unconstrained optimization problems, which use q-derivatives of the gradient of an objective function. First, a local scheme is developed with alternative sufficient optimality condition, and then the method is extended to a global scheme. Moreover, a variant of practical Newton scheme is also developed introducing a real sequence. Global convergence of these schemes is proved under some mild conditions. Numerical experiments and graphical illustrations are provided. Finally, the performance profiles on a test set show that the proposed schemes are competitive to the existing first-order schemes for optimization problems.Keywords: Descent algorithm, line search method, q calculus, Quasi Newton method
Procedia PDF Downloads 398463 Pharmaceutical Applications of Newton's Second Law and Disc Inertia
Authors: Nicholas Jensen
Abstract:
As the effort to create new drugs to treat rare conditions cost-effectively intensifies, there is a need to ensure maximum efficiency in the manufacturing process. This includes the creation of ultracompact treatment forms, which can best be achieved via applications of fundamental laws of physics. This paper reports an experiment exploring the relationship between the forms of Newton's 2ⁿᵈ Law appropriate to linear motion and to transversal architraves. The moment of inertia of three discs was determined by experiments and compared with previous data derived from a theoretical relationship. The method used was to attach the discs to a moment arm. Comparing the results with those obtained from previous experiments, it is found to be consistent with the first law of thermodynamics. It was further found that Newton's 2ⁿᵈ law violates the second law of thermodynamics. The purpose of this experiment was to explore the relationship between the forms of Newton's 2nd Law appropriate to linear motion and to apply torque to a twisting force, which is determined by position vector r and force vector F. Substituting equation alpha in place of beta; angular acceleration is a linear acceleration divided by radius r of the moment arm. The nevrological analogy of Newton's 2nd Law states that these findings can contribute to a fuller understanding of thermodynamics in relation to viscosity. Implications for the pharmaceutical industry will be seen to be fruitful from these findings.Keywords: Newtonian physics, inertia, viscosity, pharmaceutical applications
Procedia PDF Downloads 117462 Modified Newton's Iterative Method for Solving System of Nonlinear Equations in Two Variables
Authors: Sara Mahesar, Saleem M. Chandio, Hira Soomro
Abstract:
Nonlinear system of equations in two variables is a system which contains variables of degree greater or equal to two or that comprises of the transcendental functions. Mathematical modeling of numerous physical problems occurs as a system of nonlinear equations. In applied and pure mathematics it is the main dispute to solve a system of nonlinear equations. Numerical techniques mainly used for finding the solution to problems where analytical methods are failed, which leads to the inexact solutions. To find the exact roots or solutions in case of the system of non-linear equations there does not exist any analytical technique. Various methods have been proposed to solve such systems with an improved rate of convergence and accuracy. In this paper, a new scheme is developed for solving system of non-linear equation in two variables. The iterative scheme proposed here is modified form of the conventional Newton’s Method (CN) whose order of convergence is two whereas the order of convergence of the devised technique is three. Furthermore, the detailed error and convergence analysis of the proposed method is also examined. Additionally, various numerical test problems are compared with the results of its counterpart conventional Newton’s Method (CN) which confirms the theoretic consequences of the proposed method.Keywords: conventional Newton’s method, modified Newton’s method, order of convergence, system of nonlinear equations
Procedia PDF Downloads 256461 MapReduce Logistic Regression Algorithms with RHadoop
Authors: Byung Ho Jung, Dong Hoon Lim
Abstract:
Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested.Keywords: big data, logistic regression, MapReduce, RHadoop
Procedia PDF Downloads 284460 Exactly Fractional Solutions of Nonlinear Lattice Equation via Some Fractional Transformations
Authors: A. Zerarka, W. Djoudi
Abstract:
We use some fractional transformations to obtain many types of new exact solutions of nonlinear lattice equation. These solutions include rational solutions, periodic wave solutions, and doubly periodic wave solutions.Keywords: fractional transformations, nonlinear equation, travelling wave solutions, lattice equation
Procedia PDF Downloads 657459 The Implementation of Secton Method for Finding the Root of Interpolation Function
Authors: Nur Rokhman
Abstract:
A mathematical function gives relationship between the variables composing the function. Interpolation can be viewed as a process of finding mathematical function which goes through some specified points. There are many interpolation methods, namely: Lagrange method, Newton method, Spline method etc. For some specific condition, such as, big amount of interpolation points, the interpolation function can not be written explicitly. This such function consist of computational steps. The solution of equations involving the interpolation function is a problem of solution of non linear equation. Newton method will not work on the interpolation function, for the derivative of the interpolation function cannot be written explicitly. This paper shows the use of Secton method to determine the numerical solution of the function involving the interpolation function. The experiment shows the fact that Secton method works better than Newton method in finding the root of Lagrange interpolation function.Keywords: Secton method, interpolation, non linear function, numerical solution
Procedia PDF Downloads 379458 Teachers’ Instructional Decisions When Teaching Geometric Transformations
Authors: Lisa Kasmer
Abstract:
Teachers’ instructional decisions shape the structure and content of mathematics lessons and influence the mathematics that students are given the opportunity to learn. Therefore, it is important to better understand how teachers make instructional decisions and thus find new ways to help practicing and future teachers give their students a more effective and robust learning experience. Understanding the relationship between teachers’ instructional decisions and their goals, resources, and orientations (beliefs) is important given the heightened focus on geometric transformations in the middle school mathematics curriculum. This work is significant as the development and support of current and future teachers need more effective ways to teach geometry to their students. The following research questions frame this study: (1) As middle school mathematics teachers plan and enact instruction related to teaching transformations, what thinking processes do they engage in to make decisions about teaching transformations with or without a coordinate system and (2) How do the goals, resources and orientations of these teachers impact their instructional decisions and reveal about their understanding of teaching transformations? Teachers and students alike struggle with understanding transformations; many teachers skip or hurriedly teach transformations at the end of the school year. However, transformations are an important mathematical topic as this topic supports students’ understanding of geometric and spatial reasoning. Geometric transformations are a foundational concept in mathematics, not only for understanding congruence and similarity but for proofs, algebraic functions, and calculus etc. Geometric transformations also underpin the secondary mathematics curriculum, as features of transformations transfer to other areas of mathematics. Teachers’ instructional decisions in terms of goals, orientations, and resources that support these instructional decisions were analyzed using open-coding. Open-coding is recognized as an initial first step in qualitative analysis, where comparisons are made, and preliminary categories are considered. Initial codes and categories from current research on teachers’ thinking processes that are related to the decisions they make while planning and reflecting on the lessons were also noted. Surfacing ideas and additional themes common across teachers while seeking patterns, were compared and analyzed. Finally, attributes of teachers’ goals, orientations and resources were identified in order to begin to build a picture of the reasoning behind their instructional decisions. These categories became the basis for the organization and conceptualization of the data. Preliminary results suggest that teachers often rely on their own orientations about teaching geometric transformations. These beliefs are underpinned by the teachers’ own mathematical knowledge related to teaching transformations. When a teacher does not have a robust understanding of transformations, they are limited by this lack of knowledge. These shortcomings impact students’ opportunities to learn, and thus disadvantage their own understanding of transformations. Teachers’ goals are also limited by their paucity of knowledge regarding transformations, as these goals do not fully represent the range of comprehension a teacher needs to teach this topic well.Keywords: coordinate plane, geometric transformations, instructional decisions, middle school mathematics
Procedia PDF Downloads 88457 Religious and Architectural Transformations of Kourion in Cyprus between the 1st and 6th Centuries AD. The Case of Trypiti Bay and its Topographical Relationships to Coastal Sanctuaries
Authors: Argyroula Argyrou
Abstract:
The purpose of my current research, of which this paper form’s part, is to explore the architectural and religious transformations of Trypiti Bay in the region of Kourion, Cyprus, between the 1st and 6th centuries AD. This research aims to explore and analyse three different stages in the religious and architectural transformations of the ancient port, with evidence supporting these transformations from the main city of Kourion and the Sanctuary of Apollo Hylates between the 1st and 6th centuries. In addition, the research is using historical and archaeological comparisons with coastal sites in the Levant, North Africa, Lebanon, and Europe in an attempt to identify a pattern of development in the religious topography of Kourion and how these contributed to change in the use and symbolism of Trypiti bay as an important passageway to religious sanctuaries in the vicinity of the coast. The construction of Trypiti Bay has been proven, according to archaeological and historical evidence, gathered throughout Kourion’s fieldwork and archival research, that it served as a natural port for cargos that needed to be protected from the strong west winds of the area. The construction of Trypiti Bay is believed to be unique to the island as no similar structure has yet been discovered.Keywords: architecture, heritage, perservation, transformation, unique
Procedia PDF Downloads 111456 A Quadcopter Stability Analysis: A Case Study Using Simulation
Authors: C. S. Bianca Sabrina, N. Egidio Raimundo, L. Alexandre Baratella, C. H. João Paulo
Abstract:
This paper aims to present a study, with the theoretical concepts and applications of the Quadcopter, using the MATLAB simulator. In order to use this tool, the study of the stability of the drone through a Proportional - Integral - Derivative (PID) controller will be presented. After the stability study, some tests are done on the simulator and its results will be presented. From the mathematical model, it is possible to find the Newton-Euler angles, so that it is possible to stabilize the quadcopter in a certain position in the air, starting from the ground. In order to understand the impact of the controllers gain values on the stabilization of the Euler-Newton angles, three conditions will be tested with different controller gain values.Keywords: controllers, drones, quadcopter, stability
Procedia PDF Downloads 199455 Load Flow Analysis of 5-IEEE Bus Test System Using Matlab
Abstract:
A power flow analysis is a steady-state study of power grid. The goal of power flow analysis is to determine the voltages, currents, and real and reactive power flows in a system under a given load conditions. In this paper, the load flow analysis program by Newton Raphson polar coordinates Method is developed. The effectiveness of the developed program is evaluated through a simple 5-IEEE test system bus by simulations using MATLAB.Keywords: power flow analysis, Newton Raphson polar coordinates method
Procedia PDF Downloads 603454 Nano Liquid Thin Film Flow over an Unsteady Stretching Sheet
Authors: Prashant G. Metri
Abstract:
A numerical model is developed to study nano liquid film flow over an unsteady stretching sheet in the presence of hydromagnetic have been investigated. Similarity transformations are used to convert unsteady boundary layer equations to a system of non-linear ordinary differential equations. The resulting non-linear ordinary differential equations are solved numerically using Runge-Kutta-Fehlberg and Newton-Raphson schemes. A relationship between film thickness β and the unsteadiness parameter S is found, the effect of unsteadiness parameter S, and the hydromagnetic parameter S, on the velocity and temperature distributions are presented. The present analysis shows that the combined effect of magnetic field and viscous dissipation has a significant influence in controlling the dynamics of the considered problem. Comparison with known results for certain particular cases is in excellent agreement.Keywords: boundary layer flow, nanoliquid, thin film, unsteady stretching sheet
Procedia PDF Downloads 257453 The Convection Heater Numerical Simulation
Authors: Cristian Patrascioiu, Loredana Negoita
Abstract:
This paper is focused on modeling and simulation of the tubular heaters. The paper is structured in four parts: the structure of the tubular convection section, the heat transfer model, the adaptation of the mathematical model and the solving model. The main hypothesis of the heat transfer modeling is that the heat exchanger of the convective tubular heater is a lumped system. In the same time, the model uses the heat balance relations, Newton’s law and criteria relations. The numerical program achieved allows for the estimation of the burn gases outlet temperature and the heated flow outlet temperature.Keywords: heat exchanger, mathematical modelling, nonlinear equation system, Newton-Raphson algorithm
Procedia PDF Downloads 289452 Maximum Likelihood Estimation Methods on a Two-Parameter Rayleigh Distribution under Progressive Type-Ii Censoring
Authors: Daniel Fundi Murithi
Abstract:
Data from economic, social, clinical, and industrial studies are in some way incomplete or incorrect due to censoring. Such data may have adverse effects if used in the estimation problem. We propose the use of Maximum Likelihood Estimation (MLE) under a progressive type-II censoring scheme to remedy this problem. In particular, maximum likelihood estimates (MLEs) for the location (µ) and scale (λ) parameters of two Parameter Rayleigh distribution are realized under a progressive type-II censoring scheme using the Expectation-Maximization (EM) and the Newton-Raphson (NR) algorithms. These algorithms are used comparatively because they iteratively produce satisfactory results in the estimation problem. The progressively type-II censoring scheme is used because it allows the removal of test units before the termination of the experiment. Approximate asymptotic variances and confidence intervals for the location and scale parameters are derived/constructed. The efficiency of EM and the NR algorithms is compared given root mean squared error (RMSE), bias, and the coverage rate. The simulation study showed that in most sets of simulation cases, the estimates obtained using the Expectation-maximization algorithm had small biases, small variances, narrower/small confidence intervals width, and small root of mean squared error compared to those generated via the Newton-Raphson (NR) algorithm. Further, the analysis of a real-life data set (data from simple experimental trials) showed that the Expectation-Maximization (EM) algorithm performs better compared to Newton-Raphson (NR) algorithm in all simulation cases under the progressive type-II censoring scheme.Keywords: expectation-maximization algorithm, maximum likelihood estimation, Newton-Raphson method, two-parameter Rayleigh distribution, progressive type-II censoring
Procedia PDF Downloads 163451 High Thrust Upper Stage Solar Hydrogen Rocket Design
Authors: Maged Assem Soliman Mossallam
Abstract:
The conversion of solar thruster model to an upper stage hydrogen rocket is considered. Solar thruster categorization limits its capabilities to low and moderate thrust system with high specific impulse. The current study proposes a different concept for such systems by increasing the thrust which enables using as an upper stage rocket and for future launching purposes. A computational model for the thruster is discussed for solar thruster subsystems. The first module depends on ray tracing technique to determine the intercepted solar power by the hydrogen combustion chamber. The cavity receiver is modeled using finite volume technique. The final module imports the heated hydrogen properties to the nozzle using quasi one dimensional simulation. The probability of shock waves formulation inside the nozzle is almost diminished as the outlet pressure in space environment tends to zero. The computational model relates the high thrust hydrogen rocket conversion to the design parameters and operating conditions of the thruster. Three different designs for solar thruster systems are discussed. The first design is a low thrust high specific impulse design that produces about 10 Newton of thrust .The second one output thrust is about 250 Newton and the third design produces about 1000 Newton.Keywords: space propulsion, hydrogen rocket, thrust, specific impulse
Procedia PDF Downloads 166450 Handling Complexity of a Complex System Design: Paradigm, Formalism and Transformations
Authors: Hycham Aboutaleb, Bruno Monsuez
Abstract:
Current systems' complexity has reached a degree that requires addressing conception and design issues while taking into account environmental, operational, social, legal, and financial aspects. Therefore, one of the main challenges is the way complex systems are specified and designed. The exponentially growing effort, cost, and time investment of complex systems in modeling phase emphasize the need for a paradigm, a framework, and an environment to handle the system model complexity. For that, it is necessary to understand the expectations of the human user of the model and his limits. This paper presents a generic framework for designing complex systems, highlights the requirements a system model needs to fulfill to meet human user expectations, and suggests a graph-based formalism for modeling complex systems. Finally, a set of transformations are defined to handle the model complexity.Keywords: higraph-based, formalism, system engineering paradigm, modeling requirements, graph-based transformations
Procedia PDF Downloads 403449 Stability of Hybrid Systems
Authors: Kreangkri Ratchagit
Abstract:
This paper is concerned with exponential stability of switched linear systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval, in which the lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, a switching rule for the exponential stability of switched linear systems with interval time-varying delays and new delay-dependent sufficient conditions for the exponential stability of the systems are first established in terms of LMIs. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes.Keywords: exponential stability, hybrid systems, timevarying delays, Lyapunov-Krasovskii functional, Leibniz-Newton’s formula
Procedia PDF Downloads 458448 Parameter Estimation for the Mixture of Generalized Gamma Model
Authors: Wikanda Phaphan
Abstract:
Mixture generalized gamma distribution is a combination of two distributions: generalized gamma distribution and length biased generalized gamma distribution. These two distributions were presented by Suksaengrakcharoen and Bodhisuwan in 2014. The findings showed that probability density function (pdf) had fairly complexities, so it made problems in estimating parameters. The problem occurred in parameter estimation was that we were unable to calculate estimators in the form of critical expression. Thus, we will use numerical estimation to find the estimators. In this study, we presented a new method of the parameter estimation by using the expectation – maximization algorithm (EM), the conjugate gradient method, and the quasi-Newton method. The data was generated by acceptance-rejection method which is used for estimating α, β, λ and p. λ is the scale parameter, p is the weight parameter, α and β are the shape parameters. We will use Monte Carlo technique to find the estimator's performance. Determining the size of sample equals 10, 30, 100; the simulations were repeated 20 times in each case. We evaluated the effectiveness of the estimators which was introduced by considering values of the mean squared errors and the bias. The findings revealed that the EM-algorithm had proximity to the actual values determined. Also, the maximum likelihood estimators via the conjugate gradient and the quasi-Newton method are less precision than the maximum likelihood estimators via the EM-algorithm.Keywords: conjugate gradient method, quasi-Newton method, EM-algorithm, generalized gamma distribution, length biased generalized gamma distribution, maximum likelihood method
Procedia PDF Downloads 219447 Transformations of Land Uses and Attitudes in Manavgat Region at South Turkey
Authors: Emrah Yildirim, Veli Ortacesme
Abstract:
Manavgat region, located in Antalya province at South Turkey, has hosted many civilizations throughout the centuries. All of these civilizations cultivated the land in their surroundings by engaging in agriculture, livestock production and hunting. In the last 50 years, there have been dramatic changes in the region. The economy of the region switched from the agriculture to tourism. Due to the increase in the irrigable agricultural lands, several dams were built on Manavgat River. Developments in the agricultural mechanization and new product needs have changed the pattern of agriculture and regional landscape. Coastal zone of the region has transformed to tourism areas, Manavgat Town Center has grown up and the urbanization in general has increased. The population and urbanization have increased by 257 % and 276 %, respectively. The tourism and commercial areas cover 561,8 hectares today. All these developments had some negative effects on the environment. In this study, land use/land cover transformations were studied in Manavgat region by using aerial photos. The reasons and consequences of the land use transformations were discussed, and some recommendations regarding the sustainable use of this region’s landscape will be shared.Keywords: land use, Manavgat region, south Turkey, transformation
Procedia PDF Downloads 399446 The Extent to Which Social Factors Affect Urban Functional Mutations and Transformations
Authors: Skirmante Mozuriunaite
Abstract:
Contemporary metropolitan areas and large cities are dynamic, rapidly growing and continuously changing. Thus, urban transformations and mutations are not a new phenomenon, but rather a continuous process. Basic factors of urban transformation are related to development of technologies, globalisation, lifestyle, etc., which, in combination with local factors, have generated an extremely great variety of urban development conditions. This article discusses the main urbanisation processes in Lithuania during last 50 year period and social factors affecting urban functional mutations.Keywords: dispersion, functional mutations, urbanization, urban mutations, social factors
Procedia PDF Downloads 526445 New Results on Exponential Stability of Hybrid Systems
Authors: Grienggrai Rajchakit
Abstract:
This paper is concerned with the exponential stability of switched linear systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval, in which the lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton's formula, a switching rule for the exponential stability of switched linear systems with interval time-varying delays and new delay-dependent sufficient conditions for the exponential stability of the systems are first established in terms of LMIs. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes.Keywords: exponential stability, hybrid systems, time-varying delays, lyapunov-krasovskii functional, leibniz-newton's formula
Procedia PDF Downloads 543444 An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes
Authors: Aymen Laadhari
Abstract:
We present in this paper a fully implicit finite element method tailored for the numerical modeling of inextensible fluidic membranes in a surrounding Newtonian fluid. We consider a highly simplified version of the Canham-Helfrich model for phospholipid membranes, in which the bending force and spontaneous curvature are disregarded. The coupled problem is formulated in a fully Eulerian framework and the membrane motion is tracked using the level set method. The resulting nonlinear problem is solved by a Newton-Raphson strategy, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the proposed method. We show that stability is maintained for significantly larger time steps with respect to an explicit decoupling method.Keywords: finite element method, level set, Newton, membrane
Procedia PDF Downloads 330