Search results for: simulation of total-reflux distillation column
3739 Assessment of the Effect of Feed Plate Location on Interactions for a Binary Distillation Column
Authors: A. Khelassi, R. Bendib
Abstract:
The paper considers the effect of feed plate location on the interactions in a seven plate binary distillation column. The mathematical model of the distillation column is deduced based on the equations of mass and energy balances for each stage, detailed model for both reboiler and condenser, and heat transfer equations. The Dynamic Relative Magnitude Criterion, DRMC is used to assess the interactions in different feed plate locations for a seven plate (Benzene-Toluene) binary distillation column ( the feed plate is originally at stage 4). The results show that whenever we go far from the optimum feed plate position, the level of interaction augments.Keywords: Distillation column, assessment of interactions, feedplate location, DRMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23973738 Crude Distillation Process Simulation Using Unisim Design Simulator
Authors: C. Patrascioiu, M. Jamali
Abstract:
The paper deals with the simulation of the crude distillation process using the Unisim Design simulator. The necessity of simulating this process is argued both by considerations related to the design of the crude distillation column, but also by considerations related to the design of advanced control systems. In order to use the Unisim Design simulator to simulate the crude distillation process, the identification of the simulators used in Romania and an analysis of the PRO/II, HYSYS, and Aspen HYSYS simulators were carried out. Analysis of the simulators for the crude distillation process has allowed the authors to elaborate the conclusions of the success of the crude modelling. A first aspect developed by the authors is the implementation of specific problems of petroleum liquid-vapors equilibrium using Unisim Design simulator. The second major element of the article is the development of the methodology and the elaboration of the simulation program for the crude distillation process, using Unisim Design resources. The obtained results validate the proposed methodology and will allow dynamic simulation of the process.
Keywords: Crude oil, distillation, simulation, Unisim Design, simulators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27023737 The Applicability of Distillation as an Alternative Nuclear Reprocessing Method
Authors: Dominik Böhm, Konrad Czerski
Abstract:
A customized two-stage model has been developed to simulate, analyse, and visualize distillation of actinides as a useful alternative low-pressure separation method in the nuclear recycling cases. Under the most optimal conditions of idealized thermodynamic equilibrium stages and under total reflux of distillate the investigated cases of chloride systems for the separation of such actinides are (A) UCl4-CsCl-PuCl3 and (B) ThCl4-NaCl-PuCl3. Simulatively, uranium tetrachloride in case A is successfully separated by distillation into a six-stage distillation column, and thorium tetrachloride from case B into an eight-stage distillation column. For this, a permissible mole fraction value of 1E-06 has been assumed for the residual impurification degree. With further separation effort of eleven to seventeen required separation stages, the monochlorides of plutonium trichloride from both systems A and B are simulatively shown to be separated as high pure distillation products.
Keywords: Conceptual design of a pyroprocessing unit, molten salt recovery, simulation of total-reflux distillation column, used nuclear fuel reprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6153736 The Assessment of Interactions in Ratios Control Schemes for a Binary Distillation Column
Authors: R. Bendib, A. Khelassi
Abstract:
In this paper we will consider the most known ratios control schemes ((L/D, V/B),(L/D,V/F), Ryskamp-s, and (D/(L+D),V/B)) for binary distillation column and we compare them in the basis of interactions and disturbance propagation. The models for these configurations are deuced using mathematical transformations taking the energy balance structure (LV) as a base model. The dynamic relative magnitude criterion (DRMC) is used to assess the interactions. The results show that the introduction of ratios in controlling the column tends to minimize the degree of interactions between the loops.Keywords: Distillation, interaction, DRMC, configurations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15603735 Optimization of Energy Consumption in Sequential Distillation Column
Authors: M.E. Masoumi, S. Kadkhodaie
Abstract:
Distillation column is one of the most common operations in process industries and is while the most expensive unit of the amount of energy consumption. Many ideas have been presented in the related literature for optimizing energy consumption in distillation columns. This paper studies the different heat integration methods in a distillation column which separate Benzene, Toluene, Xylene, and C9+. Three schemes of heat integration including, indirect sequence (IQ), indirect sequence with forward energy integration (IQF), and indirect sequence with backward energy integration (IQB) has been studied in this paper. Using shortcut method these heat integration schemes were simulated with Aspen HYSYS software and compared with each other with regarding economic considerations. The result shows that the energy consumption has been reduced 33% in IQF and 28% in IQB in comparison with IQ scheme. Also the economic result shows that the total annual cost has been reduced 12% in IQF and 8% in IQB regarding with IQ scheme. Therefore, the IQF scheme is most economic than IQB and IQ scheme.Keywords: Optimization, Distillation Column Sequence, Energy Savings
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30153734 Investigation of Heat Loss in Ethanol-Water Distillation Column with Direct Vapour Recompression Heat Pump
Authors: Christopher C. Enweremadu, Hilary L. Rutto
Abstract:
Vapour recompression system has been used to enhance reduction in energy consumption and improvement in energy effectiveness of distillation columns. However, the effects of certain parameters have not been taken into consideration. One of such parameters is the column heat loss which has either been assumed to be a certain percent of reboiler heat transfer or negligible. The purpose of this study was to evaluate the heat loss from an ethanol-water vapour recompression distillation column with pressure increase across the compressor (VRCAS) and compare the results obtained and its effect on some parameters in similar system (VRCCS) where the column heat loss has been assumed or neglected. Results show that the heat loss evaluated was higher when compared with that obtained for the column VRCCS. The results also showed that increase in heat loss could have significant effect on the total energy consumption, reboiler heat transfer, the number of trays and energy effectiveness of the column.Keywords: Compressor, distillation column, heat loss, vapourrecompression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49933733 A Comparative Study of the Modeling and Quality Control of the Propylene-Propane Classical Distillation and Distillation Column with Heat Pump
Authors: C. Patrascioiu, Cao Minh Ahn
Abstract:
The paper presents the research evolution in the propylene – propane distillation process, especially for the distillation columns equipped with heat pump. The paper is structured in three parts: separation of the propylene-propane mixture, steady state process modeling, and quality control systems. The first part is dedicated to state of art of the two distillation processes. The second part continues the author’s researches of the steady state process modeling. There has been elaborated a software simulation instrument that may be used to dynamic simulation of the process and to design the quality control systems. The last part presents the research of the control systems, especially for quality control systems.
Keywords: Distillation, absorption, heat pump, Unisim Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13443732 Equilibrium and Rate Based Simulation of MTBE Reactive Distillation Column
Authors: Debashish Panda, Kannan A.
Abstract:
Equilibrium and rate based models have been applied in the simulation of methyl tertiary-butyl ether (MTBE) synthesis through reactive distillation. Temperature and composition profiles were compared for both the models and found that both the profiles trends, though qualitatively similar are significantly different quantitatively. In the rate based method (RBM), multicomponent mass transfer coefficients have been incorporated to describe interphase mass transfer. MTBE mole fraction in the bottom stream is found to be 0.9914 in the Equilibrium Model (EQM) and only 0.9904 for RBM when the same column configuration was preserved. The individual tray efficiencies were incorporated in the EQM and simulations were carried out. Dynamic simulation have been also carried out for the two column configurations and compared.
Keywords: Aspen Plus, equilibrium stage model, methyl tertiary-butyl ether, rate based model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49133731 Distillation Monitoring and Control using LabVIEW and SIMULINK Tools
Authors: J. Fernandez de Canete, P. Del Saz Orozco, S. Gonzalez-Perez
Abstract:
LabVIEW and SIMULINK are two most widely used graphical programming environments for designing digital signal processing and control systems. Unlike conventional text-based programming languages such as C, Cµ and MATLAB, graphical programming involves block-based code developments, allowing a more efficient mechanism to build and analyze control systems. In this paper a LabVIEW environment has been employed as a graphical user interface for monitoring the operation of a controlled distillation column, by visualizing both the closed loop performance and the user selected control conditions, while the column dynamics has been modeled under the SIMULINK environment. This tool has been applied to the PID based decoupled control of a binary distillation column. By means of such integrated environments the control designer is able to monitor and control the plant behavior and optimize the response when both, the quality improvement of distillation products and the operation efficiency tasks, are considered.Keywords: Distillation control, software tools, SIMULINKLabVIEWinterface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38163730 Artificial Neural Networks for Identification and Control of a Lab-Scale Distillation Column Using LABVIEW
Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco
Abstract:
LABVIEW is a graphical programming language that has its roots in automation control and data acquisition. In this paper we have utilized this platform to provide a powerful toolset for process identification and control of nonlinear systems based on artificial neural networks (ANN). This tool has been applied to the monitoring and control of a lab-scale distillation column DELTALAB DC-SP. The proposed control scheme offers high speed of response for changes in set points and null stationary error for dual composition control and shows robustness in presence of externally imposed disturbance.
Keywords: Distillation, neural networks, LABVIEW, monitoring, identification, control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29193729 Simulation of Reactive Distillation: Comparison of Equilibrium and Nonequilibrium Stage Models
Authors: Asfaw Gezae Daful
Abstract:
In the present study, two distinctly different approaches are followed for modeling of reactive distillation column, the equilibrium stage model and the nonequilibrium stage model. These models are simulated with a computer code developed in the present study using MATLAB programming. In the equilibrium stage models, the vapor and liquid phases are assumed to be in equilibrium and allowance is made for finite reaction rates, where as in the nonequilibrium stage models simultaneous mass transfer and reaction rates are considered. These simulated model results are validated from the experimental data reported in the literature. The simulated results of equilibrium and nonequilibrium models are compared for concentration, temperature and reaction rate profiles in a reactive distillation column for Methyl Tert Butyle Ether (MTBE) production. Both the models show similar trend for the concentration, temperature and reaction rate profiles but the nonequilibrium model predictions are higher and closer to the experimental values reported in the literature.
Keywords: Reactive Distillation, Equilibrium model, Nonequilibrium model, Methyl Tert-Butyl Ether
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42063728 Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim® Design
Authors: C. Patrascioiu
Abstract:
The paper describes the modeling and simulation of the heat pumps domain processes. The main objective of the study is the use of the heat pump in propene–propane distillation processes. The modeling and simulation instrument is the Unisim® Design simulator. The paper is structured in three parts: An overview of the compressing gases, the modeling and simulation of the freezing systems, and the modeling and simulation of the heat pumps. For each of these systems, there are presented the Unisim® Design simulation diagrams, the input–output system structure and the numerical results. Future studies will consider modeling and simulation of the propene–propane distillation process with heat pump.
Keywords: Distillation, heat pump, simulation, Unisim Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24523727 Comparison of the Distillation Curve Obtained Experimentally with the Curve Extrapolated by a Commercial Simulator
Authors: Lívia B. Meirelles, Erika C. A. N. Chrisman, Flávia B. de Andrade, Lilian C. M. de Oliveira
Abstract:
True Boiling Point distillation (TBP) is one of the most common experimental techniques for the determination of petroleum properties. This curve provides information about the performance of petroleum in terms of its cuts. The experiment is performed in a few days. Techniques are used to determine the properties faster with a software that calculates the distillation curve when a little information about crude oil is known. In order to evaluate the accuracy of distillation curve prediction, eight points of the TBP curve and specific gravity curve (348 K and 523 K) were inserted into the HYSYS Oil Manager, and the extended curve was evaluated up to 748 K. The methods were able to predict the curve with the accuracy of 0.6%-9.2% error (Software X ASTM), 0.2%-5.1% error (Software X Spaltrohr).Keywords: Distillation curve, petroleum distillation, simulation, true boiling point curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16253726 Effect of Temperature on the Performance of Multi-Stage Distillation
Authors: A. Diaf, H. Aburideh, Z.Tigrine, D. Tassalit, F.Alaoui
Abstract:
The tray/multi-tray distillation process is a topic that has been investigated to great detail over the last decade by many teams such as Jubran et al. [1], Adhikari et al. [2], Mowla et al. [3], Shatat et al. [4] and Fath [5] to name a few. A significant amount of work and effort was spent focusing on modeling and/simulation of specific distillation hardware designs. In this work, we have focused our efforts on investigating and gathering experimental data on several engineering and design variables to quantify their influence on the yield of the multi-tray distillation process. Our goals are to generate experimental performance data to bridge some existing gaps in the design, engineering, optimization and theoretical modeling aspects of the multi-tray distillation process.Keywords: Distillation, Desalination, Multi-Stage still, Solar Energy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18093725 Hydrodynamic Simulation of Co-Current and Counter Current of Column Distillation Using Euler Lagrange Approach
Authors: H. Troudi, M. Ghiss, Z. Tourki, M. Ellejmi
Abstract:
Packed columns of liquefied petroleum gas (LPG) consists of separating the liquid mixture of propane and butane to pure gas components by the distillation phenomenon. The flow of the gas and liquid inside the columns is operated by two ways: The co-current and the counter current operation. Heat, mass and species transfer between phases represent the most important factors that influence the choice between those two operations. In this paper, both processes are discussed using computational CFD simulation through ANSYS-Fluent software. Only 3D half section of the packed column was considered with one packed bed. The packed bed was characterized in our case as a porous media. The simulations were carried out at transient state conditions. A multi-component gas and liquid mixture were used out in the two processes. We utilized the Euler-Lagrange approach in which the gas was treated as a continuum phase and the liquid as a group of dispersed particles. The heat and the mass transfer process was modeled using multi-component droplet evaporation approach. The results show that the counter-current process performs better than the co-current, although such limitations of our approach are noted. This comparison gives accurate results for computations times higher than 2 s, at different gas velocity and at packed bed porosity of 0.9.
Keywords: Co-current, counter current, Euler Lagrange model, heat transfer, mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13653724 Numerical Investigation of the Jacketing Method of Reinforced Concrete Column
Authors: S. Boukais, A. Nekmouche, N. Khelil, A. Kezmane
Abstract:
The first intent of this study is to develop a finite element model that can predict correctly the behavior of the reinforced concrete column. Second aim is to use the finite element model to investigate and evaluate the effect of the strengthening method by jacketing of the reinforced concrete column, by considering different interface contact between the old and the new concrete. Four models were evaluated, one by considering perfect contact, the other three models by using friction coefficient of 0.1, 0.3 and 0.5. The simulation was carried out by using Abaqus software. The obtained results show that the jacketing reinforcement led to significant increase of the global performance of the behavior of the simulated reinforced concrete column.Keywords: Strengthening, jacketing, reinforced concrete column, 3D simulation, Abaqus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9833723 Study of a Developed Model Describing a Vacuum Membrane Distillation Unit Coupled to Solar Energy
Authors: Fatma Khaled, Khaoula Hidouri, Bechir Chaouachi
Abstract:
Desalination using solar energy coupled with membrane techniques such as vacuum membrane distillation (VMD) is considered as an interesting alternative for the production of pure water. During this work, a developed model of a polytetrafluoroethylene (PTFE) hollow fiber membrane module of a VMD unit of seawater was carried out. This simulation leads to establishing a comparison between the effects of two different equations of the vaporization latent heat on the membrane surface temperature and on the unit productivity. Besides, in order to study the effect of putting membrane modules in series on the outlet fluid temperature and on the productivity of the process, a simulation was executed.
Keywords: Vacuum membrane distillation, membrane module, membrane temperature, productivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6093722 Reduction of Energy Consumption of Distillation Process by Recovering the Heat from Exit Streams
Authors: Apichit Svang-Ariyaskul, Thanapat Chaireongsirikul, Pawit Tangviroon
Abstract:
Distillation consumes enormous quantity of energy. This work proposed a process to recover the energy from exit streams during the distillation process of three consecutive columns. There are several novel techniques to recover the heat with the distillation system; however, a complex control system is required. This work proposed a simpler technique by exchanging the heat between streams without interrupting the internal distillation process that might cause a serious control problem. The proposed process is executed by using heat exchanger network with pinch analysis to maximize the process heat recovery. The test model is the distillation of butane, pentane, hexane, and heptanes, which is a common mixture in the petroleum refinery. This proposed process saved the energy consumption for hot and cold utilities of 29 and 27%, which is considered significant. Therefore, the recovery of heat from exit streams from distillation process is proved to be effective for energy saving.
Keywords: Distillation, Heat Exchanger, Network Pinch Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32183721 Optimization of Partially Filled Column Subjected to Oblique Loading
Authors: M. S. Salwani, B. B. Sahari, Aidy Ali, A. A. Nuraini
Abstract:
In this study, optimization is carried out to find the optimized design of a foam-filled column for the best Specific Energy Absorption (SEA) and Crush Force Efficiency (CFE). In order to maximize SEA, the optimization gives the value of 2.3 for column thickness and 151.7 for foam length. On the other hand to maximize CFE, the optimization gives the value of 1.1 for column thickness and 200 for foam length. Finite Element simulation is run by using this value and the SEA and CFE obtained 1237.76 J/kg and 0.92.
Keywords: Crash, foam, oblique loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15853720 Robust Stability in Multivariable Neural Network Control using Harmonic Analysis
Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco, I. Garcia-Moral
Abstract:
Robust stability and performance are the two most basic features of feedback control systems. The harmonic balance analysis technique enables to analyze the stability of limit cycles arising from a neural network control based system operating over nonlinear plants. In this work a robust stability analysis based on the harmonic balance is presented and applied to a neural based control of a non-linear binary distillation column with unstructured uncertainty. We develop ways to describe uncertainty in the form of neglected nonlinear dynamics and high harmonics for the plant and controller respectively. Finally, conclusions about the performance of the neural control system are discussed using the Nyquist stability margin together with the structured singular values of the uncertainty as a robustness measure.Keywords: Robust stability, neural network control, unstructured uncertainty, singular values, distillation column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16283719 Recovery of Acetonitrile from Aqueous Solutions by Extractive Distillation–Effect of Entrainer
Authors: Aleksandra Yu. Sazonova, Valentina M. Raeva
Abstract:
The aim of this work was to apply extractive distillation for acetonitrile removal from water solutions, to validate thermodynamic criterion based on excess Gibbs energy to entrainer selection process for acetonitrile – water mixture separation and show its potential efficiency at isothermal conditions as well as at isobaric (conditions of real distillation process), to simulate and analyze an extractive distillation process with chosen entrainers: optimize amount of trays and feeds, entrainer/original mixture and reflux ratios. Equimolar composition of the feed stream was chosen for the process, comparison of the energy consumptions was carried out. Glycerol was suggested as the most energetically and ecologically suitable entrainer.
Keywords: Acetonitrile, entrainer, extractive distillation, water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71933718 The Applications of Quantum Mechanics Simulation for Solvent Selection in Chemicals Separation
Authors: Attapong T., Hong-Ming Ku, Nakarin M., Narin L., Alisa L, Jirut W.
Abstract:
The quantum mechanics simulation was applied for calculating the interaction force between 2 molecules based on atomic level. For the simple extractive distillation system, it is ternary components consisting of 2 closed boiling point components (A,lower boiling point and B, higher boiling point) and solvent (S). The quantum mechanics simulation was used to calculate the intermolecular force (interaction force) between the closed boiling point components and solvents consisting of intermolecular between A-S and B-S. The requirement of the promising solvent for extractive distillation is that solvent (S) has to form stronger intermolecular force with only one component than the other component (A or B). In this study, the systems of aromatic-aromatic, aromatic-cycloparaffin, and paraffindiolefin systems were selected as the demonstration for solvent selection. This study defined new term using for screening the solvents called relative interaction force which is calculated from the quantum mechanics simulation. The results showed that relative interaction force gave the good agreement with the literature data (relative volatilities from the experiment). The reasons are discussed. Finally, this study suggests that quantum mechanics results can improve the relative volatility estimation for screening the solvents leading to reduce time and money consumingKeywords: Extractive distillation, Interaction force, Quamtum mechanic, Relative volatility, Solvent extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15933717 Performance Evaluation of Single Basin Solar Still
Authors: Prem Singh, Jagdeep Singh
Abstract:
In an attempt to investigate the performance of single basin solar still for climate conditions of Ludhiana a single basin solar still was designed, fabricated and tested. The energy balance equations for various parts of the still are solved by Gauss-Seidel iteration method. Computer model was made and experimentally validated. The validated computer model was used to estimate the annual distillation yield and performance ratio of the still for Ludhiana. The Theoretical and experimental distillation yield were 4318.79 ml and 3850 ml respectively for the typical day. The predicted distillation yield was 12.5% higher than the experimental yield. The annual distillation yield per square metre aperture area and annual performance ratio for single basin solar still is 1095 litres and 0.43 respectively. The payback period for micro-stepped solar still is 2.5 years.Keywords: Solar distillation, solar still, single basin, still.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30933716 Investigation on an Innovative Way to Connect RC Beam and Steel Column
Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil
Abstract:
An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.
Keywords: Composite column, reinforced concrete beam, Steel Column, Transfer Part.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53093715 Steady State Simulation and Experimental Study of an Ethane Recovery Unit in an Iranian Natural Gas Refinery
Authors: Arash Esmaeili, Omid Ghabouli
Abstract:
The production and consumption of natural gas is on the rise throughout the world as a result of its wide availability, ease of transportation, use and clean-burning characteristics. The chief use of ethane is in the chemical industry in the production of Ethene (ethylene) by steam cracking. In this simulation, obtained ethane recovery percent based on Gas sub-cooled process (GSP) is 99.9 by mole that is included 32.1% by using de-methanizer column and 67.8% by de-ethanizer tower. The outstanding feature of this process is the novel split-vapor concept that employs to generate reflux for de-methanizer column. Remain amount of ethane in export gas cause rise in gross heating value up to 36.66 MJ/Nm3 in order to use in industrial and household consumptions.Keywords: Ethane recovery, Hydrocarbon dew point, Simulation, Water dew point
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30533714 Software Tools for System Identification and Control using Neural Networks in Process Engineering
Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco
Abstract:
Neural networks offer an alternative approach both for identification and control of nonlinear processes in process engineering. The lack of software tools for the design of controllers based on neural network models is particularly pronounced in this field. SIMULINK is properly a widely used graphical code development environment which allows system-level developers to perform rapid prototyping and testing. Such graphical based programming environment involves block-based code development and offers a more intuitive approach to modeling and control task in a great variety of engineering disciplines. In this paper a SIMULINK based Neural Tool has been developed for analysis and design of multivariable neural based control systems. This tool has been applied to the control of a high purity distillation column including non linear hydrodynamic effects. The proposed control scheme offers an optimal response for both theoretical and practical challenges posed in process control task, in particular when both, the quality improvement of distillation products and the operation efficiency in economical terms are considered.Keywords: Distillation, neural networks, software tools, identification, control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27073713 Engineering Study and Equipment Design: Effects of Temperature and design variables on Yield of a Multi-Stage Distillator
Authors: A.Diaf, Z.Tigrine, H. Aburideh, D.Tassalit , F.Alaoui, B .Abbad
Abstract:
The distillation process in the general sense is a relatively simple technique from the standpoints of its principles. When dedicating distillation to water treatment and specifically producing fresh water from sea, ocean and/ briny waters it is interesting to notice that distillation has no limitations or domains of applicability regarding the nature or the type of the feedstock water. This is not the case however for other techniques that are technologically quite complex, necessitate bigger capital investments and are limited in their usability. In a previous paper we have explored some of the effects of temperature on yield. In this paper, we continue building onto that knowledge base and focus on the effects of several additional engineering and design variables on productivity.Keywords: Distillation, Desalination, Multi-Stage still, Solar Energy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17993712 Robust Steam Temperature Regulation for Distillation of Essential Oil Extraction Process using Hybrid Fuzzy-PD plus PID Controller
Authors: Nurhani Kasuan, Zakariah Yusuf, Mohd Nasir Taib, Mohd Hezri Fazalul Rahiman, Nazurah Tajuddin, Mohd Azri Abdul Aziz
Abstract:
This paper presents a hybrid fuzzy-PD plus PID (HFPP) controller and its application to steam distillation process for essential oil extraction system. Steam temperature is one of the most significant parameters that can influence the composition of essential oil yield. Due to parameter variations and changes in operation conditions during distillation, a robust steam temperature controller becomes nontrivial to avoid the degradation of essential oil quality. Initially, the PRBS input is triggered to the system and output of steam temperature is modeled using ARX model structure. The parameter estimation and tuning method is adopted by simulation using HFPP controller scheme. The effectiveness and robustness of proposed controller technique is validated by real time implementation to the system. The performance of HFPP using 25 and 49 fuzzy rules is compared. The experimental result demonstrates the proposed HFPP using 49 fuzzy rules achieves a better, consistent and robust controller compared to PID when considering the test on tracking the set point and the effects due to disturbance.Keywords: Fuzzy Logic controller, steam temperature, steam distillation, real time control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28413711 Mathematical Simulation of Bubble Column Slurry Reactor for Direct Dimethyl Ether Synthesis Process from Syngas
Authors: Zhen Chen, Haitao Zhang, Weiyong Ying, Dingye Fang
Abstract:
Based on a global kinetics of direct dimethyl ether (DME) synthesis process from syngas, a steady-state one-dimensional mathematical model for the bubble column slurry reactor (BCSR) has been established. It was built on the assumption of plug flow of gas phase, sedimentation-dispersion model of catalyst grains and isothermal chamber regardless of reaction heats and rates for the design of an industrial scale bubble column slurry reactor. The simulation results indicate that higher pressure and lower temperature were favorable to the increase of CO conversion, DME selectivity, products yield and the height of slurry bed, which has a coincidence with the characteristic of DME synthesis reaction system, and that the height of slurry bed is lessen with the increasing of operation temperature in the range of 220-260℃. CO conversion, the optimal operation conditions in BCSR were proposed.
Keywords: Alcohol/ether fuel, bubble column slurry reactor, global kinetics, mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26253710 A Numerical Simulation of Solar Distillation for Installation in Chabahar-Iran
Authors: Masoud Afrand, Amin Behzadmehr, Arash Karimipour
Abstract:
The world demand for potable water is increasing every day with growing population. Desalination using solar energy is suitable for potable water production from brackish and seawater. In this paper, we present a theoretical study of solar distillation in a single basin under the open environmental conditions of Chabahar-Iran. The still has a base area of 2000mm×500mm with a glass cover inclined at 25° in order to obtain extra solar energy. We model the still and conduct its energy balance equations under minor assumptions. We computed the temperatures of glass cover, seawater interface, moist air and bottom using numerical method. The investigation addressed the following: The still productivity, distilled water salinity and still performance in terms of the still efficiency. Calculated still productivity in July was higher than December. So in this paper, we show that still productivity is directly functioning of solar radiation.Keywords: Inclined Solar still, Solar energy, Solar desalination, Numerical Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2885