Search results for: Einstein manifold
152 Introduction of Para-Sasaki-Like Riemannian Manifolds and Construction of New Einstein Metrics
Authors: Mancho Manev
Abstract:
The concept of almost paracontact Riemannian manifolds (abbr., apcR manifolds) was introduced by I. Sato in 1976 as an analogue of almost contact Riemannian manifolds. The notion of an apcR manifold of type (p,q) was defined by S. Sasaki in 1980, where p and q are respectively the numbers of the multiplicity of the structure eigenvalues 1 and -1. It also has a simple eigenvalue of 0. In our work, we consider (2n+1)-dimensional apcR manifolds of type (n,n), i.e., the paracontact distribution of the studied manifold can be considered as a 2n-dimensional almost paracomplex Riemannian distribution with almost paracomplex structure and structure group O(n) × O(n). The aim of the present study is to introduce a new class of apcR manifolds. Such a manifold is obtained using the construction of a certain Riemannian cone over it, and the resulting manifold is a paraholomorphic paracomplex Riemannian manifold (abbr., phpcR manifold). We call it a para-Sasaki-like Riemannian manifold (abbr., pSlR manifold) and give some explicit examples. We study the structure of pSlR spaces and find that the paracontact form η is closed and each pSlR manifold locally can be considered as a certain product of the real line with a phpcR manifold, which is locally a Riemannian product of two equidimensional Riemannian spaces. We also obtain that the curvature of the pSlR manifolds is completely determined by the curvature of the underlying local phpcR manifold. Moreover, the ξ-directed Ricci curvature is equal to -2n, while in the Sasaki case, it is 2n. Accordingly, the pSlR manifolds can be interpreted as the counterpart of the Sasaki manifolds; the skew-symmetric part of ∇η vanishes, while in the Sasaki case, the symmetric part vanishes. We define a hyperbolic extension of a (complete) phpcR manifold that resembles a certain warped product, and we indicate that it is a (complete) pSlR manifold. In addition, we consider the hyperbolic extension of a phpcR manifold and prove that if the initial manifold is a complete Einstein manifold with negative scalar curvature, then the resulting manifold is a complete Einstein pSlR manifold with negative scalar curvature. In this way, we produce new examples of a complete Einstein Riemannian manifold with negative scalar curvature. Finally, we define and study para contact conformal/homothetic deformations by deriving a subclass that preserves the para-Sasaki-like condition. We then find that if we apply a paracontact homothetic deformation of a pSlR space, we obtain that the Ricci tensor is invariant.Keywords: almost paracontact Riemannian manifolds, Einstein manifolds, holomorphic product manifold, warped product manifold
Procedia PDF Downloads 206151 On Quasi Conformally Flat LP-Sasakian Manifolds with a Coefficient α
Authors: Jay Prakash Singh
Abstract:
The aim of the present paper is to study properties of Quasi conformally flat LP-Sasakian manifolds with a coefficient α. In this paper, we prove that a Quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α is an η−Einstein and in a quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α if the scalar curvature tensor is constant then M is of constant curvature.Keywords: LP-Sasakian manifolds, quasi-conformal curvature tensor, concircular vector field, torse forming vector field, Einstein manifold
Procedia PDF Downloads 792150 Slant and Hemislant Submanifolds of an Indefinite Trans-Sasakian Manifold
Authors: Barnali Laha
Abstract:
In this paper, we would like to establish some of the properties of slant and hemislant submanifolds of an indefinite trans-Sasakian manifold. We have four sections in this paper. The first section is introductory. In Section 2, we recall some necessary details of an indefinite trans-Sasakian manifold. In Section 3, we have obtained some interesting properties on a totally umbilical slant submanifolds of an indefinite trans-Sasakian manifold. Finally, in Section 4, some results on integrability conditions of the distributions of hemislant submanifolds of an indefinite trans-Sasakian manifold have been obtained.Keywords: slant submanifold, indefinite trans-Sasakian manifold, hemislant submanifold, integrability conditions
Procedia PDF Downloads 481149 Some Classes of Lorentzian Alpha-Sasakian Manifolds with Respect to Quarter-Symmetric Metric Connection
Authors: Santu Dey, Arindam Bhattacharyya
Abstract:
The object of the present paper is to study a quarter-symmetric metric connection in a Lorentzian α-Sasakian manifold. We study some curvature properties of Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection. We investigate quasi-projectively at, Φ-symmetric, Φ-projectively at Lorentzian α-Sasakian manifolds with respect to quarter-symmetric metric connection. We also discuss Lorentzian α-Sasakian manifold admitting quartersymmetric metric connection satisfying P.S = 0, where P denote the projective curvature tensor with respect to quarter-symmetric metric connection.Keywords: quarter-symmetric metric connection, Lorentzian alpha-Sasakian manifold, quasi-projectively flat Lorentzian alpha-Sasakian manifold, phi-symmetric manifold
Procedia PDF Downloads 239148 Numerical Analysis of Liquid Metal Magnetohydrodynamic Flows in a Manifold with Three Sub-Channels
Authors: Meimei Wen, Chang Nyung Kim
Abstract:
In the current study, three-dimensional liquid metal (LM) magneto-hydrodynamic (MHD) flows in a manifold with three sub-channels under a uniform magnetic field are numerically investigated. In the manifold, the electrical current can cross channel walls, thus having influence on the flow distribution in each sub-channel. A case with various arrangements of electric conductivity for different parts of channel walls is considered, yielding different current distributions as well as flow distributions in each sub-channel. Here, the imbalance of mass flow rates in the three sub-channels is addressed. Meanwhile, predicted are detailed behaviors of the flow velocity, pressure, current and electric potential of LM MHD flows with three sub-channels. Commercial software CFX is used for the numerical simulation of LM MHD flows.Keywords: CFX, liquid metal, manifold, MHD flow
Procedia PDF Downloads 344147 A Dynamic Symplectic Manifold Analysis for Wave Propagation in Porous Media
Authors: K. I. M. Guerra, L. A. P. Silva, J. C. Leal
Abstract:
This study aims to understand with more amplitude and clarity the behavior of a porous medium where a pressure wave travels, translated into relative displacements inside the material, using mathematical tools derived from topology and symplectic geometry. The paper starts with a given partial differential equation based on the continuity and conservation theorems to describe the traveling wave through the porous body. A solution for this equation is proposed after all boundary, and initial conditions are fixed, and it’s accepted that the solution lies in a manifold U of purely spatial dimensions and that is embedded in the Real n-dimensional manifold, with spatial and kinetic dimensions. It’s shown that the U manifold of lower dimensions than IRna, where it is embedded, inherits properties of the vector spaces existing inside the topology it lies on. Then, a second manifold (U*), embedded in another space called IRnb of stress dimensions, is proposed and there’s a non-degenerative function that maps it into the U manifold. This relation is proved as a transformation in between two corresponding admissible solutions of the differential equation in distinct dimensions and properties, leading to a more visual and intuitive understanding of the whole dynamic process of a stress wave through a porous medium and also highlighting the dimensional invariance of Terzaghi’s theory for any coordinate system.Keywords: poremechanics, soil dynamics, symplectic geometry, wave propagation
Procedia PDF Downloads 295146 The Theory of Relativity (K)
Authors: Igor Vladimirovich Kuzminov
Abstract:
The proposed article is an alternative version of the Theory of Relativity. The version is based on the concepts of classical Newtonian physics and does not deny the existing calculation base. The proposed theory completely denies Einstein's existing Theory of Relativity. The only thing that connects these theories is that the proposed theory is also built on postulates. The proposed theory is intended to establish the foundation of classical Newtonian physics. The proposed theory is intended to establish continuity in the development of the fundamentals of physics and is intended to eliminate all kinds of speculation in explanations of physical phenomena. An example of such speculation is Einstein's Theory of Relativity (E).Keywords: the theory of relativity, postulates of the theory of relativity, criticism of Einstein's theory, classical physics
Procedia PDF Downloads 50145 Topology Optimization of Heat Exchanger Manifolds for Aircraft
Authors: Hanjong Kim, Changwan Han, Seonghun Park
Abstract:
Heat exchanger manifolds in aircraft play an important role in evenly distributing the fluid entering through the inlet to the heat transfer unit. In order to achieve this requirement, the manifold should be designed to have a light weight by withstanding high internal pressure. Therefore, this study aims at minimizing the weight of the heat exchanger manifold through topology optimization. For topology optimization, the initial design space was created with the inner surface extracted from the currently used manifold model and with the outer surface having a dimension of 243.42 mm of X 74.09 mm X 65 mm. This design space solid model was transformed into a finite element model with a maximum tetrahedron mesh size of 2 mm using ANSYS Workbench. Then, topology optimization was performed under the boundary conditions of an internal pressure of 5.5 MPa and the fixed support for rectangular inlet boundaries by SIMULIA TOSCA. This topology optimization produced the minimized finial volume of the manifold (i.e., 7.3% of the initial volume) based on the given constraints (i.e., 6% of the initial volume) and the objective function (i.e., maximizing manifold stiffness). Weight of the optimized model was 6.7% lighter than the currently used manifold, but after smoothing the topology optimized model, this difference would be bigger. The current optimized model has uneven thickness and skeleton-shaped outer surface to reduce stress concentration. We are currently simplifying the optimized model shape with spline interpolations by reflecting the design characteristics in thickness and skeletal structures from the optimized model. This simplified model will be validated again by calculating both stress distributions and weight reduction and then the validated model will be manufactured using 3D printing processes.Keywords: topology optimization, manifold, heat exchanger, 3D printing
Procedia PDF Downloads 248144 Analyzing Boson Star as a Candidate for Dark Galaxy Using ADM Formulation of General Relativity
Authors: Aria Ratmandanu
Abstract:
Boson stars can be viewed as zero temperature ground state, Bose-Einstein condensates, characterized by enormous occupation numbers. Time-dependent spherically symmetric spacetime can be a model of Boson Star. We use (3+1) split of Einstein equation (ADM formulation of general relativity) to solve Einstein field equation coupled to a complex scalar field (Einstein-Klein-Gordon Equation) on time-dependent spherically symmetric spacetime, We get the result that Boson stars are pulsating stars with the frequency of oscillation equal to its density. We search for interior solution of Boson stars and get the T.O.V. (Tollman-Oppenheimer-Volkoff) equation for Boson stars. Using T.O.V. equation, we get the equation of state and the relation between pressure and density, its total mass and along with its gravitational Mass. We found that the hypothetical particle Axion could form a Boson star with the size of a milky way galaxy and make it a candidate for a dark galaxy, (a galaxy that consists almost entirely of dark matter).Keywords: axion, boson star, dark galaxy, time-dependent spherically symmetric spacetime
Procedia PDF Downloads 243143 Foliation and the First Law of Thermodynamics for the Kerr Newman Black Hole
Authors: Syed M. Jawwad Riaz
Abstract:
There has been a lot of interest in exploring the thermodynamic properties at the horizon of a black hole geometry. Earlier, it has been shown, for different spacetimes, that the Einstein field equations at the horizon can be expressed as a first law of black hole thermodynamics. In this paper, considering r = constant slices, for the Kerr-Newman black hole, shown that the Einstein field equations for the induced 3-metric of the hypersurface is expressed in thermodynamic quantities under the virtual displacements of the hypersurfaces. As expected, it is found that the field equations of the induced metric corresponding to the horizon can only be written as a first law of black hole thermodynamics. It is to be mentioned here that the procedure adopted is much easier, to obtain such results, as here one has to essentially deal with (n - 1)-dimensional induced metric for an n-dimensional spacetime.Keywords: black hole space-times, Einstein's field equation, foliation, hyper-surfaces
Procedia PDF Downloads 346142 Non-Singular Gravitational Collapse of a Dust Cloud in Einstein-Cartan Theory
Authors: Amir Hadi Ziaie, Mostafa Hashemi, Shahram Jalalzadeh
Abstract:
It is now known that the end state of the collapse process of a dense star under its own gravity is the formation of a spacetime singularity. This is the spacetime event where the energy density and spacetime curvature diverge, and the classical general relativity breaks down. As we know, a realistic star is composed of fermions so that their spin effects could alter the final fate of the collapse scenario. The underlying theory within which the inclusion of spin effects can be worked out is the Einstein-Cartan theory. In this theory, the spacetime torsion which is defined as a geometrical quantity, is related to an intrinsic angular momentum of fermions (spin). In this work, we study the collapse process of a homogeneous spin fluid in such a framework and show that taking into account the spin effects of the collapsing cloud could prevent the formation of spacetime singularity.Keywords: gravitational collapse, einstein-cartan theory, spacetime singularity, black hole physics
Procedia PDF Downloads 397141 Nonlocal Phenomena in Quantum Mechanics
Authors: Kazim G. Atman, Hüseyin Sirin
Abstract:
In theoretical physics, nonlocal phenomena has always been subject of debate. However, in the conventional mathematical approach where the developments of the physical systems are investigated by using the standard mathematical tools, nonlocal effects are not taken into account. In order to investigate the nonlocality in quantum mechanics and fractal property of space, fractional derivative operators are employed in this study. In this manner, fractional creation and annihilation operators are introduced and Einstein coefficients are taken into account as an application of concomitant formalism in quantum field theory. Therefore, each energy mode of photons are considered as fractional quantized harmonic oscillator hereby Einstein coefficients are obtained. Nevertheless, wave function and energy eigenvalues of fractional quantum mechanical harmonic oscillator are obtained via the fractional derivative order α which is a measure of the influence of nonlocal effects. In the case α = 1, where space becomes homogeneous and continuous, standard physical conclusions are recovered.Keywords: Einstein’s Coefficients, Fractional Calculus, Fractional Quantum Mechanics, Nonlocal Theories
Procedia PDF Downloads 169140 Bianchi Type- I Viscous Fluid Cosmological Models with Stiff Matter and Time Dependent Λ- Term
Authors: Rajendra Kumar Dubey
Abstract:
Einstein’s field equations with variable cosmological term Λ are considered in the presence of viscous fluid for Bianchi type I space time. Exact solutions of Einstein’s field equations are obtained by assuming cosmological term Λ Proportional to (R is a scale factor and m is constant). We observed that the shear viscosity is found to be responsible for faster removal of initial anisotropy in the universe. The physical significance of the cosmological models has also been discussed.Keywords: bianchi type, I cosmological model, viscous fluid, cosmological constant Λ
Procedia PDF Downloads 528139 The Introduction of the Revolution Einstein’s Relative Energy Equations in Even 2n and Odd 3n Light Dimension Energy States Systems
Authors: Jiradeach Kalayaruan, Tosawat Seetawan
Abstract:
This paper studied the energy of the nature systems by looking at the overall image throughout the universe. The energy of the nature systems was developed from the Einstein’s energy equation. The researcher used the new ideas called even 2n and odd 3n light dimension energy states systems, which were developed from Einstein’s relativity energy theory equation. In this study, the major methodology the researchers used was the basic principle ideas or beliefs of some religions such as Buddhism, Christianity, Hinduism, Islam, or Tao in order to get new discoveries. The basic beliefs of each religion - Nivara, God, Ether, Atman, and Tao respectively, were great influential ideas on the researchers to use them greatly in the study to form new ideas from philosophy. Since the philosophy of each religion was alive with deep insight of the physical nature relative energy, it connected the basic beliefs to light dimension energy states systems. Unfortunately, Einstein’s original relative energy equation showed only even 2n light dimension energy states systems (if n = 1,…,∞). But in advance ideas, the researchers multiplied light dimension energy by Einstein’s original relative energy equation and get new idea of theoritical physics in odd 3n light dimension energy states systems (if n = 1,…,∞). Because from basic principle ideas or beliefs of some religions philosophy of each religion, you had to add the media light dimension energy into Einstein’s original relative energy equation. Consequently, the simple meaning picture in deep insight showed that you could touch light dimension energy of Nivara, God, Ether, Atman, and Tao by light dimension energy. Since light dimension energy was transferred by Nivara, God, Ether, Atman and Tao, the researchers got the new equation of odd 3n light dimension energy states systems. Moreover, the researchers expected to be able to solve overview problems of all light dimension energy in all nature relative energy, which are developed from Eistein’s relative energy equation.The finding of the study was called 'super nature relative energy' ( in odd 3n light dimension energy states systems (if n = 1,…,∞)). From the new ideas above you could do the summation of even 2n and odd 3n light dimension energy states systems in all of nature light dimension energy states systems. In the future time, the researchers will expect the new idea to be used in insight theoretical physics, which is very useful to the development of quantum mechanics, all engineering, medical profession, transportation, communication, scientific inventions, and technology, etc.Keywords: 2n light dimension energy states systems effect, Ether, even 2n light dimension energy states systems, nature relativity, Nivara, odd 3n light dimension energy states systems, perturbation points energy, relax point energy states systems, stress perturbation energy states systems effect, super relative energy
Procedia PDF Downloads 344138 Development of Restricted Formula SAE Intake Manifold Using 1D and Flow Simulations Based on Track Analysis
Authors: Sahil Kapahi
Abstract:
A Formula SAE competition is characterized by typical track layouts having slaloms, tight corners and short straights, which favor a particular range of engine speed for a given set of gear ratios. Therefore, it is imperative that the power-train is optimized for the corresponding engine rpm band. This paper describes the process of designing, simulating and validating an air intake manifold for an inline four cylinder four-stroke internal combustion gasoline engine based on analysis of required vehicle performance. The requirements for the design of subject intake were set considering the rules of FSAE competitions and analysis of engine performance patterns for typical competition scenarios, carried out using OPTIMUMLAP software. Manifold geometry was optimized using results of air flow simulations performed on ANSYS CFX, and subsequent effect of this geometry on the engine was modeled using 1D simulation on Ricardo WAVE. A design was developed to meet the targeted performance standards in terms of engine torque output and volumetric efficiency. Finally, the intake manifold was manufactured and assembled onto the vehicle, and the engine output of the vehicle with the designed intake was studied using a dynamometer. The results of the dynamometer testing were then validated against predicted values derived from the Ricardo WAVE modeling and benefits to performance of the vehicle were established.Keywords: 1 D Simulation, air flow simulation, ANSYS CFX, four-stroke engine, OPTIMUM LAP, Ricardo WAVE
Procedia PDF Downloads 246137 Analytical Solution of Non–Autonomous Discrete Non-Linear Schrodinger Equation With Saturable Non-Linearity
Authors: Mishu Gupta, Rama Gupta
Abstract:
It has been elucidated here that non- autonomous discrete non-linear Schrödinger equation is associated with saturable non-linearity through photo-refractive media. We have investigated the localized solution of non-autonomous saturable discrete non-linear Schrödinger equations. The similarity transformation has been involved in converting non-autonomous saturable discrete non-linear Schrödinger equation to constant-coefficient saturable discrete non-linear Schrödinger equation (SDNLSE), whose exact solution is already known. By back substitution, the solution of the non-autonomous version has been obtained. We have analysed our solution for the hyperbolic and periodic form of gain/loss term, and interesting results have been obtained. The most important characteristic role is that it helps us to analyse the propagation of electromagnetic waves in glass fibres and other optical wave mediums. Also, the usage of SDNLSE has been seen in tight binding for Bose-Einstein condensates in optical mediums. Even the solutions are interrelated, and its properties are prominently used in various physical aspects like optical waveguides, Bose-Einstein (B-E) condensates in optical mediums, Non-linear optics in photonic crystals, and non-linear kerr–type non-linearity effect and photo refracting medium.Keywords: B-E-Bose-Einstein, DNLSE-Discrete non linear schrodinger equation, NLSE-non linear schrodinger equation, SDNLSE - saturable discrete non linear Schrodinger equation
Procedia PDF Downloads 155136 Quantum Mechanics as A Limiting Case of Relativistic Mechanics
Authors: Ahmad Almajid
Abstract:
The idea of unifying quantum mechanics with general relativity is still a dream for many researchers, as physics has only two paths, no more. Einstein's path, which is mainly based on particle mechanics, and the path of Paul Dirac and others, which is based on wave mechanics, the incompatibility of the two approaches is due to the radical difference in the initial assumptions and the mathematical nature of each approach. Logical thinking in modern physics leads us to two problems: - In quantum mechanics, despite its success, the problem of measurement and the problem of wave function interpretation is still obscure. - In special relativity, despite the success of the equivalence of rest-mass and energy, but at the speed of light, the fact that the energy becomes infinite is contrary to logic because the speed of light is not infinite, and the mass of the particle is not infinite too. These contradictions arise from the overlap of relativistic and quantum mechanics in the neighborhood of the speed of light, and in order to solve these problems, one must understand well how to move from relativistic mechanics to quantum mechanics, or rather, to unify them in a way different from Dirac's method, in order to go along with God or Nature, since, as Einstein said, "God doesn't play dice." From De Broglie's hypothesis about wave-particle duality, Léon Brillouin's definition of the new proper time was deduced, and thus the quantum Lorentz factor was obtained. Finally, using the Euler-Lagrange equation, we come up with new equations in quantum mechanics. In this paper, the two problems in modern physics mentioned above are solved; it can be said that this new approach to quantum mechanics will enable us to unify it with general relativity quite simply. If the experiments prove the validity of the results of this research, we will be able in the future to transport the matter at speed close to the speed of light. Finally, this research yielded three important results: 1- Lorentz quantum factor. 2- Planck energy is a limited case of Einstein energy. 3- Real quantum mechanics, in which new equations for quantum mechanics match and exceed Dirac's equations, these equations have been reached in a completely different way from Dirac's method. These equations show that quantum mechanics is a limited case of relativistic mechanics. At the Solvay Conference in 1927, the debate about quantum mechanics between Bohr, Einstein, and others reached its climax, while Bohr suggested that if particles are not observed, they are in a probabilistic state, then Einstein said his famous claim ("God does not play dice"). Thus, Einstein was right, especially when he didn't accept the principle of indeterminacy in quantum theory, although experiments support quantum mechanics. However, the results of our research indicate that God really does not play dice; when the electron disappears, it turns into amicable particles or an elastic medium, according to the above obvious equations. Likewise, Bohr was right also, when he indicated that there must be a science like quantum mechanics to monitor and study the motion of subatomic particles, but the picture in front of him was blurry and not clear, so he resorted to the probabilistic interpretation.Keywords: lorentz quantum factor, new, planck’s energy as a limiting case of einstein’s energy, real quantum mechanics, new equations for quantum mechanics
Procedia PDF Downloads 77135 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis
Authors: Meng Su
Abstract:
High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis
Procedia PDF Downloads 107134 The Generalized Lemaitre-Tolman-Bondi Solutions in Modeling the Cosmological Black Holes
Authors: Elena M. Kopteva, Pavlina Jaluvkova, Zdenek Stuchlik
Abstract:
In spite of the numerous attempts to close the discussion about the influence of cosmological expansion on local gravitationally bounded systems, this question arises in literature again and again and remains still far from its final resolution. Here one of the main problems is the problem of obtaining a physically adequate model of strongly gravitating object immersed in non-static cosmological background. Such objects are usually called ‘cosmological’ black holes and are of great interest in wide set of cosmological and astrophysical areas. In this work the set of new exact solutions of the Einstein equations is derived for the flat space that generalizes the known Lemaitre-Tolman-Bondi solution for the case of nonzero pressure. The solutions obtained are pretending to describe the black hole immersed in nonstatic cosmological background and give a possibility to investigate the hot problems concerning the effects of the cosmological expansion in gravitationally bounded systems, the structure formation in the early universe, black hole thermodynamics and other related problems. It is shown that each of the solutions obtained contains either the Reissner-Nordstrom or the Schwarzschild black hole in the central region of the space. It is demonstrated that the approach of the mass function use in solving of the Einstein equations allows clear physical interpretation of the resulting solutions, that is of much benefit to any their concrete application.Keywords: exact solutions of the Einstein equations, cosmological black holes, generalized Lemaitre-Tolman-Bondi solutions, nonzero pressure
Procedia PDF Downloads 423133 Stern-Gerlach Force in Quantum Magnetic Field and Schrodinger's Cat
Authors: Mandip Singh
Abstract:
Quantum entanglement plays a fundamental role in our understanding of counter-intuitive aspects of quantum reality. If classical physics is an approximation of quantum physics, then quantum entanglement should persist at a macroscopic scale. In this paper, a thought experiment is presented where a free falling spin polarized Bose-Einstein condensate interacts with a quantum superimposed magnetic field of nonzero gradient. In contrast to the semiclassical Stern-Gerlach experiment, the magnetic field and the spin degrees of freedom both are considered to be quantum mechanical in a generalized scenario. As a consequence, a Bose-Einstein condensate can be prepared at distinct locations in space in a sense of quantum superposition. In addition, the generation of Schrodinger-cat like quantum states shall be presented.Keywords: Schrodinger-cat quantum states, macroscopic entanglement, macroscopic quantum fields, foundations of quantum physics
Procedia PDF Downloads 189132 Classification of Cosmological Wormhole Solutions in the Framework of General Relativity
Authors: Usamah Al-Ali
Abstract:
We explore the effect of expanding space on the exoticity of the matter supporting a traversable Lorentzian wormhole of zero radial tide whose line element is given by ds2 = dt^2 − a^2(t)[ dr^2/(1 − kr2 −b(r)/r)+ r2dΩ^2 in the context of General Relativity. This task is achieved by deriving the Einstein field equations for anisotropic matter field corresponding to the considered cosmological wormhole metric and performing a classification of their solutions on the basis of a variable equations of state (EoS) of the form p = ω(r)ρ. Explicit forms of the shape function b(r) and the scale factor a(t) arising in the classification are utilized to construct the corresponding energy-momentum tensor where the energy conditions for each case is investigated. While the violation of energy conditions is inevitable in case of static wormholes, the classification we performed leads to interesting solutions in which this violation is either reduced or eliminated.Keywords: general relativity, Einstein field equations, energy conditions, cosmological wormhole
Procedia PDF Downloads 63131 Modifying Hawking Radiation in 2D-Approximated Schwarzschild Black Holes near the Event Horizon
Authors: Richard Pincak
Abstract:
Starting from a 4D spacetime model using a partially negative dimensional product manifold (PNDP-manifold), which emerges as a 2D spacetime, we developed an analysis of tidal forces and Hawking radiation near the event horizon of a Schwarzchild black hole. The modified 2D metric, incorporating the effects of the four-dimensional Weyl tensor, with the dilatonic field and the newly derived time relation \(2\alpha t = \ln \epsilon\), can enable a deeper understanding of quantum gravity. The analysis shows how the modified Hawking temperature and distribution of emitted particles are affected by additional fields, providing potential observables for future experiments.Keywords: black holes, Hawking radiation, Weyl tensor, information paradox
Procedia PDF Downloads 21130 A Nonlocal Means Algorithm for Poisson Denoising Based on Information Geometry
Authors: Dongxu Chen, Yipeng Li
Abstract:
This paper presents an information geometry NonlocalMeans(NLM) algorithm for Poisson denoising. NLM estimates a noise-free pixel as a weighted average of image pixels, where each pixel is weighted according to the similarity between image patches in Euclidean space. In this work, every pixel is a Poisson distribution locally estimated by Maximum Likelihood (ML), all distributions consist of a statistical manifold. A NLM denoising algorithm is conducted on the statistical manifold where Fisher information matrix can be used for computing distribution geodesics referenced as the similarity between patches. This approach was demonstrated to be competitive with related state-of-the-art methods.Keywords: image denoising, Poisson noise, information geometry, nonlocal-means
Procedia PDF Downloads 285129 A General Approach to Define Adjoint of Linear and Non-linear Operators
Authors: Mehdi Jafari Matehkolaee
Abstract:
In this paper, we have obtained the adjoint of an arbitrary operator (linear and nonlinear) in Hilbert space by introducing an n-dimensional Riemannian manifold. This general formalism covers every linear operator (non – differential) in Hilbert space. In fact, our approach shows that instead of using the adjoint definition of an operator directly, it can be obtained directly by relying on a suitable generalized space according to the action of the operator in question. For the case of nonlinear operators, we have to change the definition of the linear operator adjoint. But here, we have obtained an adjoint of these operators with respect to the definition of the derivative of the operator. As a matter of fact, we have shown one of the straight applications of the ''Frechet derivative'' in the algebra of the operators.Keywords: adjoint operator, non-linear operator, differentiable operator, manifold
Procedia PDF Downloads 119128 Causes for the Precession of the Perihelion in the Planetary Orbits
Authors: Kwan U. Kim, Jin Sim, Ryong Jin Jang, Sung Duk Kim
Abstract:
It is Leverrier that discovered the precession of the perihelion in the planetary orbits for the first time in the world, while it is Einstein that explained the astronomical phenomenom for the first time in the world. The amount of the precession of the perihelion for Einstein’s theory of gravitation has been explained by means of the inverse fourth power force(inverse third power potential) introduced totheory of gravitation through Schwarzschild metric However, the methodology has a serious shortcoming that it is impossible to explain the cause for the precession of the perihelion in the planetary orbits. According to our study, without taking the cause for the precession of the perihelion, 6 methods can explain the amount of the precession of the perihelion discovered by Leverrier. Therefore, the problem of what caused the perihelion to precess in the planetary orbits must be solved for physics because it is a profound scientific and technological problem for a basic experiment in construction of relativistic theory of gravitation. The scientific solution to the problem proved that Einstein’s explanation for the planetary orbits is a magic made by the numerical expressions obtained from fictitious gravitation introduced to theory of gravitation and wrong definition of proper time The problem of the precession of the perihelion seems solved already by means of general theory of relativity, but, in essence, the cause for the astronomical phenomenon has not been successfully explained for astronomy yet. The right solution to the problem comes from generalized theory of gravitation. Therefore, in this paper, it has been shown that by means of Schwarzschild field and the physical quantities of relativistic Lagrangian redflected in it, fictitious gravitation is not the main factor which can cause the perihelion to precess in the planetary orbits. In addition to it, it has been shown that the main factor which can cause the perihelion to precess in the planetary orbits is the inverse third power force existing really in the relativistic region in the Solar system.Keywords: inverse third power force, precession of the perihelion, fictitious gravitation, planetary orbits
Procedia PDF Downloads 10127 Incomplete Existing Algebra to Support Mathematical Computations
Authors: Ranjit Biswas
Abstract:
The existing subject Algebra is incomplete to support mathematical computations being done by scientists of all areas: Mathematics, Physics, Statistics, Chemistry, Space Science, Cosmology etc. even starting from the era of great Einstein. A huge hidden gap in the subject ‘Algebra’ is unearthed. All the scientists today, including mathematicians, physicists, chemists, statisticians, cosmologists, space scientists, and economists, even starting from the great Einstein, are lucky that they got results without facing any contradictions or without facing computational errors. Most surprising is that the results of all scientists, including Nobel Prize winners, were proved by them by doing experiments too. But in this paper, it is rigorously justified that they all are lucky. An algebraist can define an infinite number of new algebraic structures. The objective of the work in this paper is not just for the sake of defining a distinct algebraic structure, but to recognize and identify a major gap of the subject ‘Algebra’ lying hidden so far in the existing vast literature of it. The objective of this work is to fix the unearthed gap. Consequently, a different algebraic structure called ‘Region’ has been introduced, and its properties are studied.Keywords: region, ROR, RORR, region algebra
Procedia PDF Downloads 52126 Amrita Bose-Einstein Condensate Solution Formed by Gold Nanoparticles Laser Fusion and Atmospheric Water Generation
Authors: Montree Bunruanses, Preecha Yupapin
Abstract:
In this work, the quantum material called Amrita (elixir) is made from top-down gold into nanometer particles by fusing 99% gold with a laser and mixing it with drinking water using the atmospheric water (AWG) production system, which is made of water with air. The high energy laser power destroyed the four natural force bindings from gravity-weak-electromagnetic and strong coupling forces, where finally it was the purified Bose-Einstein condensate (BEC) states. With this method, gold atoms in the form of spherical single crystals with a diameter of 30-50 nanometers are obtained and used. They were modulated (activated) with a frequency generator into various matrix structures mixed with AWG water to be used in the upstream conversion (quantum reversible) process, which can be applied on humans both internally or externally by drinking or applying on the treated surfaces. Doing both space (body) and time (mind) will go back to the origin and start again from the coupling of space-time on both sides of time at fusion (strong coupling force) and push out (Big Bang) at the equilibrium point (singularity) occurs as strings and DNA with neutrinos as coupling energy. There is no distortion (purification), which is the point where time and space have not yet been determined, and there is infinite energy. Therefore, the upstream conversion is performed. It is reforming DNA to make it be purified. The use of Amrita is a method used for people who cannot meditate (quantum meditation). Various cases were applied, where the results show that the Amrita can make the body and the mind return to their pure origins and begin the downstream process with the Big Bang movement, quantum communication in all dimensions, DNA reformation, frequency filtering, crystal body forming, broadband quantum communication networks, black hole forming, quantum consciousness, body and mind healing, etc.Keywords: quantum materials, quantum meditation, quantum reversible, Bose-Einstein condensate
Procedia PDF Downloads 76125 An Equivalence between a Harmonic Form and a Closed Co-Closed Differential Form in L^Q and Non-L^Q Spaces
Abstract:
An equivalent relation between a harmonic form and a closed co-closed form is established on a complete non-compact manifold. This equivalence has been generalized for a differential k-form ω from Lq spaces to non-Lq spaces when q=2 in the context of p-balanced growth where p=2. Especially for a simple differential k-form on a complete non-compact manifold, the equivalent relation has been verified with the extended scope of q for from finite q-energy in Lq spaces to infinite q-energy in non-Lq spaces when with 2-balanced growth. Generalized Hadamard Theorem, Cauchy-Schwarz Inequality, and Calculus skills including Integration by Parts as well as Convergent Series have been applied as estimation techniques to evaluate growth rates for a differential form. In particular, energy growth rates as indicated by an appropriate power range in a selected test function lead to a balance between a harmonic differential form and a closed co-closed differential form. Research ideas and computational methods in this paper could provide an innovative way in the study of broadening Lq spaces to non-Lq spaces with a wide variety of infinite energy growth for a differential form.Keywords: closed forms, co-closed forms, harmonic forms, L^q spaces, p-balanced growth, simple differential k-forms
Procedia PDF Downloads 450124 Particle and Photon Trajectories near the Black Hole Immersed in the Nonstatic Cosmological Background
Authors: Elena M. Kopteva, Pavlina Jaluvkova, Zdenek Stuchlik
Abstract:
The question of constructing a consistent model of the cosmological black hole remains to be unsolved and still attracts the interest of cosmologists as far as it is important in a wide set of research problems including the problem of the black hole horizon dynamics, the problem of interplay between cosmological expansion and local gravity, the problem of structure formation in the early universe etc. In this work, the model of the cosmological black hole is built on the basis of the exact solution of the Einstein equations for the spherically symmetric inhomogeneous dust distribution in the approach of the mass function use. Possible trajectories for massive particles and photons near the black hole immersed in the nonstatic dust cosmological background are investigated in frame of the obtained model. The reference system of distant galaxy comoving to cosmological expansion combined with curvature coordinates is used, so that the resulting metric becomes nondiagonal and involves both proper ‘cosmological’ time and curvature spatial coordinates. For this metric the geodesic equations are analyzed for the test particles and photons, and the respective trajectories are built.Keywords: exact solutions for Einstein equations, Lemaitre-Tolman-Bondi solution, cosmological black holes, particle and photon trajectories
Procedia PDF Downloads 339123 Finite Eigenstrains in Nonlinear Elastic Solid Wedges
Authors: Ashkan Golgoon, Souhayl Sadik, Arash Yavari
Abstract:
Eigenstrains in nonlinear solids are created due to anelastic effects such as non-uniform temperature distributions, growth, remodeling, and defects. Eigenstrains understanding is indispensable, as they can generate residual stresses and strongly affect the overall response of solids. Here, we study the residual stress and deformation fields of an incompressible isotropic infinite wedge with a circumferentially-symmetric distribution of finite eigenstrains. We construct a material manifold, whose Riemannian metric explicitly depends on the eigenstrain distribution, thereby we turn the problem into a classical nonlinear elasticity problem, where we find an embedding of the Riemannian material manifold into the ambient Euclidean space. In particular, we find exact solutions for the residual stress and deformation fields of a neo-Hookean wedge having a symmetric inclusion with finite radial and circumferential eigenstrains. Moreover, we numerically solve a similar problem when a symmetric Mooney-Rivlin inhomogeneity with finite eigenstrains is placed in a neo-Hookean wedge. Generalization of the eigenstrain problem to other geometries are also discussed.Keywords: finite eigenstrains, geometric mechanics, inclusion, inhomogeneity, nonlinear elasticity
Procedia PDF Downloads 255