World Academy of Science, Engineering and Technology
[Information and Communication Engineering]
Online ISSN : 1307-6892
300 Effects of Self-Disclosure and Transparency on Conversational Agents in a Healthcare-Related Decision Support System
Authors: Luca Martignoni, Joseph Nserat, Eric Arand, Marvin Braun
Abstract:
The increasing application of conversational agents in healthcare and the demand for applications that enable patients to take informed decisions is changing the way patients access healthcare and take decisions. Promising results related to the acceptance of CAs in healthcare have been accomplished. In that regard, understanding how to design CAs in a way that patients trust their recommendations and decisions constitutes an important area of research. Our study examines self-disclosure and transparency as drivers of trust to enhance the medical assistance of CAs for patients. Accordingly, we examined the effects of self-disclosure and transparency on patients trust and service satisfaction by conducting an online experiment with 136 participants. Our results show that the expression of both self-disclosure and conversational agents transparency leads to an increased perception of trust but does not necessarily improve the service satisfaction. Therefore, developers should implement self-disclosure and transparency to create a trustworthy environment.Keywords: conversational agent, transparency, self-disclosure, healthcare
Procedia PDF Downloads 143299 Schooling Culture in Egyptian Public Schools: Reform in Professional Development for Equity and hope in Education
Authors: Nora El-Bilawia
Abstract:
This paper discovers the challenges and/or opportunities to implementing multiple intelligence (MI) practices in English as foreign language (EFL) classrooms at Egyptian public schools as part of the government’s educational reform plan. It is found that Egyptian EFL teachers value the use of MI’s ways of teaching as means for active and higher order thinking. However, teachers believed they were underprivileged, as the government did not provide appropriate trainings, tools, or means to integrate MI in their daily lessons. They also conferred challenges they face due to some Egyptian schooling cultural practices. At the end of this chapter, a proposed need for a paradigm shift in the schooling culture in Egypt to implement practical changes in schools to promote hope in education such as the use of MI teaching tools. This study promotes cross-cultural understanding of educational opportunities and efforts for equal learning outcomes around the globe.Keywords: professional development, schooling culture, acculturation, equitable education
Procedia PDF Downloads 104298 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring
Authors: A. Degale Desta, Cheng Jian
Abstract:
Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning
Procedia PDF Downloads 166297 Early Prediction of Disposable Addresses in Ethereum Blockchain
Authors: Ahmad Saleem
Abstract:
Ethereum is the second largest crypto currency in blockchain ecosystem. Along with standard transactions, it supports smart contracts and NFT’s. Current research trends are focused on analyzing the overall structure of the network its growth and behavior. Ethereum addresses are anonymous and can be created on fly. The nature of Ethereum network and addresses make it hard to predict their behavior. The activity period of an ethereum address is not much analyzed. Using machine learning we can make early prediction about the disposability of the address. In this paper we analyzed the lifetime of the addresses. We also identified and predicted the disposable addresses using machine learning models and compared the results.Keywords: blockchain, Ethereum, cryptocurrency, prediction
Procedia PDF Downloads 100296 Operations Guide Implementation Practice in Information Technology Organizations
Authors: Ziad M. Hejazi, Hani F. Mokhtar, Mohammed S. Bahabri, Mohammed H. Ghafouri, Ahmed S. Bahaitham
Abstract:
This paper demonstrates the efforts taken by an Information Technology (IT) organization at Saudi Aramco to establish Operations Guide in a practical manner. Review of related work and literature revealed several important aspects to be considered when implementing the operation guide including Identify supporting IT groups, specify each group roles and responsibilities, formulate the IT operations in terms of processes (input/output), list each process main steps, provide the details of each process main step, develop the RACI (Responsible, Accountable, Consulted, and Informed) chart, highlight the process KPI’s, utilized systems, and forms. Identified aspects were then addressed in the actual implementation via several practices, including developing the operation guide for all IT supported operations, creating a shared folder for the operations guide, and announcing the implementation to all IT staff. The implementation of the mentioned practice was benchmarked, identified as best in class, and adopted by other internal organizations. Moreover, it was evident and appreciated by IT management. The significance of this study stems from the fact that it might be among the first studies in Saudi Arabia that propose a practical guideline to implement IT operations guide by IT organizations. Additional research significance comes from the study being conducted in Saudi Aramco, one of the world’s biggest integrated energy and petrochemical companies.Keywords: operations guide, process implementation, Saudi Aramco company, information technology, standard of procedure
Procedia PDF Downloads 99295 Digital Joint Equivalent Channel Hybrid Precoding for Millimeterwave Massive Multiple Input Multiple Output Systems
Authors: Linyu Wang, Mingjun Zhu, Jianhong Xiang, Hanyu Jiang
Abstract:
Aiming at the problem that the spectral efficiency of hybrid precoding (HP) is too low in the current millimeter wave (mmWave) massive multiple input multiple output (MIMO) system, this paper proposes a digital joint equivalent channel hybrid precoding algorithm, which is based on the introduction of digital encoding matrix iteration. First, the objective function is expanded to obtain the relation equation, and the pseudo-inverse iterative function of the analog encoder is derived by using the pseudo-inverse method, which solves the problem of greatly increasing the amount of computation caused by the lack of rank of the digital encoding matrix and reduces the overall complexity of hybrid precoding. Secondly, the analog coding matrix and the millimeter-wave sparse channel matrix are combined into an equivalent channel, and then the equivalent channel is subjected to Singular Value Decomposition (SVD) to obtain a digital coding matrix, and then the derived pseudo-inverse iterative function is used to iteratively regenerate the simulated encoding matrix. The simulation results show that the proposed algorithm improves the system spectral efficiency by 10~20%compared with other algorithms and the stability is also improved.Keywords: mmWave, massive MIMO, hybrid precoding, singular value decompositing, equivalent channel
Procedia PDF Downloads 101294 Navigating States of Emergency: A Preliminary Comparison of Online Public Reaction to COVID-19 and Monkeypox on Twitter
Authors: Antonia Egli, Theo Lynn, Pierangelo Rosati, Gary Sinclair
Abstract:
The World Health Organization (WHO) defines vaccine hesitancy as the postponement or complete denial of vaccines and estimates a direct linkage to approximately 1.5 million avoidable deaths annually. This figure is not immune to public health developments, as has become evident since the global spread of COVID-19 from Wuhan, China in early 2020. Since then, the proliferation of influential, but oftentimes inaccurate, outdated, incomplete, or false vaccine-related information on social media has impacted hesitancy levels to a degree described by the WHO as an infodemic. The COVID-19 pandemic and related vaccine hesitancy levels have in 2022 resulted in the largest drop in childhood vaccinations of the 21st century, while the prevalence of online stigma towards vaccine hesitant consumers continues to grow. Simultaneously, a second disease has risen to global importance: Monkeypox is an infection originating from west and central Africa and, due to racially motivated online hate, was in August 2022 set to be renamed by the WHO. To better understand public reactions towards two viral infections that became global threats to public health no two years apart, this research examines user replies to threads published by the WHO on Twitter. Replies to two Tweets from the @WHO account declaring COVID-19 and Monkeypox as ‘public health emergencies of international concern’ on January 30, 2020, and July 23, 2022, are gathered using the Twitter application programming interface and user mention timeline endpoint. Research methodology is unique in its analysis of stigmatizing, racist, and hateful content shared on social media within the vaccine discourse over the course of two disease outbreaks. Three distinct analyses are conducted to provide insight into (i) the most prevalent topics and sub-topics among user reactions, (ii) changes in sentiment towards the spread of the two diseases, and (iii) the presence of stigma, racism, and online hate. Findings indicate an increase in hesitancy to accept further vaccines and social distancing measures, the presence of stigmatizing content aimed primarily at anti-vaccine cohorts and racially motivated abusive messages, and a prevalent fatigue towards disease-related news overall. This research provides value to non-profit organizations or government agencies associated with vaccines and vaccination programs in emphasizing the need for public health communication fitted to consumers' vaccine sentiments, levels of health information literacy, and degrees of trust towards public health institutions. Considering the importance of addressing fears among the vaccine hesitant, findings also illustrate the risk of alienation through stigmatization, lead future research in probing the relatively underexamined field of online, vaccine-related stigma, and discuss the potential effects of stigma towards vaccine hesitant Twitter users in their decisions to vaccinate.Keywords: social marketing, social media, public health communication, vaccines
Procedia PDF Downloads 101293 Sidelobe Free Inverse Synthetic Aperture Radar Imaging of Non Cooperative Moving Targets Using WiFi
Authors: Jiamin Huang, Shuliang Gui, Zengshan Tian, Fei Yan, Xiaodong Wu
Abstract:
In recent years, with the rapid development of radio frequency technology, the differences between radar sensing and wireless communication in terms of receiving and sending channels, signal processing, data management and control are gradually shrinking. There has been a trend of integrated communication radar sensing. However, most of the existing radar imaging technologies based on communication signals are combined with synthetic aperture radar (SAR) imaging, which does not conform to the practical application case of the integration of communication and radar. Therefore, in this paper proposes a high-precision imaging method using communication signals based on the imaging mechanism of inverse synthetic aperture radar (ISAR) imaging. This method makes full use of the structural characteristics of the orthogonal frequency division multiplexing (OFDM) signal, so the sidelobe effect in distance compression is removed and combines radon transform and Fractional Fourier Transform (FrFT) parameter estimation methods to achieve ISAR imaging of non-cooperative targets. The simulation experiment and measured results verify the feasibility and effectiveness of the method, and prove its broad application prospects in the field of intelligent transportation.Keywords: integration of communication and radar, OFDM, radon, FrFT, ISAR
Procedia PDF Downloads 128292 Image Reconstruction Method Based on L0 Norm
Authors: Jianhong Xiang, Hao Xiang, Linyu Wang
Abstract:
Compressed sensing (CS) has a wide range of applications in sparse signal reconstruction. Aiming at the problems of low recovery accuracy and long reconstruction time of existing reconstruction algorithms in medical imaging, this paper proposes a corrected smoothing L0 algorithm based on compressed sensing (CSL0). First, an approximate hyperbolic tangent function (AHTF) that is more similar to the L0 norm is proposed to approximate the L0 norm. Secondly, in view of the "sawtooth phenomenon" in the steepest descent method and the problem of sensitivity to the initial value selection in the modified Newton method, the use of the steepest descent method and the modified Newton method are jointly optimized to improve the reconstruction accuracy. Finally, the CSL0 algorithm is simulated on various images. The results show that the algorithm proposed in this paper improves the reconstruction accuracy of the test image by 0-0. 98dB.Keywords: smoothed L0, compressed sensing, image processing, sparse reconstruction
Procedia PDF Downloads 120291 Pilot-free Image Transmission System of Joint Source Channel Based on Multi-Level Semantic Information
Authors: Linyu Wang, Liguo Qiao, Jianhong Xiang, Hao Xu
Abstract:
In semantic communication, the existing joint Source Channel coding (JSCC) wireless communication system without pilot has unstable transmission performance and can not effectively capture the global information and location information of images. In this paper, a pilot-free image transmission system of joint source channel based on multi-level semantic information (Multi-level JSCC) is proposed. The transmitter of the system is composed of two networks. The feature extraction network is used to extract the high-level semantic features of the image, compress the information transmitted by the image, and improve the bandwidth utilization. Feature retention network is used to preserve low-level semantic features and image details to improve communication quality. The receiver also is composed of two networks. The received high-level semantic features are fused with the low-level semantic features after feature enhancement network in the same dimension, and then the image dimension is restored through feature recovery network, and the image location information is effectively used for image reconstruction. This paper verifies that the proposed multi-level JSCC algorithm can effectively transmit and recover image information in both AWGN channel and Rayleigh fading channel, and the peak signal-to-noise ratio (PSNR) is improved by 1~2dB compared with other algorithms under the same simulation conditions.Keywords: deep learning, JSCC, pilot-free picture transmission, multilevel semantic information, robustness
Procedia PDF Downloads 121290 Research on Pilot Sequence Design Method of Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing System Based on High Power Joint Criterion
Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang
Abstract:
For the pilot design of the sparse channel estimation model in Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems, the observation matrix constructed according to the matrix cross-correlation criterion, total correlation criterion and other optimization criteria are not optimal, resulting in inaccurate channel estimation and high bit error rate at the receiver. This paper proposes a pilot design method combining high-power sum and high-power variance criteria, which can more accurately estimate the channel. First, the pilot insertion position is designed according to the high-power variance criterion under the condition of equal power. Then, according to the high power sum criterion, the pilot power allocation is converted into a cone programming problem, and the power allocation is carried out. Finally, the optimal pilot is determined by calculating the weighted sum of the high power sum and the high power variance. Compared with the traditional pilot frequency, under the same conditions, the constructed MIMO-OFDM system uses the optimal pilot frequency for channel estimation, and the communication bit error rate performance obtains a gain of 6~7dB.Keywords: MIMO-OFDM, pilot optimization, compressed sensing, channel estimation
Procedia PDF Downloads 153289 Artificial Intelligence for Cloud Computing
Authors: Sandesh Achar
Abstract:
Artificial intelligence is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remain a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights excellent investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.Keywords: artificial intelligence, cloud computing, deep learning, machine learning, internet of things
Procedia PDF Downloads 111288 An Investigation on Engineering Students’ Perceptions Towards E-learning in the UK
Authors: Vida Razzaghifard
Abstract:
E-learning, also known as online learning, has indicated an increased growth in recent years. One of the critical factors in the successful application of e-learning in higher education is students’ perceptions towards it. The main purpose of this paper is to investigate the perceptions of engineering students about e-learning in UK. For the purpose of the present study, 145 second year Engineering students were randomly selected from the total population of 1280 participants. The participants were asked to complete a questionnaire containing 16 items. The data collected from the questionnaire were analyzed through the Statistical Package for Social Science (SPSS) software. The findings of the study revealed that the majority of participants have negative perceptions on e-learning. Most of the students had trouble interacting effectively during online classes. Furthermore, the majority of participants had negative experiences with the learning platform they used during e-learning. Suggestions were made on what could be done to improve the students’ perceptions towards e-learning.Keywords: E-learning, higher, education, engineering education, online learning
Procedia PDF Downloads 98287 Software-Defined Networks in Utility Power Networks
Authors: Ava Salmanpour, Hanieh Saeedi, Payam Rouhi, Elahe Hamzeil, Shima Alimohammadi, Siamak Hossein Khalaj, Mohammad Asadian
Abstract:
Software-defined network (SDN) is a network architecture designed to control network using software application in a central manner. This ability enables remote control of the whole network regardless of the network technology. In fact, in this architecture network intelligence is separated from physical infrastructure, it means that required network components can be implemented virtually using software applications. Today, power networks are characterized by a high range of complexity with a large number of intelligent devices, processing both huge amounts of data and important information. Therefore, reliable and secure communication networks are required. SDNs are the best choice to meet this issue. In this paper, SDN networks capabilities and characteristics will be reviewed and different basic controllers will be compared. The importance of using SDNs to escalate efficiency and reliability in utility power networks is going to be discussed and the comparison between the SDN-based power networks and traditional networks will be explained.Keywords: software-defined network, SDNs, utility network, open flow, communication, gas and electricity, controller
Procedia PDF Downloads 117286 Data Science in Military Decision-Making: A Semi-Systematic Literature Review
Authors: H. W. Meerveld, R. H. A. Lindelauf
Abstract:
In contemporary warfare, data science is crucial for the military in achieving information superiority. Yet, to the authors’ knowledge, no extensive literature survey on data science in military decision-making has been conducted so far. In this study, 156 peer-reviewed articles were analysed through an integrative, semi-systematic literature review to gain an overview of the topic. The study examined to what extent literature is focussed on the opportunities or risks of data science in military decision-making, differentiated per level of war (i.e. strategic, operational, and tactical level). A relatively large focus on the risks of data science was observed in social science literature, implying that political and military policymakers are disproportionally influenced by a pessimistic view on the application of data science in the military domain. The perceived risks of data science are, however, hardly addressed in formal science literature. This means that the concerns on the military application of data science are not addressed to the audience that can actually develop and enhance data science models and algorithms. Cross-disciplinary research on both the opportunities and risks of military data science can address the observed research gaps. Considering the levels of war, relatively low attention for the operational level compared to the other two levels was observed, suggesting a research gap with reference to military operational data science. Opportunities for military data science mostly arise at the tactical level. On the contrary, studies examining strategic issues mostly emphasise the risks of military data science. Consequently, domain-specific requirements for military strategic data science applications are hardly expressed. Lacking such applications may ultimately lead to a suboptimal strategic decision in today’s warfare.Keywords: data science, decision-making, information superiority, literature review, military
Procedia PDF Downloads 175285 A Carrier Phase High Precision Ranging Theory Based on Frequency Hopping
Authors: Jie Xu, Zengshan Tian, Ze Li
Abstract:
Previous indoor ranging or localization systems achieving high accuracy time of flight (ToF) estimation relied on two key points. One is to do strict time and frequency synchronization between the transmitter and receiver to eliminate equipment asynchronous errors such as carrier frequency offset (CFO), but this is difficult to achieve in a practical communication system. The other one is to extend the total bandwidth of the communication because the accuracy of ToF estimation is proportional to the bandwidth, and the larger the total bandwidth, the higher the accuracy of ToF estimation obtained. For example, ultra-wideband (UWB) technology is implemented based on this theory, but high precision ToF estimation is difficult to achieve in common WiFi or Bluetooth systems with lower bandwidth compared to UWB. Therefore, it is meaningful to study how to achieve high-precision ranging with lower bandwidth when the transmitter and receiver are asynchronous. To tackle the above problems, we propose a two-way channel error elimination theory and a frequency hopping-based carrier phase ranging algorithm to achieve high accuracy ranging under asynchronous conditions. The two-way channel error elimination theory uses the symmetry property of the two-way channel to solve the asynchronous phase error caused by the asynchronous transmitter and receiver, and we also study the effect of the two-way channel generation time difference on the phase according to the characteristics of different hardware devices. The frequency hopping-based carrier phase ranging algorithm uses frequency hopping to extend the equivalent bandwidth and incorporates a carrier phase ranging algorithm with multipath resolution to achieve a ranging accuracy comparable to that of UWB at 400 MHz bandwidth in the typical 80 MHz bandwidth of commercial WiFi. Finally, to verify the validity of the algorithm, we implement this theory using a software radio platform, and the actual experimental results show that the method proposed in this paper has a median ranging error of 5.4 cm in the 5 m range, 7 cm in the 10 m range, and 10.8 cm in the 20 m range for a total bandwidth of 80 MHz.Keywords: frequency hopping, phase error elimination, carrier phase, ranging
Procedia PDF Downloads 126284 Key Technologies and Evolution Strategies for Computing Force Bearer Network
Authors: Zhaojunfeng
Abstract:
Driven by the national policy of "East Data and Western Calculation", the computing first network will attract a new wave of development. As the foundation of the development of the computing first network, the computing force bearer network has become the key direction of technology research and development in the industry. This article will analyze typical computing force application scenarios and bearing requirements and sort out the SLA indicators of computing force applications. On this basis, this article carries out research and discussion on the key technologies of computing force bearer network in a slice packet network, and finally, gives evolution policy for SPN computing force bearer network to support the development of SPN computing force bearer network technology and network deployment.Keywords: component-computing force bearing, bearing requirements of computing force application, dual-SLA indicators for computing force applications, SRv6, evolution strategies
Procedia PDF Downloads 136283 A Review of Intelligent Fire Management Systems to Reduce Wildfires
Authors: Nomfundo Ngombane, Topside E. Mathonsi
Abstract:
Remote sensing and satellite imaging have been widely used to detect wildfires; nevertheless, the technologies present some limitations in terms of early wildfire detection as the technologies are greatly influenced by weather conditions and can miss small fires. The fires need to have spread a few kilometers for the technologies to provide accurate detection. The South African Advanced Fire Information System uses MODIS (Moderate Resolution Imaging Spectroradiometer) as satellite imaging. MODIS has limitations as it can exclude small fires and can fall short in validating fire vulnerability. Thus in the future, a Machine Learning algorithm will be designed and implemented for the early detection of wildfires. A simulator will be used to evaluate the effectiveness of the proposed solution, and the results of the simulation will be presented.Keywords: moderate resolution imaging spectroradiometer, advanced fire information system, machine learning algorithm, detection of wildfires
Procedia PDF Downloads 83282 Data Security: An Enhancement of E-mail Security Algorithm to Secure Data Across State Owned Agencies
Authors: Lindelwa Mngomezulu, Tonderai Muchenje
Abstract:
Over the decades, E-mails provide easy, fast and timely communication enabling businesses and state owned agencies to communicate with their stakeholders and with their own employees in real-time. Moreover, since the launch of Microsoft office 365 and many other clouds based E-mail services, many businesses have been migrating from the on premises E-mail services to the cloud and more precisely since the beginning of the Covid-19 pandemic, there has been a significant increase of E-mails utilization, which then leads to the increase of cyber-attacks. In that regard, E-mail security has become very important in the E-mail transportation to ensure that the E-mail gets to the recipient without the data integrity being compromised. The classification of the features to enhance E-mail security for further from the enhanced cyber-attacks as we are aware that since the technology is advancing so at the cyber-attacks. Therefore, in order to maximize the data integrity we need to also maximize security of the E-mails such as enhanced E-mail authentication. The successful enhancement of E-mail security in the future may lessen the frequency of information thefts via E-mails, resulting in the data of South African State-owned agencies not being compromised.Keywords: e-mail security, cyber-attacks, data integrity, authentication
Procedia PDF Downloads 138281 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm
Authors: Xiang Jianhong, Wang Cong, Wang Linyu
Abstract:
With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.Keywords: telemedicine, fetal ECG, compressed sensing, joint sparse reconstruction, block sparse signal
Procedia PDF Downloads 130280 A Review Paper for Detecting Zero-Day Vulnerabilities
Authors: Tshegofatso Rambau, Tonderai Muchenje
Abstract:
Zero-day attacks (ZDA) are increasing day by day; there are many vulnerabilities in systems and software that date back decades. Companies keep discovering vulnerabilities in their systems and software and work to release patches and updates. A zero-day vulnerability is a software fault that is not widely known and is unknown to the vendor; attackers work very quickly to exploit these vulnerabilities. These are major security threats with a high success rate because businesses lack the essential safeguards to detect and prevent them. This study focuses on the factors and techniques that can help us detect zero-day attacks. There are various methods and techniques for detecting vulnerabilities. Various companies like edges can offer penetration testing and smart vulnerability management solutions. We will undertake literature studies on zero-day attacks and detection methods, as well as modeling approaches and simulations, as part of the study process.Keywords: zero-day attacks, exploitation, vulnerabilities
Procedia PDF Downloads 104279 The Need for Multi-Edge Strategies and Solutions
Authors: Hugh Taylor
Abstract:
Industry analysts project that edge computing will be generating tens of billions in revenue in coming years. It’s not clear, however, if this will actually happen, and who, if anyone, will make it happen. Edge computing is seen as a critical success factor in industries ranging from telecom, enterprise IT and co-location. However, will any of these industries actually step up to make edge computing into a viable technology business? This paper looks at why the edge seems to be in a chasm, on the edge of realization, so to speak, but failing to coalesce into a coherent technology category like the cloud—and how the segment’s divergent industry players can come together to build a viable business at the edge.Keywords: edge computing, multi-edge strategies, edge data centers, edge cloud
Procedia PDF Downloads 107278 A Convolutional Neural Network Based Vehicle Theft Detection, Location, and Reporting System
Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala
Abstract:
One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets especially in the motorist industry, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. Sixty (60) vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.Keywords: CNN, location identification, tracking, GPS, GSM
Procedia PDF Downloads 174277 Governance Framework for an Emerging Trust Ecosystem with a Blockchain-Based Supply Chain
Authors: Ismael Ávila, José Reynaldo F. Filho, Vasco Varanda Picchi
Abstract:
The ever-growing consumer awareness of food provenance in Brazil is driving the creation of a trusted ecosystem around the animal protein supply chain. The traceability and accountability requirements of such an ecosystem demand a blockchain layer to strengthen the weak links in that chain. For that, direct involvement of the companies in the blockchain transactions, including as validator nodes of the network, implies formalizing a partnership with the consortium behind the ecosystem. Yet, their compliance standards usually require that a formal governance structure is in place before they agree with any membership terms. In light of such a strategic role of blockchain governance, the paper discusses a framework for tailoring a governance model for a blockchain-based solution aimed at the meat supply chain and evaluates principles and attributes in terms of their relevance to the development of a robust trust ecosystem.Keywords: blockchain, governance, trust ecosystem, supply chain, traceability
Procedia PDF Downloads 124276 The Relationship Between Artificial Intelligence, Data Science, and Privacy
Authors: M. Naidoo
Abstract:
Artificial intelligence often requires large amounts of good quality data. Within important fields, such as healthcare, the training of AI systems predominately relies on health and personal data; however, the usage of this data is complicated by various layers of law and ethics that seek to protect individuals’ privacy rights. This research seeks to establish the challenges AI and data sciences pose to (i) informational rights, (ii) privacy rights, and (iii) data protection. To solve some of the issues presented, various methods are suggested, such as embedding values in technological development, proper balancing of rights and interests, and others.Keywords: artificial intelligence, data science, law, policy
Procedia PDF Downloads 108275 The Various Legal Dimensions of Genomic Data
Authors: Amy Gooden
Abstract:
When human genomic data is considered, this is often done through only one dimension of the law, or the interplay between the various dimensions is not considered, thus providing an incomplete picture of the legal framework. This research considers and analyzes the various dimensions in South African law applicable to genomic sequence data – including property rights, personality rights, and intellectual property rights. The effective use of personal genomic sequence data requires the acknowledgement and harmonization of the rights applicable to such data.Keywords: artificial intelligence, data, law, genomics, rights
Procedia PDF Downloads 144274 Reimagining the Management of Telco Supply Chain with Blockchain
Authors: Jeaha Yang, Ahmed Khan, Donna L. Rodela, Mohammed A. Qaudeer
Abstract:
Traditional supply chain silos still exist today due to the difficulty of establishing trust between various partners and technological barriers across industries. Companies lose opportunities and revenue and inadvertently make poor business decisions resulting in further challenges. Blockchain technology can bring a new level of transparency through sharing information with a distributed ledger in a decentralized manner that creates a basis of trust for business. Blockchain is a loosely coupled, hub-style communication network in which trading partners can work indirectly with each other for simpler integration, but they work together through the orchestration of their supply chain operations under a coherent process that is developed jointly. A Blockchain increases efficiencies, lowers costs, and improves interoperability to strengthen and automate the supply chain management process while all partners share the risk. Blockchain ledger is built to track inventory lifecycle for supply chain transparency and keeps a journal of inventory movement for real-time reconciliation. State design patterns are used to capture the life cycle (behavior) of inventory management as a state machine for a common, transparent and coherent process which creates an opportunity for trading partners to become more responsive in terms of changes or improvements in process, reconcile discrepancies, and comply with internal governance and external regulations. It enables end-to-end, inter-company visibility at the unit level for more accurate demand planning with better insight into order fulfillment and replenishment.Keywords: supply chain management, inventory trace-ability, perpetual inventory system, inventory lifecycle, blockchain, inventory consignment, supply chain transparency, digital thread, demand planning, hyper ledger fabric
Procedia PDF Downloads 91273 Patented Free-Space Optical System for Auto Aligned Optical Beam Allowing to Compensate Mechanical Misalignments
Authors: Aurelien Boutin
Abstract:
In optical systems such as Variable Optical Delay Lines, where a collimated beam has to go back and forth, corner cubes are used in order to keep the reflected beam parallel to the incoming beam. However, the reflected beam can be laterally shifted, which will lead to losses. In this paper, we report on a patented optical design that allows keeping the reflected beam with the exact same position and direction whatever the displacement of the corner cube leading to zero losses. After explaining how the optical design works and theoretically allows to compensate for any defects in the translation of the corner cube, we will present the results of experimental comparisons between a standard layout (i.e., only corner cubes) and our optical layout. To compare both optical layouts, we used a fiber-to-fiber coupling setup. It consists of a couple of lights from one fiber to the other, thanks to two lenses. The ensemble [fiber+lense] is fixed and called a collimator so that the light is coupled from one collimator to another. Each collimator was precisely made in order to have a precise working distance. In the experiment, we measured and compared the Insertion Losses (IL) variations between both collimators with the distance between them (i.e., natural Gaussian beam coupling losses) and between both collimators in the different optical layouts tested, with the same optical length propagation. We will show that the IL variations of our setup are less than 0.05dB with respect to the IL variations of collimators alone.Keywords: free-space optics, variable optical delay lines, optical cavity, auto-alignment
Procedia PDF Downloads 103272 High-Frequency Cryptocurrency Portfolio Management Using Multi-Agent System Based on Federated Reinforcement Learning
Authors: Sirapop Nuannimnoi, Hojjat Baghban, Ching-Yao Huang
Abstract:
Over the past decade, with the fast development of blockchain technology since the birth of Bitcoin, there has been a massive increase in the usage of Cryptocurrencies. Cryptocurrencies are not seen as an investment opportunity due to the market’s erratic behavior and high price volatility. With the recent success of deep reinforcement learning (DRL), portfolio management can be modeled and automated. In this paper, we propose a novel DRL-based multi-agent system to automatically make proper trading decisions on multiple cryptocurrencies and gain profits in the highly volatile cryptocurrency market. We also extend this multi-agent system with horizontal federated transfer learning for better adapting to the inclusion of new cryptocurrencies in our portfolio; therefore, we can, through the concept of diversification, maximize our profits and minimize the trading risks. Experimental results through multiple simulation scenarios reveal that this proposed algorithmic trading system can offer three promising key advantages over other systems, including maximized profits, minimized risks, and adaptability.Keywords: cryptocurrency portfolio management, algorithmic trading, federated learning, multi-agent reinforcement learning
Procedia PDF Downloads 120271 Study, Design, Simulation and Fabrication of Microwave Slot Antenna
Authors: Khaled A. Madi, Rema A. Mousbahi, Mostafa B. Abuitbel, Abdualhakim O. Nagi
Abstract:
Antenna perhaps is the most important part of any communication system, it determines the overall efficiency and the direction of radiation of the system. Antennas vary in shape and size on a very wide range. For fast moving vehicles, the antenna should offer as litter aerodynamic resistance as possible. Slot antenna is best suited for this purpose. It offers very little aerodynamic resistance, compact, easy to feed and fabricate. This work presented in this paper deals with the investigation of a half wave slot antenna. The antenna has been studied, analyzed, designed, simulated, fabrication, and tested at the X-band. The field of antenna study is an extremely vast one, and to grasp the fundamentals, two pronged approaches have been used, and the focus was on the fabrication and testing of a slot waveguide directional antenna. Focuses on the design and simulation of slot antennas with an emphasis on optimization of a 9.1 GHz a rectangular waveguide have been used to feed slot antenna. A microwave fed slot antenna used in the communication lab was also simulated. The results have been presented and compared with the expected values, where a good agreement was achieved between the simulation and experimental results.Keywords: microwave, slot antenna, simulation, fabrication
Procedia PDF Downloads 143