Search results for: segmental features
1562 An Experimental Study on Behavior of Transverse Connection Appropriate for Modular Girder Bridge
Authors: Dong-Hyun Kim, Jin-Woong Choi, Hyeong-Yeol Kim, Sun-Kyu Park
Abstract:
This study is to evaluate the behavior of integral and segmental specimens through static and cyclic tests. Integral specimens were made with the same size to be compared with segmental specimens that were made by connected precast members. To evaluate its bending performance and serviceability, 1 integral and 3 segmental specimens were tested under static load. And 1 integral and 2 segmental specimens were tested under cyclic load, respectively. Different load ranges were considered in the cyclic tests to evaluate the safety and serviceability. The test results showed that under static loading, segmental specimens had about 94% of the integral specimen's maximum moment, averagely. Under cyclic loading, the segmental specimens showed that had enough safety in the range of higher than service load and enough serviceability. In conclusion, the maximum crack width (0.16mm) satisfied the allowable crack width (0.30mm) in the range of service load.Keywords: Modular bridge, Transverse connection, Precast concrete, Static and cyclic test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17531561 Segmental and Subsegmental Lung Vessel Segmentation in CTA Images
Authors: H. Özkan
Abstract:
In this paper, a novel and fast algorithm for segmental and subsegmental lung vessel segmentation is introduced using Computed Tomography Angiography images. This process is quite important especially at the detection of pulmonary embolism, lung nodule, and interstitial lung disease. The applied method has been realized at five steps. At the first step, lung segmentation is achieved. At the second one, images are threshold and differences between the images are detected. At the third one, left and right lungs are gathered with the differences which are attained in the second step and Exact Lung Image (ELI) is achieved. At the fourth one, image, which is threshold for vessel, is gathered with the ELI. Lastly, identifying and segmentation of segmental and subsegmental lung vessel have been carried out thanks to image which is obtained in the fourth step. The performance of the applied method is found quite well for radiologists and it gives enough results to the surgeries medically.Keywords: Computed tomography angiography (CTA), Computer aided detection (CAD), Lung segmentation, Lung vessel segmentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21791560 A Development of English Pronunciation Using Principles of Phonetics for English Major Students at Loei Rajabhat University
Authors: Pongthep Bunrueng
Abstract:
This action research accentuates the outcome of a development in English pronunciation, using principles of phonetics for English major students at Loei Rajabhat University. The research is split into 5 separate modules: 1) Organs of Speech and How to Produce Sounds, 2) Monopthongs, 3) Diphthongs, 4) Consonant sounds, and 5) Suprasegmental Features. Each module followed a 4 step action research process, 1) Planning, 2) Acting, 3) Observing, and 4) Reflecting. The research targeted 2nd year students who were majoring in English Education at Loei Rajabhat University during the academic year of 2011. A mixed methodology employing both quantitative and qualitative research was used, which put theory into action, taking segmental features up to suprasegmental features. Multiple tools were employed which included the following documents: pre-test and post-test papers, evaluation and assessment papers, group work assessment forms, a presentation grading form, an observation of participants form and a participant self-reflection form.
All 5 modules for the target group showed that results from the post-tests were higher than those of the pre-tests, with 0.01 statistical significance. All target groups attained results ranging from low to moderate and from moderate to high performance. The participants who attained low to moderate results had to re-sit the second round. During the first development stage, participants attended classes with group participation, in which they addressed planning through mutual co-operation and sharing of responsibility. Analytic induction of strong points for this operation illustrated that learner cognition, comprehension, application, and group practices were all present whereas the participants with weak results could be attributed to biological differences, differences in life and learning, or individual differences in responsiveness and self-discipline.
Participants who were required to be re-treated in Spiral 2 received the same treatment again. Results of tests from the 5 modules after the 2nd treatment were that the participants attained higher scores than those attained in the pre-test. Their assessment and development stages also showed improved results. They showed greater confidence at participating in activities, produced higher quality work, and correctly followed instructions for each activity. Analytic induction of strong and weak points for this operation remains the same as for Spiral 1, though there were improvements to problems which existed prior to undertaking the second treatment.
Keywords: Action research, English pronunciation, phonetics, segmental features, suprasegmental features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28531559 A Novel Switched Reluctance Motor with U-type Segmental Rotor Pairs: Design, Analysis and Simulation Results
Abstract:
This paper describes the design and modeling procedure of a novel 5-phase segment type switched reluctance motor (ST-SRM) under simultaneous two-phase (bipolar) excitation of windings. The rotor cores of ST-SRM are embedded in an aluminum block as well as to improve the performance characteristics. The magnetic circuit of the produced ST-SRM is constructed so that the magnetic flux paths are short and exclusive to each phase, thereby minimizing the commutation switching and eddy current losses in the laminations. The design and simulation principles presented apply primarily to conventional SRM and ST-SRM. It is proved that the novel 5-phase switched reluctance motor under two-phase excitation is superior among the criteria used in comparison. The purposed model is particularly well suited for high torque and weight constrained applications such as automobiles, aerospace and military applications.Keywords: Segmental Rotor Pairs, Two-phase Excitation, Commutation Switching, Aluminum Block.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32651558 Relevant LMA Features for Human Motion Recognition
Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier
Abstract:
Motion recognition from videos is actually a very complex task due to the high variability of motions. This paper describes the challenges of human motion recognition, especially motion representation step with relevant features. Our descriptor vector is inspired from Laban Movement Analysis method. We propose discriminative features using the Random Forest algorithm in order to remove redundant features and make learning algorithms operate faster and more effectively. We validate our method on MSRC-12 and UTKinect datasets.Keywords: Human motion recognition, Discriminative LMA features, random forest, features reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7731557 Reducing the False Rejection Rate of Iris Recognition Using Textural and Topological Features
Authors: M. Vatsa, R. Singh, A. Noore
Abstract:
This paper presents a novel iris recognition system using 1D log polar Gabor wavelet and Euler numbers. 1D log polar Gabor wavelet is used to extract the textural features, and Euler numbers are used to extract topological features of the iris. The proposed decision strategy uses these features to authenticate an individual-s identity while maintaining a low false rejection rate. The algorithm was tested on CASIA iris image database and found to perform better than existing approaches with an overall accuracy of 99.93%.Keywords: Iris recognition, textural features, topological features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19441556 One Dimensional Object Segmentation and Statistical Features of an Image for Texture Image Recognition System
Authors: Nang Thwe Thwe Oo
Abstract:
Traditional object segmentation methods are time consuming and computationally difficult. In this paper, onedimensional object detection along the secant lines is applied. Statistical features of texture images are computed for the recognition process. Example matrices of these features and formulae for calculation of similarities between two feature patterns are expressed. And experiments are also carried out using these features.
Keywords: 1-D object segmentation, secant lines, objectoccurrence(frequency) matrix, contiguity matrix, statistical features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15011555 Optimizing Feature Selection for Recognizing Handwritten Arabic Characters
Authors: Mohammed Z. Khedher, Gheith A. Abandah, Ahmed M. Al-Khawaldeh
Abstract:
Recognition of characters greatly depends upon the features used. Several features of the handwritten Arabic characters are selected and discussed. An off-line recognition system based on the selected features was built. The system was trained and tested with realistic samples of handwritten Arabic characters. Evaluation of the importance and accuracy of the selected features is made. The recognition based on the selected features give average accuracies of 88% and 70% for the numbers and letters, respectively. Further improvements are achieved by using feature weights based on insights gained from the accuracies of individual features.Keywords: Arabic handwritten characters, Feature extraction, Off-line recognition, Optical character recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16911554 Efficient System for Speech Recognition using General Regression Neural Network
Authors: Abderrahmane Amrouche, Jean Michel Rouvaen
Abstract:
In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM.Keywords: Speech Recognition, General Regression NeuralNetwork, Hidden Markov Model, Recurrent Neural Network, ArabicDigits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21851553 Finding Sparse Features in Face Detection Using Genetic Algorithms
Authors: H. Sagha, S. Kasaei, E. Enayati, M. Dehghani
Abstract:
Although Face detection is not a recent activity in the field of image processing, it is still an open area for research. The greatest step in this field is the work reported by Viola and its recent analogous is Huang et al. Both of them use similar features and also similar training process. The former is just for detecting upright faces, but the latter can detect multi-view faces in still grayscale images using new features called 'sparse feature'. Finding these features is very time consuming and inefficient by proposed methods. Here, we propose a new approach for finding sparse features using a genetic algorithm system. This method requires less computational cost and gets more effective features in learning process for face detection that causes more accuracy.Keywords: Face Detection, Genetic Algorithms, Sparse Feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15811552 Face Recognition using Features Combination and a New Non-linear Kernel
Authors: Essam Al Daoud
Abstract:
To improve the classification rate of the face recognition, features combination and a novel non-linear kernel are proposed. The feature vector concatenates three different radius of local binary patterns and Gabor wavelet features. Gabor features are the mean, standard deviation and the skew of each scaling and orientation parameter. The aim of the new kernel is to incorporate the power of the kernel methods with the optimal balance between the features. To verify the effectiveness of the proposed method, numerous methods are tested by using four datasets, which are consisting of various emotions, orientations, configuration, expressions and lighting conditions. Empirical results show the superiority of the proposed technique when compared to other methods.Keywords: Face recognition, Gabor wavelet, LBP, Non-linearkerner
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15401551 Video Data Mining based on Information Fusion for Tamper Detection
Authors: Girija Chetty, Renuka Biswas
Abstract:
In this paper, we propose novel algorithmic models based on information fusion and feature transformation in crossmodal subspace for different types of residue features extracted from several intra-frame and inter-frame pixel sub-blocks in video sequences for detecting digital video tampering or forgery. An evaluation of proposed residue features – the noise residue features and the quantization features, their transformation in cross-modal subspace, and their multimodal fusion, for emulated copy-move tamper scenario shows a significant improvement in tamper detection accuracy as compared to single mode features without transformation in cross-modal subspace.Keywords: image tamper detection, digital forensics, correlation features image fusion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18991550 Exploiting Global Self Similarity for Head-Shoulder Detection
Authors: Lae-Jeong Park, Jung-Ho Moon
Abstract:
People detection from images has a variety of applications such as video surveillance and driver assistance system, but is still a challenging task and more difficult in crowded environments such as shopping malls in which occlusion of lower parts of human body often occurs. Lack of the full-body information requires more effective features than common features such as HOG. In this paper, new features are introduced that exploits global self-symmetry (GSS) characteristic in head-shoulder patterns. The features encode the similarity or difference of color histograms and oriented gradient histograms between two vertically symmetric blocks. The domain-specific features are rapid to compute from the integral images in Viola-Jones cascade-of-rejecters framework. The proposed features are evaluated with our own head-shoulder dataset that, in part, consists of a well-known INRIA pedestrian dataset. Experimental results show that the GSS features are effective in reduction of false alarmsmarginally and the gradient GSS features are preferred more often than the color GSS ones in the feature selection.
Keywords: Pedestrian detection, cascade of rejecters, feature extraction, self-symmetry, HOG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24001549 Improving Classification Accuracy with Discretization on Datasets Including Continuous Valued Features
Authors: Mehmet Hacibeyoglu, Ahmet Arslan, Sirzat Kahramanli
Abstract:
This study analyzes the effect of discretization on classification of datasets including continuous valued features. Six datasets from UCI which containing continuous valued features are discretized with entropy-based discretization method. The performance improvement between the dataset with original features and the dataset with discretized features is compared with k-nearest neighbors, Naive Bayes, C4.5 and CN2 data mining classification algorithms. As the result the classification accuracies of the six datasets are improved averagely by 1.71% to 12.31%.Keywords: Data mining classification algorithms, entropy-baseddiscretization method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24611548 Using Reservoir Models for Monitoring Geothermal Surface Features
Authors: John P. O’Sullivan, Thomas M. P. Ratouis, Michael J. O’Sullivan
Abstract:
As the use of geothermal energy grows internationally more effort is required to monitor and protect areas with rare and important geothermal surface features. A number of approaches are presented for developing and calibrating numerical geothermal reservoir models that are capable of accurately representing geothermal surface features. The approaches are discussed in the context of cases studies of the Rotorua geothermal system and the Orakei-korako geothermal system, both of which contain important surface features. The results show that models are able to match the available field data accurately and hence can be used as valuable tools for predicting the future response of the systems to changes in use.
Keywords: Geothermal reservoir models, surface features, monitoring, TOUGH2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20721547 Investigating Relationship between Product Features and Supply Chain Integration
Authors: Saied Rasul Hosseini Baharanchi
Abstract:
This paper addresses integration issues in supply chain, and tries to investigate how different aspects of integration are linked with some product features. Integration in this study is interpreted as "internal", "upstream" (supply), and "downstream" (demand). Two features of product innovative and quality are considered. To examine the relationships between supply chain integrations – as mentioned above, and product features, this research follows the survey method in automotive industry.The results imply that supply chain upstream integration has a higher impact on product quality, comparing to internal and supply chain downstream integrations. It is also found that the influence of supply chain downstream integration on product innovation is greater than other variables. In brief, this study mainly tackles the importance of specific level of supply chain integrations and its effects on two product features.Keywords: Supply chain upstream integration, supply chaindownstream integration, internal integration, product features
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18301546 Myanmar Character Recognition Using Eight Direction Chain Code Frequency Features
Authors: Kyi Pyar Zaw, Zin Mar Kyu
Abstract:
Character recognition is the process of converting a text image file into editable and searchable text file. Feature Extraction is the heart of any character recognition system. The character recognition rate may be low or high depending on the extracted features. In the proposed paper, 25 features for one character are used in character recognition. Basically, there are three steps of character recognition such as character segmentation, feature extraction and classification. In segmentation step, horizontal cropping method is used for line segmentation and vertical cropping method is used for character segmentation. In the Feature extraction step, features are extracted in two ways. The first way is that the 8 features are extracted from the entire input character using eight direction chain code frequency extraction. The second way is that the input character is divided into 16 blocks. For each block, although 8 feature values are obtained through eight-direction chain code frequency extraction method, we define the sum of these 8 feature values as a feature for one block. Therefore, 16 features are extracted from that 16 blocks in the second way. We use the number of holes feature to cluster the similar characters. We can recognize the almost Myanmar common characters with various font sizes by using these features. All these 25 features are used in both training part and testing part. In the classification step, the characters are classified by matching the all features of input character with already trained features of characters.
Keywords: Chain code frequency, character recognition, feature extraction, features matching, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7531545 Image Search by Features of Sorted Gray level Histogram Polynomial Curve
Authors: Awais Adnan, Muhammad Ali, Amir Hanif Dar
Abstract:
Image Searching was always a problem specially when these images are not properly managed or these are distributed over different locations. Currently different techniques are used for image search. On one end, more features of the image are captured and stored to get better results. Storing and management of such features is itself a time consuming job. While on the other extreme if fewer features are stored the accuracy rate is not satisfactory. Same image stored with different visual properties can further reduce the rate of accuracy. In this paper we present a new concept of using polynomials of sorted histogram of the image. This approach need less overhead and can cope with the difference in visual features of image.
Keywords: Sorted Histogram, Polynomial Curves, feature pointsof images, Grayscale, visual properties of image.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14281544 Effective Features for Disambiguation of Turkish Verbs
Authors: Zeynep Orhan, Zeynep Altan
Abstract:
This paper summarizes the results of some experiments for finding the effective features for disambiguation of Turkish verbs. Word sense disambiguation is a current area of investigation in which verbs have the dominant role. Generally verbs have more senses than the other types of words in the average and detecting these features for verbs may lead to some improvements for other word types. In this paper we have considered only the syntactical features that can be obtained from the corpus and tested by using some famous machine learning algorithms.
Keywords: Word sense disambiguation, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17471543 A Web-Based System for Mapping Features into ISO 14649-Compliant Machining Workingsteps
Authors: J. C. T. Benavente, J. C. E. Ferreira
Abstract:
The rapid development of manufacturing and information systems has caused significant changes in manufacturing environments in recent decades. Mass production has given way to flexible manufacturing systems, in which an important characteristic is customized or "on demand" production. In this scenario, the seamless and without gaps information flow becomes a key factor for success of enterprises. In this paper we present a framework to support the mapping of features into machining workingsteps compliant with the ISO 14649 standard (known as STEP-NC). The system determines how the features can be made with the available manufacturing resources. Examples of the mapping method are presented for features such as a pocket with a general surface.
Keywords: Features, ISO 14649 standard, STEP-NC, mapping, machining workingsteps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18951542 Image Segmentation Using the K-means Algorithm for Texture Features
Authors: Wan-Ting Lin, Chuen-Horng Lin, Tsung-Ho Wu, Yung-Kuan Chan
Abstract:
This study aims to segment objects using the K-means algorithm for texture features. Firstly, the algorithm transforms color images into gray images. This paper describes a novel technique for the extraction of texture features in an image. Then, in a group of similar features, objects and backgrounds are differentiated by using the K-means algorithm. Finally, this paper proposes a new object segmentation algorithm using the morphological technique. The experiments described include the segmentation of single and multiple objects featured in this paper. The region of an object can be accurately segmented out. The results can help to perform image retrieval and analyze features of an object, as are shown in this paper.Keywords: k-mean, multiple objects, segmentation, texturefeatures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28211541 Identification of Arousal and Relaxation by using SVM-Based Fusion of PPG Features
Authors: Chi Jung Kim, Mincheol Whang, Eui Chul Lee
Abstract:
In this paper, we propose a new method to distinguish between arousal and relaxation states by using multiple features acquired from a photoplethysmogram (PPG) and support vector machine (SVM). To induce arousal and relaxation states in subjects, 2 kinds of sound stimuli are used, and their corresponding biosignals are obtained using the PPG sensor. Two features–pulse to pulse interval (PPI) and pulse amplitude (PA)–are extracted from acquired PPG data, and a nonlinear classification between arousal and relaxation is performed using SVM. This methodology has several advantages when compared with previous similar studies. Firstly, we extracted 2 separate features from PPG, i.e., PPI and PA. Secondly, in order to improve the classification accuracy, SVM-based nonlinear classification was performed. Thirdly, to solve classification problems caused by generalized features of whole subjects, we defined each threshold according to individual features. Experimental results showed that the average classification accuracy was 74.67%. Also, the proposed method showed the better identification performance than the single feature based methods. From this result, we confirmed that arousal and relaxation can be classified using SVM and PPG features.Keywords: Support Vector Machine, PPG, Emotion Recognition, Arousal, Relaxation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24841540 Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset
Authors: Essam Al Daoud
Abstract:
Gradient boosting methods have been proven to be a very important strategy. Many successful machine learning solutions were developed using the XGBoost and its derivatives. The aim of this study is to investigate and compare the efficiency of three gradient methods. Home credit dataset is used in this work which contains 219 features and 356251 records. However, new features are generated and several techniques are used to rank and select the best features. The implementation indicates that the LightGBM is faster and more accurate than CatBoost and XGBoost using variant number of features and records.
Keywords: Gradient boosting, XGBoost, LightGBM, CatBoost, home credit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94581539 Automatic Extraction of Features and Opinion-Oriented Sentences from Customer Reviews
Authors: Khairullah Khan, Baharum B. Baharudin, Aurangzeb Khan, Fazal_e_Malik
Abstract:
Opinion extraction about products from customer reviews is becoming an interesting area of research. Customer reviews about products are nowadays available from blogs and review sites. Also tools are being developed for extraction of opinion from these reviews to help the user as well merchants to track the most suitable choice of product. Therefore efficient method and techniques are needed to extract opinions from review and blogs. As reviews of products mostly contains discussion about the features, functions and services, therefore, efficient techniques are required to extract user comments about the desired features, functions and services. In this paper we have proposed a novel idea to find features of product from user review in an efficient way. Our focus in this paper is to get the features and opinion-oriented words about products from text through auxiliary verbs (AV) {is, was, are, were, has, have, had}. From the results of our experiments we found that 82% of features and 85% of opinion-oriented sentences include AVs. Thus these AVs are good indicators of features and opinion orientation in customer reviews.Keywords: Classification, Customer Reviews, Helping Verbs, Opinion Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20961538 Deployment of Service Quality Characteristics
Authors: Shuki Dror
Abstract:
This work discusses an innovative methodology for deployment of service quality characteristics. Four groups of organizational features that may influence the quality of services are identified: human resource, technology, planning, and organizational relationships. A House of Service Quality (HOSQ) matrix is built to extract the desired improvement in the service quality characteristics and to translate them into a hierarchy of important organizational features. The Mean Square Error (MSE) criterion enables the pinpointing of the few essential service quality characteristics to be improved as well as selection of the vital organizational features. The method was implemented in an engineering supply enterprise and provides useful information on its vital service dimensions.Keywords: HOQ, organizational features, service quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18661537 Genetic Algorithm for Feature Subset Selection with Exploitation of Feature Correlations from Continuous Wavelet Transform: a real-case Application
Authors: G. Van Dijck, M. M. Van Hulle, M. Wevers
Abstract:
A genetic algorithm (GA) based feature subset selection algorithm is proposed in which the correlation structure of the features is exploited. The subset of features is validated according to the classification performance. Features derived from the continuous wavelet transform are potentially strongly correlated. GA-s that do not take the correlation structure of features into account are inefficient. The proposed algorithm forms clusters of correlated features and searches for a good candidate set of clusters. Secondly a search within the clusters is performed. Different simulations of the algorithm on a real-case data set with strong correlations between features show the increased classification performance. Comparison is performed with a standard GA without use of the correlation structure.Keywords: Classification, genetic algorithm, hierarchicalagglomerative clustering, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12241536 Native Language Identification with Cross-Corpus Evaluation Using Social Media Data: 'Reddit'
Authors: Yasmeen Bassas, Sandra Kuebler, Allen Riddell
Abstract:
Native Language Identification is one of the growing subfields in Natural Language Processing (NLP). The task of Native Language Identification (NLI) is mainly concerned with predicting the native language of an author’s writing in a second language. In this paper, we investigate the performance of two types of features; content-based features vs. content independent features when they are evaluated on a different corpus (using social media data “Reddit”). In this NLI task, the predefined models are trained on one corpus (TOEFL) and then the trained models are evaluated on a different data using an external corpus (Reddit). Three classifiers are used in this task; the baseline, linear SVM, and Logistic Regression. Results show that content-based features are more accurate and robust than content independent ones when tested within corpus and across corpus.
Keywords: NLI, NLP, content-based features, content independent features, social media corpus, ML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4141535 Image Retrieval: Techniques, Challenge, and Trend
Authors: Hui Hui Wang, Dzulkifli Mohamad, N.A Ismail
Abstract:
This paper attempts to discuss the evolution of the retrieval techniques focusing on development, challenges and trends of the image retrieval. It highlights both the already addressed and outstanding issues. The explosive growth of image data leads to the need of research and development of Image Retrieval. However, Image retrieval researches are moving from keyword, to low level features and to semantic features. Drive towards semantic features is due to the problem of the keywords which can be very subjective and time consuming while low level features cannot always describe high level concepts in the users- mind.Keywords: content based image retrieval, keyword based imageretrieval, semantic gap, semantic image retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25241534 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.
Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12391533 Improving Classification in Bayesian Networks using Structural Learning
Authors: Hong Choon Ong
Abstract:
Naïve Bayes classifiers are simple probabilistic classifiers. Classification extracts patterns by using data file with a set of labeled training examples and is currently one of the most significant areas in data mining. However, Naïve Bayes assumes the independence among the features. Structural learning among the features thus helps in the classification problem. In this study, the use of structural learning in Bayesian Network is proposed to be applied where there are relationships between the features when using the Naïve Bayes. The improvement in the classification using structural learning is shown if there exist relationship between the features or when they are not independent.Keywords: Bayesian Network, Classification, Naïve Bayes, Structural Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599