Abstracts | Bioengineering and Life Sciences
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2157

World Academy of Science, Engineering and Technology

[Bioengineering and Life Sciences]

Online ISSN : 1307-6892

747 Detection of Mycobacteria spp by PCR in Raw Milk Samples Collected from Iran

Authors: Shokoufeh Roudashti, Shahin Bahari, Fakhri Haghi, Habib Zeighami, Ghazal Naderi, Paniz Shirmast

Abstract:

Background: Mycobacterium tuberculosis complex (MTBC) causes tuberculosis (TB) in humans and animals. Mycobacterium MTBC is one of the most important species of zoonotic pathogens that can be transmitted from cattle to humans. The disease can transmit to human by direct contact with the infected animals, drinking unpasteurized milk and consumption of uncooked meat. The presence of these opportunistic, pathogenic bacteria in bovine milk has emerged as a public-health concern, especially among individuals who consume raw milk. Tuberculosis MTBC is the predominant infectious cause of morbidity and morality worldwide, It is estimated that one third of the world population (approx. 1.8 billion persons) is infected with M. tuberculosis and each year there are 8 million new cases worldwide. The aim of this study, to detect Mycobacterium MTBC in raw milk samples using polymerase chain reaction (PCR). Materials and Methods: In the present study, 60 raw milk samples were collected from rural areas in Zanjan, Iran. After extraction of DNAs and using special primers for Is6110 gene as a marker, PCR was applied to detect the presence or non-presence of the related gene. Results: According to the findings of this study, 8 (13.5 %) out of 60 milk samples were positive for Mycobacterium spp (P < 0.1). Conclusions: The Outbreak of genus Mycobacteria spp in milk samples were determined to be relatively high in Zanjan, Iran.

Keywords: Mycobacteria spp, raw milk, PCR, Zanjan

Procedia PDF Downloads 297
746 External Retinal Prosthesis Image Processing System Used One-Cue Saliency Map Based on DSP

Authors: Yili Chen, Jixiang Fu, Zhihua Liu, Zhicheng Zhang, Rongmao Li, Nan Fu, Yaoqin Xie

Abstract:

Retinal prothesis is designed to help the blind to get some sight.It is made up of internal part and external part.In external part ,there is made up of camera, image processing, and RF transmitter.In internal part, there is RF receiver, implant chip,micro-electrode.The image got from the camera should be processed by suitable stragies to corresponds to stimulus the electrode.Nowadays, the number of the micro-electrode is hundreds and we don’t know the mechanism how the elctrode stimulus the optic nerve, an easy way to the hypothesis is that the pixel in the image is correspondence to the electrode.So it is a question how to get the important information of the image captured from the picture.There are many strategies to experimented to get the most important information as soon as possible, due to the real time system.ROI is a useful algorithem to extract the region of the interest.Our paper will explain the details of the orinciples and functions of the ROI.And based on this, we simplified the ROI algrithem,and used it in outside image prcessing DSP system of the retinal prothesis.Results show that our image processing stratiges is suitable for real-time retinal prothesis and can cut redundant information and help useful information to express in the low-size image.

Keywords: image processing, region of interest, saliency map, low-size image, useful information express, cut redundant information in image

Procedia PDF Downloads 282
745 The Effect of Manggong Bamboo Leaves Extract (Gigantochloa manggong) on Rat (Rattus novergicus) Blood Profile

Authors: Sri Rahayu, Supriyatin, Yuli Rahma Dini

Abstract:

One of the consequences of excess physical activity is the oxidative stress which resulted in damage to blood cells. Oxidative stress condition can be reduced by an exogenous antioxidant. The natural exogenous antioxidant can be extracted from Manggong bamboo (Gigantochloa manggong). This research was aim to evaluate the effect of physical exercise and Manggong bamboo (Gigantochloa manggong) leaf extract on blood profile of rats. This research was conducted in July 2013 to May 2014 using experimental method with completely randomized design (CRD) with two factors, physical exercise and Manggong bamboo leaf extract. The rats blood profile to be measured were the level of erythrocyte cells, leucocyte cells and hemoglobin. Data were analyzed with parametric statistical 2-way ANOVA test (α = 0.05). Manggong bamboo leaf extract was non toxic and contained flavonoid, triterpenoid, saponin and alkaloid. There was an effect of physical exercise and manggong bamboo leaf extract on blood profile of rats. Data obtained on physical activity, giving erythrocyte cells (2.5 million/µl) and hemoglobin (12,42g/dL) declined compared to the number of leucocyte cells increases (6,500cells/L). Extract treatment was increased the erythrocytes (5,13 million/µl) and hemoglobin level (14,72 g/dL.) while the leukocytes level were decreased (1.591,67 cells/L). The extract and physical activity treatment showed an increase in erythrocytes (2,96 million/µl) and hemoglobin (14,3 g/dL) but decrease the number of leukocytes (1.291,67 cells/L). The conclusion was that physical activity and Manggong bamboo leafs extract gaves effect on the blood profile of white rat.

Keywords: antioxidant, blood profile of rats, Manggong bamboo leaf extract, leukocytes

Procedia PDF Downloads 291
744 Genetic Determinants of Ovarian Response to Gonadotropin Stimulation in Women Undergoing Assisted Reproductive Treatment

Authors: D. Tohlob, E. Abo Hashem, N. Ghareeb, M. Ghanem, R. Elfarahaty, S. A. Roberts, P. Pemberton, L. Mohiyiddeen, W. G. Newman

Abstract:

Gonadotropin stimulation is used in females undergoing assisted reproductive treatment for ovulation induction, but ovarian response is variable and unpredictable in these women. More effective protocols and individualization of treatment are needed to increase the success rate of IVF/ICSI cycles. We genotyped seven variants reported in previous studies to be associated with ovarian response (number of ova retrieved and total gonadotropin dose) in women undergoing IVF treatment including FSHR variants Asn 680 Ser (c.2039 A > G), Thr 307 Ala (c. 919 > A), -29 G > A, HRG c.610 C > T gene, BMP15 -9 C > G, AMH Ile 49 Ser (c.146 G > T), and AMHR -489A˃G in 118 Egyptian females attending Mansoura Integrated Fertility Center in Egypt, these females were undergoing their first cycle of controlled ovarian hyper stimulation for IVF/ICSI treatment. They were analyzed by TaqMan allelic discrimination assay in Manchester Center of Genomic Medicine. We found no evidence of any significant difference (p value < 0.05) in the number of eggs retrieved or the gonadotropin dose used between individuals in all genotypes except for HRG c.610 C > T gene polymorphism where regression analysis gives a p value of 0.04 with a fewer eggs number in TT genotyped females. These results indicate that these variants do not provide sufficient clinically relevant data to individualize the treatment protocols.

Keywords: controlled ovarian hyperstimulation, gene variants, ovarian response, assisted reproduction

Procedia PDF Downloads 319
743 Computation of Residual Stresses in Human Face Due to Growth

Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan

Abstract:

Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of the living tissues to the mechanical loads is necessary for a wide range of developing fields such as, designing of prosthetics and optimized surgery operations. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically growth and remodeling is one of the main sources. Extracting body organs from medical imaging, does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is the gravity since an organ grows under its influence from its birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. In this paper, we have implemented a computational framework based on fixed-point iteration to determine the residual stresses due to growth. Using nonlinear continuum mechanics and the concept of fictitious configuration we find the unknown stress-free reference configuration which is necessary for mechanical analysis. To illustrate the method, we apply it to a finite element model of healthy human face whose geometry has been extracted from medical images. We have computed the distribution of residual stress in facial tissues, which can overcome the effect of gravity and cause that tissues remain firm. Tissue wrinkles caused by aging could be a consequence of decreasing residual stress and not counteracting the gravity. Considering these stresses has important application in maxillofacial surgery. It helps the surgeons to predict the changes after surgical operations and their consequences.

Keywords: growth, soft tissue, residual stress, finite element method

Procedia PDF Downloads 355
742 Large-Capacity Image Information Reduction Based on Single-Cue Saliency Map for Retinal Prosthesis System

Authors: Yili Chen, Xiaokun Liang, Zhicheng Zhang, Yaoqin Xie

Abstract:

In an effort to restore visual perception in retinal diseases, an electronic retinal prosthesis with thousands of electrodes has been developed. The image processing strategies of retinal prosthesis system converts the original images from the camera to the stimulus pattern which can be interpreted by the brain. Practically, the original images are with more high resolution (256x256) than that of the stimulus pattern (such as 25x25), which causes a technical image processing challenge to do large-capacity image information reduction. In this paper, we focus on developing an efficient image processing stimulus pattern extraction algorithm by using a single cue saliency map for extracting salient objects in the image with an optimal trimming threshold. Experimental results showed that the proposed stimulus pattern extraction algorithm performs quite well for different scenes in terms of the stimulus pattern. In the algorithm performance experiment, our proposed SCSPE algorithm have almost five times of the score compared with Boyle’s algorithm. Through experiment s we suggested that when there are salient objects in the scene (such as the blind meet people or talking with people), the trimming threshold should be set around 0.4max, in other situations, the trimming threshold values can be set between 0.2max-0.4max to give the satisfied stimulus pattern.

Keywords: retinal prosthesis, image processing, region of interest, saliency map, trimming threshold selection

Procedia PDF Downloads 246
741 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach

Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik

Abstract:

Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.

Keywords: center of pressure (CoP), method of developed statokinesigram trajectory (MDST), model of postural system behavior, retroreflective marker data

Procedia PDF Downloads 350
740 High Level Expression of Fluorinase in Escherichia Coli and Pichia Pastoris

Authors: Lee A. Browne, K. Rumbold

Abstract:

The first fluorinating enzyme, 5'-fluoro-5'-deoxyadenosine synthase (fluorinase) was isolated from the soil bacterium Streptomyces cattleya. Such an enzyme, with the ability to catalyze a C-F bond, presents great potential as a biocatalyst. Naturally fluorinated compounds are extremely rare in nature. As a result, the number of fluorinases identified remains relatively few. The field of fluorination is almost completely synthetic. However, with the increasing demand for fluorinated organic compounds of commercial value in the agrochemical, pharmaceutical and materials industries, it has become necessary to utilize biologically based methods such as biocatalysts. A key step in this crucial process is the large-scale production of the fluorinase enzyme in considerable quantities for industrial applications. Thus, this study aimed to optimize expression of the fluorinase enzyme in both prokaryotic and eukaryotic expression systems in order to obtain high protein yields. The fluorinase gene was cloned into the pET 41b(+) and pPinkα-HC vectors and used to transform the expression hosts, E.coli BL21(DE3) and Pichia pastoris (PichiaPink™ strains) respectively. Expression trials were conducted to select optimal conditions for expression in both expression systems. Fluorinase catalyses a reaction between S-adenosyl-L-Methionine (SAM) and fluoride ion to produce 5'-fluorodeoxyadenosine (5'FDA) and L-Methionine. The activity of the enzyme was determined using HPLC by measuring the product of the reaction 5'FDA. A gradient mobile phase of 95:5 v/v 50mM potassium phosphate buffer to a final mobile phase containing 80:20 v/v 50mM potassium phosphate buffer and acetonitrile were used. This resulted in the complete separation of SAM and 5’-FDA which eluted at 1.3 minutes and 3.4 minutes respectively. This proved that the fluorinase enzyme was active. Optimising expression of the fluorinase enzyme was successful in both E.coli and PichiaPink™ where high expression levels in both expression systems were achieved. Protein production will be scaled up in PichiaPink™ using fermentation to achieve large-scale protein production. High level expression of protein is essential in biocatalysis for the availability of enzymes for industrial applications.

Keywords: biocatalyst, expression, fluorinase, PichiaPink™

Procedia PDF Downloads 552
739 De Novo Assembly and Characterization of the Transcriptome from the Fluoroacetate Producing Plant, Dichapetalum Cymosum

Authors: Selisha A. Sooklal, Phelelani Mpangase, Shaun Aron, Karl Rumbold

Abstract:

Organically bound fluorine (C-F bond) is extremely rare in nature. Despite this, the first fluorinated secondary metabolite, fluoroacetate, was isolated from the plant Dichapetalum cymosum (commonly known as Gifblaar). However, the enzyme responsible for fluorination (fluorinase) in Gifblaar was never isolated and very little progress has been achieved in understanding this process in higher plants. Fluorinated compounds have vast applications in the pharmaceutical, agrochemical and fine chemicals industries. Consequently, an enzyme capable of catalysing a C-F bond has great potential as a biocatalyst in the industry considering that the field of fluorination is virtually synthetic. As with any biocatalyst, a range of these enzymes are required. Therefore, it is imperative to expand the exploration for novel fluorinases. This study aimed to gain molecular insights into secondary metabolite biosynthesis in Gifblaar using a high-throughput sequencing-based approach. Mechanical wounding studies were performed using Gifblaar leaf tissue in order to induce expression of the fluorinase. The transcriptome of the wounded and unwounded plant was then sequenced on the Illumina HiSeq platform. A total of 26.4 million short sequence reads were assembled into 77 845 transcripts using Trinity. Overall, 68.6 % of transcripts were annotated with gene identities using public databases (SwissProt, TrEMBL, GO, COG, Pfam, EC) with an E-value threshold of 1E-05. Sequences exhibited the greatest homology to the model plant, Arabidopsis thaliana (27 %). A total of 244 annotated transcripts were found to be differentially expressed between the wounded and unwounded plant. In addition, secondary metabolic pathways present in Gifblaar were successfully reconstructed using Pathway tools. Due to lack of genetic information for plant fluorinases, a transcript failed to be annotated as a fluorinating enzyme. Thus, a local database containing the 5 existing bacterial fluorinases was created. Fifteen transcripts having homology to partial regions of existing fluorinases were found. In efforts to obtain the full coding sequence of the Gifblaar fluorinase, primers were designed targeting the regions of homology and genome walking will be performed to amplify the unknown regions. This is the first genetic data available for Gifblaar. It has provided novel insights into the mechanisms of metabolite biosynthesis and will allow for the discovery of the first eukaryotic fluorinase.

Keywords: biocatalyst, fluorinase, gifblaar, transcriptome

Procedia PDF Downloads 273
738 STD-NMR Based Protein Engineering of the Unique Arylpropionate-Racemase AMDase G74C

Authors: Sarah Gaßmeyer, Nadine Hülsemann, Raphael Stoll, Kenji Miyamoto, Robert Kourist

Abstract:

Enzymatic racemization allows the smooth interconversion of stereocenters under very mild reaction conditions. Racemases find frequent applications in deracemization and dynamic kinetic resolutions. Arylmalonate decarboxylase (AMDase) from Bordetella Bronchiseptica has high structural similarity to amino acid racemases. These cofactor-free racemases are able to break chemically strong CH-bonds under mild conditions. The racemase-like catalytic machinery of mutant G74C conveys it a unique activity in the racemisation of pharmacologically relevant derivates of 2-phenylpropionic acid (profenes), which makes AMDase G74C an interesting object for the mechanistic investigation of cofactor-independent racemases. Structure-guided protein engineering achieved a variant of this unique racemase with 40-fold increased activity in the racemisation of several arylaliphatic carboxylic acids. By saturation–transfer–difference NMR spectroscopy (STD-NMR), substrate binding during catalysis was investigated. All atoms of the substrate showed interactions with the enzyme. STD-NMR measurements revealed distinct nuclear Overhauser effects in experiments with and without molecular conversion. The spectroscopic analysis led to the identification of several amino acid residues whose variation increased the activity of G74C. While single-amino acid exchanges increased the activity moderately, structure-guided saturation mutagenesis yielded a quadruple mutant with a 40 times higher reaction rate. This study presents STD-NMR as versatile tool for the analysis of enzyme-substrate interactions in catalytically competent systems and for the guidance of protein engineering.

Keywords: racemase, rational protein design, STD-NMR, structure guided saturation mutagenesis

Procedia PDF Downloads 305
737 Alternative Energy and Carbon Source for Biosurfactant Production

Authors: Akram Abi, Mohammad Hossein Sarrafzadeh

Abstract:

Because of their several advantages over chemical surfactants, biosurfactants have given rise to a growing interest in the past decades. Advantages such as lower toxicity, higher biodegradability, higher selectivity and applicable at extreme temperature and pH which enables them to be used in a variety of applications such as: enhanced oil recovery, environmental and pharmaceutical applications, etc. Bacillus subtilis produces a cyclic lipopeptide, called surfactin, which is one of the most powerful biosurfactants with ability to decrease surface tension of water from 72 mN/m to 27 mN/m. In addition to its biosurfactant character, surfactin exhibits interesting biological activities such as: inhibition of fibrin clot formation, lyses of erythrocytes and several bacterial spheroplasts, antiviral, anti-tumoral and antibacterial properties. Surfactin is an antibiotic substance and has been shown recently to possess anti-HIV activity. However, application of biosurfactants is limited by their high production cost. The cost can be reduced by optimizing biosurfactant production using cheap feed stock. Utilization of inexpensive substrates and unconventional carbon sources like urban or agro-industrial wastes is a promising strategy to decrease the production cost of biosurfactants. With suitable engineering optimization and microbiological modifications, these wastes can be used as substrates for large-scale production of biosurfactants. As an effort to fulfill this purpose, in this work we have tried to utilize olive oil as second carbon source and also yeast extract as second nitrogen source to investigate the effect on both biomass and biosurfactant production improvement in Bacillus subtilis cultures. Since the turbidity of the culture was affected by presence of the oil, optical density was compromised and no longer could be used as an index of growth and biomass concentration. Therefore, cell Dry Weight measurements with applying necessary tactics for removing oil drops to prevent interference with biomass weight were carried out to monitor biomass concentration during the growth of the bacterium. The surface tension and critical micelle dilutions (CMD-1, CMD-2) were considered as an indirect measurement of biosurfactant production. Distinctive and promising results were obtained in the cultures containing olive oil compared to cultures without it: more than two fold increase in biomass production (from 2 g/l to 5 g/l) and considerable reduction in surface tension, down to 40 mN/m at surprisingly early hours of culture time (only 5hr after inoculation). This early onset of biosurfactant production in this culture is specially interesting when compared to the conventional cultures at which this reduction in surface tension is not obtained until 30 hour of culture time. Reducing the production time is a very prominent result to be considered for large scale process development. Furthermore, these results can be used to develop strategies for utilization of agro-industrial wastes (such as olive oil mill residue, molasses, etc.) as cheap and easily accessible feed stocks to decrease the high costs of biosurfactant production.

Keywords: agro-industrial waste, bacillus subtilis, biosurfactant, fermentation, second carbon and nitrogen source, surfactin

Procedia PDF Downloads 301
736 A Comparative Study of Euglena gracilis Cultivations for Improving Laminaribiose Phosphorylase Production

Authors: Akram Abi, Clarissa Müller, Hans-Joachim Jördening

Abstract:

Laminaribiose is a beta-1,3-glycoside which is used in the medical field for the treatment of dermatitis and also can be used as a building block for new pharmaceutics. The conventional process of laminaribiose production is the uneconomical process of hydrolysis of laminarin extracted from natural polysaccharides of plant origin. A more economical approach however is attainable by enzymatically synthesis of laminaribiose via a reverse phosphorylase reaction catalyzed by laminaribiose phosphorylase (LP) from Euglena gracilis. Different cultivation methods of Euglena gracilis and the effect on LP production have been investigated. Buffered/unbuffered heterotrophic and mixotrophic cultivations of Euglena gracilis has been carried out. Changes of biomass and LP production, glucose level and pH, cell count and shape has been monitored in the course of time. The results obtained from experiments each in three repetitions, show that in the heterotrophic cultivation of Euglena gracilis not only more biomass is produced compared to mixotrophic cultivation, but also higher specific protein concentration is achieved. Furthermore, the LP activity test showed that the protein extracted from heterotrophically cultured cells has a higher LP activity. It was also observed that the cells develop in a distinctive different shape between these two cultures and have different length to width ratios. Taking the heterotrophic culture as the more efficient cultivation method in LP production, another comparative experiment between buffered and unbuffered heterothrophic culture was carried out that showed the unbuffered culture has advantages over the other one in respect of both LP production and resulting activity. A hetrotrophic cultivation of Euglena gracilis in a 5L bioreactor with controlled operating conditions showed a distinctive improvement of all the aspects of culture compared to the shaking flask cultivations. Biomass production was improved from 5 to more than 8 g/l (dry weight) which resulted in a specific protein concentration of 45 g/l in the heterotrophic cultivation in the bioreactor. In further attempts to improve LP production, different purification methods were tested and each method was checks through an activity assay. A laminaribiose yield of 35% was achieved which was by far the highest amount amongst different methods tested.

Keywords: euglena gracilis, heterotrophic culture, laminaribiose production, mixotrophic culture

Procedia PDF Downloads 365
735 Inclusion Body Refolding at High Concentration for Large-Scale Applications

Authors: J. Gabrielczyk, J. Kluitmann, T. Dammeyer, H. J. Jördening

Abstract:

High-level expression of proteins in bacteria often causes production of insoluble protein aggregates, called inclusion bodies (IB). They contain mainly one type of protein and offer an easy and efficient way to get purified protein. On the other hand, proteins in IB are normally devoid of function and therefore need a special treatment to become active. Most refolding techniques aim at diluting the solubilizing chaotropic agents. Unfortunately, optimal refolding conditions have to be found empirically for every protein. For large-scale applications, a simple refolding process with high yields and high final enzyme concentrations is still missing. The constructed plasmid pASK-IBA63b containing the sequence of fructosyltransferase (FTF, EC 2.4.1.162) from Bacillus subtilis NCIMB 11871 was transformed into E. coli BL21 (DE3) Rosetta. The bacterium was cultivated in a fed-batch bioreactor. The produced FTF was obtained mainly as IB. For refolding experiments, five different amounts of IBs were solubilized in urea buffer with protein concentration of 0.2-8.5 g/L. Solubilizates were refolded with batch or continuous dialysis. The refolding yield was determined by measuring the protein concentration of the clear supernatant before and after the dialysis. Particle size was measured by dynamic light scattering. We tested the solubilization properties of fructosyltransferase IBs. The particle size measurements revealed that the solubilization of the aggregates is achieved at urea concentration of 5M or higher and confirmed by absorption spectroscopy. All results confirm previous investigations that refolding yields are dependent upon initial protein concentration. In batch dialysis, the yields dropped from 67% to 12% and 72% to 19% for continuous dialysis, in relation to initial concentrations from 0.2 to 8.5 g/L. Often used additives such as sucrose and glycerol had no effect on refolding yields. Buffer screening indicated a significant increase in activity but also temperature stability of FTF with citrate/phosphate buffer. By adding citrate to the dialysis buffer, we were able to increase the refolding yields to 82-47% in batch and 90-74% in the continuous process. Further experiments showed that in general, higher ionic strength of buffers had major impact on refolding yields; doubling the buffer concentration increased the yields up to threefold. Finally, we achieved corresponding high refolding yields by reducing the chamber volume by 75% and the amount of buffer needed. The refolded enzyme had an optimal activity of 12.5±0.3 x104 units/g. However, detailed experiments with native FTF revealed a reaggregation of the molecules and loss in specific activity depending on the enzyme concentration and particle size. For that reason, we actually focus on developing a process of simultaneous enzyme refolding and immobilization. The results of this study show a new approach in finding optimal refolding conditions for inclusion bodies at high concentrations. Straightforward buffer screening and increase of the ionic strength can optimize the refolding yield of the target protein by 400%. Gentle removal of chaotrope with continuous dialysis increases the yields by an additional 65%, independent of the refolding buffer applied. In general time is the crucial parameter for successful refolding of solubilized proteins.

Keywords: dialysis, inclusion body, refolding, solubilization

Procedia PDF Downloads 294
734 Bacteriophages for Sustainable Wastewater Treatment: Application in Black Water Decontamination with an Emphasis to DRDO Biotoilet

Authors: Sonika Sharma, Mohan G. Vairale, Sibnarayan Datta, Soumya Chatterjee, Dharmendra Dubey, Rajesh Prasad, Raghvendra Budhauliya, Bidisha Das, Vijay Veer

Abstract:

Bacteriophages are viruses that parasitize specific bacteria and multiply in metabolising host bacteria. Bacteriophages hunt for a single or a subset of bacterial species, making them potential antibacterial agents. Utilizing the ability of phages to control bacterial populations has several applications from medical to the fields of agriculture, aquaculture and the food industry. However, harnessing phage based techniques in wastewater treatments to improve quality of effluent and sludge release into the environment is a potential area for R&D application. Phage mediated bactericidal effect in any wastewater treatment process has many controlling factors that lead to treatment performance. In laboratory conditions, titer of bacteriophages (coliphages) isolated from effluent water of a specially designed anaerobic digester of human night soil (DRDO Biotoilet) was successfully increased with a modified protocol of the classical double layer agar technique. Enrichment of the same was carried out and efficacy of the phage enriched medium was evaluated at different conditions (specific media, temperature, storage conditions). Growth optimization study was carried out on different media like soybean casein digest medium (Tryptone soya medium), Luria-Bertani medium, phage deca broth medium and MNA medium (Modified nutrient medium). Further, temperature-phage yield relationship was also observed at three different temperatures 27˚C, 37˚C and 44˚C at laboratory condition. Results showed the higher activity of coliphage 27˚C and at 37˚C. Further, addition of divalent ions (10mM MgCl2, 5mM CaCl2) and 5% glycerol resulted in a significant increase in phage titer. Besides this, effect of antibiotics addition like ampicillin and kanamycin at different concentration on plaque formation was analysed and reported that ampicillin at a concentration of 1mg/ml ampicillin stimulates phage infection and results in more number of plaques. Experiments to test viability of phage showed that it can remain active for 6 months at 4˚C in fresh tryptone soya broth supplemented with fresh culture of coliforms (early log phase). The application of bacteriophages (especially coliphages) for treatment of effluent of human faecal matter contaminated effluent water is unique. This environment-friendly treatment system not only reduces the pathogenic coliforms, but also decreases the competition between nuisance bacteria and functionally important microbial populations. Therefore, the phage based cocktail to treat fecal pathogenic bacteria present in black water has many implication in wastewater treatment processes including ‘DRDO Biotoilet’, which is an ecofriendly appropriate and affordable human faecal matter treatment technology for different climates and situations.

Keywords: wastewater, microbes, virus, biotoilet, phage viability

Procedia PDF Downloads 436
733 Process Evaluation for a Trienzymatic System

Authors: C. Müller, T. Ortmann, S. Scholl, H. J. Jördening

Abstract:

Multienzymatic catalysis can be used as an alternative to chemical synthesis or hydrolysis of polysaccharides for the production of high value oligosaccharides from cheap resources such as sucrose. However, development of multienzymatic processes is complex, especially with respect to suitable conditions for enzymes originating from different organisms. Furthermore, an optimal configuration of the catalysts in a reaction cascade has to be found. These challenges can be approached by design of experiments. The system investigated in this study is a trienzymatic catalyzed reaction which results in laminaribiose production from sucrose and comprises covalently immobilized sucrose phosphorylase (SP), glucose isomerase (GI) and laminaribiose phosphorylase (LP). Operational windows determined with design of experiments and kinetic data of the enzymes were used to optimize the enzyme ratio for maximum product formation and minimal production of byproducts. After adjustment of the enzyme activity ratio to 1: 1.74: 2.23 (SP: LP: GI), different process options were investigated in silico. The considered options included substrate dependency, the use of glucose as co-substrate and substitution of glucose isomerase by glucose addition. Modeling of batch operation in a stirred tank reactor led to yields of 44.4% whereas operation in a continuous stirred tank reactor resulted in product yields of 22.5%. The maximum yield in a bienzymatic system comprised of sucrose phosphorylase and laminaribiose phosphorylase was 67.7% with sucrose and different amounts of glucose as substrate. The experimental data was in good compliance with the process model for batch operation. The continuous operation will be investigated in further studies. Simulation of operational process possibilities enabled us to compare various operational modes regarding different aspects such as cost efficiency, with the minimum amount of expensive and time-consuming practical experiments. This gives us more flexibility in process implementation and allows us, for example, to change the production goal from laminaribiose to higher oligosaccharides.

Keywords: design of experiments, enzyme kinetics, multi-enzymatic system, in silico process development

Procedia PDF Downloads 338
732 Correlation between the Larvae Density (Diptera: Culicidae) and Physicochemical Characteristics of Habitats in Mazandaran Province, Northern Iran

Authors: Seyed Hassan Nikookar, Mahmoud Fazeli-Dinan, Seyyed Payman Ziapour, Ahmad-Ali Enayati

Abstract:

Background: Mosquitoes look for all kinds of aquatic habitats for laying eggs. Characteristics of water habitats are important factors in determining whether a mosquito can survive and successfully completed their developmental stages. Physicochemical factors can display an important role in vector control programs. This investigate determined whether physicochemical factors differ between habitats can be effective in the larvae density in Mazandaran province. Methods: Larvae were collected by the standard dipper up to 350 ml for 15-20 minutes from fixed habitats in 16 villages of 30 townships, the specimens identified by morphological key. Water samples were collected during larval collection and were evaluated for temperature (°C), acidity (pH), turbidity (NTU), electrical conductivity (μS/cm), alkalinity (mg/l), total hardness (mg/l), nitrate (mg/l), chloride (mg/l), phosphate (mg/l), sulfate (mg/l) in selected habitats using standard methods. Spearman Correlation coefficient was used for analyze data. Results: Totally 7566 mosquito larvae of three genera and 15 species were collected of fixed habitats. Cx. pipiens was the dominant species except in villages of Tileno, Zavat, Asad Abad, Shah Mansur Mahale which An. maculipennis, Cx. torrentium were as the predominant species. Turbidity in Karat Koti, Chloride in Al Tappeh, nitrate, phosphate and sulfate in Chalmardi, electrical conductivity, alkalinity, total hardness in Komishan villages were significantly higher than other villages (P < 0.05). There were a significant positive correlation between Cx. pipiens and Electrical conductivity, Alkalinity, Total hardness, Chloride, Cx. tritaeniorhynchus and Chloride, whereas a significant negative correlation observed between Sulfate and Cx. perexiguss. Conclusion: The correlations observed between physicochemical factor and larval density, possibly can confirm the effect of these parameters on the breeding activities of mosquitoes, and could probability facilitate larval control programs by the handwork of such factors.

Keywords: anopheles, culex, culiseta, physicochemical, habitats, larvae density, correlation

Procedia PDF Downloads 265
731 Synthesis and Functionalization of Gold Nanostars for ROS Production

Authors: H. D. Duong, J. I. Rhee

Abstract:

In this work, gold nanoparticles in star shape (called gold nanostars, GNS) were synthesized and coated by N-(3-aminopropyl) methacrylamide hydrochloride (PA) and mercaptopropionic acid (MPA) for functionalizing their surface by amine and carboxyl groups and then investigated for ROS production. The GNS with big size and multi-tips seem to be superior in singlet oxygen production as compared with that of small GNS and less tips. However, the functioned GNS in small size could also enhance efficiency of singlet oxygen production about double as compared with that of the intact GNS. In combination with methylene blue (MB+), the functioned GNS could enhance the singlet oxygen production of MB+ after 1h of LED750 irradiation and no difference between small size and big size in this reaction was observed. In combination with 5-aminolevulinic acid (ALA), only GNS coated PA could enhance the singlet oxygen production of ALA and the small size of GNS coated PA was a little higher effect than that of the bigger size. However, GNS coated MPA with small size had strong effect on hydroxyl radical production of ALA.

Keywords: 5-aminolevulinic acid, gold nanostars, methylene blue, ROS production

Procedia PDF Downloads 351
730 A Preliminary Report of HBV Full Genome Sequencing Derived from Iranian Intravenous Drug Users

Authors: Maryam Vaezjalali, Koroush Rahimian, Maryam Asli, Tahmineh Kandelouei, Foad Davoodbeglou, Amir H. Kashi

Abstract:

Objectives: The present study was conducted to assess the HBV molecular profiles including genotypes, subgenotypes, subtypes & mutations in hepatitis B genes. Materials/Patients and Methods: This study was conducted on 229 intravenous drug users who referred to three Drop- in-Centers and a hospital in Tehran. HBV DNA was extracted from HBsAg positive serum samples and amplified by Nested PCR. HBV genotype, subgenotypes, subtype and genes mutation were determined by direct sequencing. Phylogenetic tree was constructed using neighbor- joining (NJ) method. Statistical analyses were carried out by SPSS 20. Results: HBV DNA was found in 3 HBsAg positive cases. Phylogenetic tree of derived HBV DNAs showed the existence of genotype D (subgenotype D1, subtype ayw2). Also immune escape mutations were determined in S gene. Conclusion: There were a few variations and genotypes and subtypes among infected intravenous drug users. This study showed the predominance of genotype D among intravenous drug users. Our study concurs with other reports from Iran, that all showing currently only genotype D is the only detectable genotype in Iran.

Keywords: drug users, genotype, HBV, phylogenetic tree

Procedia PDF Downloads 326
729 Hepatitis B Prevalence in Institutionalized Intellectually Disabled Children

Authors: Maryam Vaezjalali, Foad Davoodbeglou, Mehrnaz Mesdaghi, Hossein Goudarzi, Fariba Shojaei, Hourieh Aram

Abstract:

Introduction: Hepatitis B virus (HBV) infection causes chronic infection in human population, with high mortality. Some people are more susceptible to this infection. One of the high risk communities is mentally retarded children, who are institutionalized. Special conditions in these centers predispose children for HBV infection and transmission to healthy people. In this study our objective was to determine the prevalence of HBV infection among institutionalized mentally retarded children and study its associated risk factors. Materials and methods: In this study, 250 mentally retarded children (younger than 14 years old) were included. They were living in 5 nursing institutions, located in different parts of Tehran. HBsAg was measured in the sera of these patients by ELISA method. Results: Among 250 children, 20 children (8%) were HBsAg positive. HBV infection in girls was more than boys (11% to 5.6%). Among the types of mental retardation, children with cerebral palsy had the highest positive result for HBsAg. The most HBV infection (28.5%) was seen in children with longest duration of being institutionalized (10 to 11 years). Vaccinated children were more HBsAg positive (8.7%) than non-vaccinated children (5.3%). However, no significant relationship was observed between any of these factors and HBsAg positivity. Conclusion: Despite improvement of people’s health condition and implementation of HBV vaccination, the prevalence of HBV infection is high in institutionalized mentally retarded children, which highlights the need for active measures to reduce this infection among this high risk population.

Keywords: hepatitis B virus, HBV vaccine, intellectually disabled children, mentally retarded

Procedia PDF Downloads 482
728 Controlling Cocoa Pod Borer, Conopomorpha cramerella (Snell.) and Cost Analysis Production at Cacao Plantation

Authors: Alam Anshary, Flora Pasaru, Shahabuddin

Abstract:

The Cocoa Pod Borer (CPB), Conopomorpha cramerella (Snell.) is present on most of the larger cocoa producing islands in Indonesia. Various control measures CPB has been carried out by the farmers, but the results have not been effective. This study aims to determine the effect of application of Beauveria bassiana treatments and pruning technique to the control of CPB in the cocoa plantation people. Research using completely randomized design with 4 treatments and 3 replications, treatment consists of B.bassiana, Pruning, B. bassiana+pruning (Bb + Pr), as well as the control. The results showed that the percentage of PBK attack on cocoa pods in treatment (Bb + Pr) 3.50% the lowest compared to other treatments. CPB attack percentage in treatment B.bassiana 6.15%; pruning 8.75%, and 15.20% control. Results of the analysis of production estimates, the known treatments (Bb + Pr) have the highest production (1.95 tonnes / ha). The model results estimated production is Y= 0,20999 + 0,53968X1 + 0,34298X2+ 0,31410X3 + 0,35629X4 + 0,08345X5 + 0,29732X6. Farm production costs consist of fixed costs and variable costs, fixed costs are costs incurred by the farmer that the size does not affect the results, such as taxes and depreciation of production equipment. Variable costs are costs incurred by farmers who used up in one year cocoa farming activities. The cost of production in farming cocoa without integrated techniques control of CPB is Rp. 9.205.550 million/ha, while the cost of production with integrated techniques control is Rp. 6.666.050 million/ha.

Keywords: cacao, cocoa pod borer, pruning, Beauveria bassiana, production costs

Procedia PDF Downloads 285
727 Cytology and Flow Cytometry of Three Japanese Drosera Species

Authors: Santhita Tungkajiwangkoon, Yoshikazu Hoshi

Abstract:

Three Japaneses Drosera species are the good model to study genome organization with highly specialized morphological group for insect trapping, and has revealed anti-inflammatory, and antibacterial effects, so there must be a reason for botanists are so appealing in these plants. Cytology and Flow cytometry were used to investigate the genetic stability and ploidy estimation in three related species. The cytological and Flow cytometry analysis were done in Drosera rotundifolia L., Drosera spatulata Labill and Drosera tokaiensis. The cytological studies by fluorescence staining (DAPI) showed that D. tokaiensis was an alloploid (2n=6x=60, hexaploid) which is a natural hybrid polyploids of D. rotundifolia and D. spatulata. D. rotundifolia was a diploid with the middle size of metaphase chromosomes (2n=2x=20) as a paternal origin and D. spatulata was a tetraploid with small size of metaphase chromosome (2n=4x=40) as a maternal origin. We confirmed by Flow cytometry analysis to determine the ploidy level and DNA content of the plants. The 2C-DNA values of D. rotundiflolia were 2.8 pg, D. spatulata was 1.6 pg and D. tokaiensis was 3.9 pg. However, 2C- DNA values of D. tokaiensis should be related from their parents but in the present study the 2C-DNA values of D. tokaiensis was no relation from the theoretical of hybrids representing additive parental. Possibility of D. tokaiensis is a natural hybrid, which is also hybridization in natural evolution can cause the genome reduction in plant.

Keywords: drosera, hybrid, cytology, flow cytometry

Procedia PDF Downloads 384
726 The Identification of Combined Genomic Expressions as a Diagnostic Factor for Oral Squamous Cell Carcinoma

Authors: Ki-Yeo Kim

Abstract:

Trends in genetics are transforming in order to identify differential coexpressions of correlated gene expression rather than the significant individual gene. Moreover, it is known that a combined biomarker pattern improves the discrimination of a specific cancer. The identification of the combined biomarker is also necessary for the early detection of invasive oral squamous cell carcinoma (OSCC). To identify the combined biomarker that could improve the discrimination of OSCC, we explored an appropriate number of genes in a combined gene set in order to attain the highest level of accuracy. After detecting a significant gene set, including the pre-defined number of genes, a combined expression was identified using the weights of genes in a gene set. We used the Principal Component Analysis (PCA) for the weight calculation. In this process, we used three public microarray datasets. One dataset was used for identifying the combined biomarker, and the other two datasets were used for validation. The discrimination accuracy was measured by the out-of-bag (OOB) error. There was no relation between the significance and the discrimination accuracy in each individual gene. The identified gene set included both significant and insignificant genes. One of the most significant gene sets in the classification of normal and OSCC included MMP1, SOCS3 and ACOX1. Furthermore, in the case of oral dysplasia and OSCC discrimination, two combined biomarkers were identified. The combined genomic expression achieved better performance in the discrimination of different conditions than in a single significant gene. Therefore, it could be expected that accurate diagnosis for cancer could be possible with a combined biomarker.

Keywords: oral squamous cell carcinoma, combined biomarker, microarray dataset, correlated genes

Procedia PDF Downloads 423
725 Finite State Markov Chain Model of Pollutants from Service Stations

Authors: Amina Boukelkoul, Rahil Boukelkoul, Leila Maachia

Abstract:

The cumulative vapors emitted from the service stations may represent a hazard to the environment and the population. Besides fuel spill and their penetration into deep soil layers are the main contributors to soil and ground-water contamination in the vicinity of the petrol stations. The amount of the effluents from the service stations depends on strategy of maintenance and the policy adopted by the management to reduce the pollution. One key of the proposed approach is the idea of managing the effluents from the service stations which can be captured via use of a finite state Markov chain. Such a model can be embedded within a probabilistic operation and maintenance simulation reflecting the action to be done. In this paper, an approach of estimating a probabilistic percentage of the amount of emitted pollutants is presented. The finite state Markov model is used for decision problems with number of determined periods (life cycle) to predict the amount according to various options of operation.

Keywords: environment, markov modeling, pollution, service station

Procedia PDF Downloads 472
724 Assessing Arterial Blockages Using Animal Model and Computational Fluid Dynamics

Authors: Mohammad Al- Rawi, Ahmad Al- Jumaily

Abstract:

This paper investigates the effect of developing arterial blockage at the abdominal aorta on the blood pressure waveform at an externally accessible location suitable for invasive measurements such as the brachial and the femoral arteries. Arterial blockages are created surgically within the abdominal aorta of healthy Wistar rats to create narrowing resemblance conditions. Blood pressure waveforms are measured using a catheter inserted into the right femoral artery. Measurements are taken at the baseline healthy condition as well as at four different severities (20%, 50%, 80% and 100%) of arterial blockage. In vivo and in vitro measurements of the lumen diameter and wall thickness are taken using Magnetic Resonance Imaging (MRI) and microscopic techniques, respectively. These data are used to validate a 3D computational fluid dynamics model (CFD) which is developed to generalize the outcomes of this work and to determine the arterial stress and strain under the blockage conditions. This work indicates that an arterial blockage in excess of 20% of the lumen diameter significantly influences the pulse wave and reduces the systolic blood pressure at the right femoral artery. High wall shear stress and low circumferential strain are also generated at the blockage site.

Keywords: arterial blockage, pulse wave, atherosclerosis, CFD

Procedia PDF Downloads 284
723 Cytotoxicity and Genotoxicity of Glyphosate and Its Two Impurities in Human Peripheral Blood Mononuclear Cells

Authors: Marta Kwiatkowska, Paweł Jarosiewicz, Bożena Bukowska

Abstract:

Glyphosate (N-phosphonomethylglycine) is a non-selected broad spectrum ingredient in the herbicide (Roundup) used for over 35 years for the protection of agricultural and horticultural crops. Glyphosate was believed to be environmentally friendly but recently, a large body of evidence has revealed that glyphosate can negatively affect on environment and humans. It has been found that glyphosate is present in the soil and groundwater. It can also enter human body which results in its occurrence in blood in low concentrations of 73.6 ± 28.2 ng/ml. Research conducted for potential genotoxicity and cytotoxicity can be an important element in determining the toxic effect of glyphosate. Due to regulation of European Parliament 1107/2009 it is important to assess genotoxicity and cytotoxicity not only for the parent substance but also its impurities, which are formed at different stages of production of major substance – glyphosate. Moreover verifying, which of these compounds are more toxic is required. Understanding of the molecular pathways of action is extremely important in the context of the environmental risk assessment. In 2002, the European Union has decided that glyphosate is not genotoxic. Unfortunately, recently performed studies around the world achieved results which contest decision taken by the committee of the European Union. World Health Organization (WHO) in March 2015 has decided to change the classification of glyphosate to category 2A, which means that the compound is considered to "probably carcinogenic to humans". This category relates to compounds for which there is limited evidence of carcinogenicity to humans and sufficient evidence of carcinogenicity on experimental animals. That is why we have investigated genotoxicity and cytotoxicity effects of the most commonly used pesticide: glyphosate and its impurities: N-(phosphonomethyl)iminodiacetic acid (PMIDA) and bis-(phosphonomethyl)amine on human peripheral blood mononuclear cells (PBMCs), mostly lymphocytes. DNA damage (analysis of DNA strand-breaks) using the single cell gel electrophoresis (comet assay) and ATP level were assessed. Cells were incubated with glyphosate and its impurities: PMIDA and bis-(phosphonomethyl)amine at concentrations from 0.01 to 10 mM for 24 hours. Evaluating genotoxicity using the comet assay showed a concentration-dependent increase in DNA damage for all compounds studied. ATP level was decreased to zero as a result of using the highest concentration of two investigated impurities, like bis-(phosphonomethyl)amine and PMIDA. Changes were observed using the highest concentration at which a person can be exposed as a result of acute intoxication. Our survey leads to a conclusion that the investigated compounds exhibited genotoxic and cytotoxic potential but only in high concentrations, to which people are not exposed environmentally. Acknowledgments: This work was supported by the Polish National Science Centre (Contract-2013/11/N/NZ7/00371), MSc Marta Kwiatkowska, project manager.

Keywords: cell viability, DNA damage, glyphosate, impurities, peripheral blood mononuclear cells

Procedia PDF Downloads 482
722 The Effect of Bisphenol A and Its Selected Analogues on Antioxidant Enzymes Activity in Human Erythrocytes

Authors: Aneta Maćczak, Bożena Bukowska, Jaromir Michałowicz

Abstract:

Bisphenols are one of the most widely used chemical compounds worldwide. They are used in the manufacturing of polycarbonates, epoxy resins and thermal paper which are applied in plastic containers, bottles, cans, newspapers, receipt and other products. Among these compounds, bisphenol A (BPA) is produced in the highest amounts. There are concerns about endocrine impact of BPA and its other toxic effects including hepatotoxicity, neurotoxicity and carcinogenicity on human organism. Moreover, BPA is supposed to increase the incidence the obesity, diabetes and heart disease. For this reason the use of BPA in the production of plastic infant feeding bottles and some other consumers products has been restricted in the European Union and the United States. Nowadays, BPA analogues like bisphenol F (BPF) and bisphenol S (BPS) have been developed as alternative compounds. The replacement of BPA with other bisphenols contributed to the increase of the exposure of human population to these substances. Toxicological studies have mainly focused on BPA. In opposite, a small number of studies concerning toxic effects of BPA analogues have been realized, which makes impossible to state whether those substituents are safe for human health. Up to now, the mechanism of bisphenols action on the erythrocytes has not been elucidated. That is why, the aim of this study was to assess the effect of BPA and its selected analogues such as BPF and BPS on the activity of antioxidant enzymes, i.e. catalase (EC 1.11.1.6.), glutathione peroxidase (E.C.1.11.1.9) and superoxide dismutase (EC.1.15.1.1) in human erythrocytes. Red blood cells in respect to their function (transport of oxygen) and very well developed enzymatic and non-enzymatic antioxidative system, are useful cellular model to assess changes in redox balance. Erythrocytes were incubated with BPA, BPF and BPS in the concentration ranging from 0.5 to 100 µg/ml for 24 h. The activity of catalase was determined by the method of Aebi (1984). The activity of glutathione peroxidase was measured according to the method described by Rice-Evans et al. (1991), while the activity of superoxide dismutase (EC.1.15.1.1) was determined by the method of Misra and Fridovich (1972). The results showed that BPA and BPF caused changes in the antioxidative enzymes activities. BPA decreased the activity of examined enzymes in the concentration of 100 µg/ml. We also noted that BPF decreased the activity of catalase (5-100 µg/ml), glutathione peroxidase (50-100 µg/ml) and superoxide dismutase (25-100 µg/ml), while BPS did not cause statistically significant changes in investigated parameters. The obtained results suggest that BPA and BPF disrupt redox balance in human erythrocytes but the observed changes may occur in human organism only during occupational or subacute exposure to these substances.

Keywords: antioxidant enzymes, bisphenol A, bisphenol a analogues, human erythrocytes

Procedia PDF Downloads 471
721 Use of Opti-Jet Cs Md1mr Device for Biocide Aerosolisation in 3t Magnetic Resonance

Authors: Robert Pintaric, Joze Matela, Stefan Pintaric, Stanka Vadnjal

Abstract:

Introduction: This work is aimed to represent the use of the OPTI-JET CS MD1 MR prototype for application of neutral electrolyzed oxidizing water (NEOW) in magnetic resonance rooms. Material and Methods: We produced and used OPTI-JET CS MD1 MR aerosolisator whereby was performed aerosolization. The presence of microorganisms before and after the aerosolisation was recorded with the help of cyclone air sampling. Colony formed units (CFU) was counted. Results: The number of microorganisms in magnetic resonance 3T room was low as expected. Nevertheless, a possible CFU reduction of 87% was recorded. Conclusions: The research has shown that the use of EOW for the air and hard surface disinfection can considerably reduce the presence of microorganisms and consequently the possibility of hospital infections. It has also demonstrated that the use of OPTI-JET CS MD1 MR is very good. With this research, we started new guidelines for aerosolization in magnetic resonance rooms. Future work: We predict that presented technique works very good but we must focus also on time capacity sensors, and new appropriate toxicological studies.

Keywords: biocide, electrolyzed oxidizing water (EOW), disinfection, microorganisms, OPTI-JET CS MD1MR

Procedia PDF Downloads 391
720 The Effect of Vibration Amplitude on Tissue Temperature and Lesion Size When Using a Vibrating Cardiac Catheter

Authors: Kaihong Yu, Tetsui Yamashita, Shigeaki Shingyochi, Kazuo Matsumoto, Makoto Ohta

Abstract:

During cardiac ablation, high power delivery for deeper lesion formation is limited by electrode-tissue interface overheating which can cause serious complications such as thrombus. To prevent this overheating, temperature control and open irrigation are often used. In temperature control, radiofrequency generator is adjusted to deliver the maximum output power, which maintains the electrode temperature at a target temperature (commonly 55°C or 60°C). Then the electrode-tissue interface temperature is also limited. The electrode temperature is a result of heating from the contacted tissue and cooling from the surrounding blood. Because the cooling from blood is decreased under conditions of low blood flow, the generator needs to decrease the output power. Thus, temperature control cannot deliver high power under conditions of low blood flow. In open irrigation, saline in room temperature is flushed through the holes arranged in the electrode. The electrode-tissue interface is cooled by the sufficient environmental cooling. And high power delivery can also be done under conditions of low blood flow. However, a large amount of saline infusions (approximately 1500 ml) during irrigation can cause other serious complication. When open irrigation cannot be used under conditions of low blood flow, a new overheating prevention may be required. The authors have proposed a new electrode cooling method by making the catheter vibrating. The previous work has introduced that the vibration can make a cooling effect on electrode, which may result form that the vibration could increase the flow velocity around the catheter. The previous work has also proved that increasing vibration frequency can increase the cooling by vibration. However, the effect of the vibration amplitude is still unknown. Thus, the present study investigated the effect of vibration amplitude on tissue temperature and lesion size. An agar phantom model was used as a tissue-equivalent material for measuring tissue temperature. Thermocouples were inserted into the agar to measure the internal temperature. Porcine myocardium was used for lesion size measurement. A normal ablation catheter was set perpendicular to the tissue (agar or porcine myocardium) with 10 gf contact force in 37°C saline without flow. Vibration amplitude of ± 0.5, ± 0.75, and ± 1.0 mm with a constant frequency (31 Hz or 63) was used. A temperature control protocol (45°C for agar phantom, 60°C for porcine myocardium) was used for the radiofrequency applications. The larger amplitude shows the larger lesion sizes. And the higher tissue temperatures in agar phantom are also shown with the higher amplitude. With a same frequency, the larger amplitude has the higher vibrating speed. And the higher vibrating speed will increase the flow velocity around the electrode more, which leads to a larger electrode temperature decrease. To maintain the electrode at the target temperature, ablator has to increase the output power. With the higher output power in the same duration, the released energy also increases. Consequently, the tissue temperature will be increased and lead to larger lesion sizes.

Keywords: cardiac ablation, electrode cooling, lesion size, tissue temperature

Procedia PDF Downloads 371
719 M-Number of Aortic Cannulas Applied During Hypothermic Cardiopulmonary Bypass

Authors: Won-Gon Kim

Abstract:

A standardized system to describe the pressure-flow characteristics of a given cannula has recently been proposed and has been termed ‘the M-number’. Using three different sizes of aortic cannulas in 50 pediatric cardiac patients on hypothermic cardiopulmonary bypass, we analyzed the correlation between experimentally and clinically derived M-numbers, and found this was positive. Clinical M-numbers were typically 0.35 to 0.55 greater than experimental M-numbers, and correlated inversely with a patient's temperature change; this was most probably due to increased blood viscosity, arising from hypothermia. This inverse relationship was more marked in higher M-number cannulas. The clinical data obtained in this study suggest that experimentally derived M-numbers correlate strongly with clinical performance of the cannula, and that the influence of temperature is significant.

Keywords: cardiopulmonary bypass, M-number, aortic cannula, pressure-flow characteristics

Procedia PDF Downloads 244
718 Epiphytic Growth on Filamentous Bacteria Found in Activated Sludge: A Morphological Approach

Authors: Thobela Conco, Sheena Kumari, Thor Stenstrom, Simona Rosetti, Valter Tandoi, Faizal Bux

Abstract:

Filamentous bacteria are well documented as causative agents of bulking and foaming in the biological wastewater treatment process. These filamentous bacteria are however closely associated with other non-filamentous organism forming a micro-niche. Among these specific epiphytic bacteria attach to filaments in the consortium of organisms that make up the floc. Neither the eco-physiological role of the epiphytes nor the nature of the interaction between the epiphytic bacteria and the filament hosts they colonize is well understood and in need of in-depth investigations. The focus of this presentation is on the interaction between the epiphytic bacteria and the filament host. Samples from the activated sludge treatment have been repeatedly collected from several wastewater treatment plants in KwaZulu Natal. Extensive investigations have been performed with SEM and TEM electron microscopy, Polarized Light Microscopy with Congo red staining, and Thioflavin T staining to document the interaction. SEM was used to document the morphology of both the filament host and their epiphytes counterparts with the focus on the interface/point of contact between the two, while the main focus of the TEM investigations with the higher magnification aimed to document the ultra-structure features of two organisms relating to the interaction. The interaction of the perpendicular attachment partly seems to be governed by the physiological status of the filaments. The attachment further seems to trigger a response in the filaments with distinct internal visible structures at the attachment sites. It is postulated that these structures most likely are amyloid fibrils. Amyloid fibrils may play an overarching role in different types of attachments and has earlier been noted to play a significant role in biofilm formation in activated sludge. They also play a medical role in degenerative diseases such as Alzheimer’s and Diabetes. Further studies aims to define the eco-physiological role of amyloid fibrils in filamentous bacteria, based on their observed presence at interaction sites in this study. This will also relate to additional findings where selectivity within the species of epiphytes attaching to the selected filaments has been noted. The practical implications of the research findings is still to be determined, but the ecophysiological interaction between two closely associated species or groups may have significant impact in the future understanding of wastewater treatment processes and broaden existing knowledge on population dynamics.

Keywords: activated sludge, amyloid proteins, epiphytic bacteria, filamentous bacteria

Procedia PDF Downloads 427