Search results for: metaheuristic algorithm
3426 Investigation on Bio-Inspired Population Based Metaheuristic Algorithms for Optimization Problems in Ad Hoc Networks
Authors: C. Rajan, K. Geetha, C. Rasi Priya, R. Sasikala
Abstract:
Nature is a great source of inspiration for solving complex problems in networks. It helps to find the optimal solution. Metaheuristic algorithm is one of the nature-inspired algorithm which helps in solving routing problem in networks. The dynamic features, changing of topology frequently and limited bandwidth make the routing, challenging in MANET. Implementation of appropriate routing algorithms leads to the efficient transmission of data in mobile ad hoc networks. The algorithms that are inspired by the principles of naturally-distributed/collective behavior of social colonies have shown excellence in dealing with complex optimization problems. Thus some of the bio-inspired metaheuristic algorithms help to increase the efficiency of routing in ad hoc networks. This survey work presents the overview of bio-inspired metaheuristic algorithms which support the efficiency of routing in mobile ad hoc networks.
Keywords: Ant colony optimization algorithm, Genetic algorithm, naturally inspired algorithms and particle swarm optimization algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36103425 Elimination of Low Order Harmonics in Multilevel Inverter Using Nature-Inspired Metaheuristic Algorithm
Authors: N. Ould Cherchali, A. Tlemçani, M. S. Boucherit, A. Morsli
Abstract:
Nature-inspired metaheuristic algorithms, particularly those founded on swarm intelligence, have attracted much attention over the past decade. Firefly algorithm has appeared in approximately seven years ago, its literature has enlarged considerably with different applications. It is inspired by the behavior of fireflies. The aim of this paper is the application of firefly algorithm for solving a nonlinear algebraic system. This resolution is needed to study the Selective Harmonic Eliminated Pulse Width Modulation strategy (SHEPWM) to eliminate the low order harmonics; results have been applied on multilevel inverters. The final results from simulations indicate the elimination of the low order harmonics as desired. Finally, experimental results are presented to confirm the simulation results and validate the efficaciousness of the proposed approach.
Keywords: Firefly algorithm, metaheuristic algorithm, multilelvel inverter, SHEPWM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7143424 Predicting the Minimum Free Energy RNA Secondary Structures using Harmony Search Algorithm
Authors: Abdulqader M. Mohsen, Ahamad Tajudin Khader, Dhanesh Ramachandram, Abdullatif Ghallab
Abstract:
The physical methods for RNA secondary structure prediction are time consuming and expensive, thus methods for computational prediction will be a proper alternative. Various algorithms have been used for RNA structure prediction including dynamic programming and metaheuristic algorithms. Musician's behaviorinspired harmony search is a recently developed metaheuristic algorithm which has been successful in a wide variety of complex optimization problems. This paper proposes a harmony search algorithm (HSRNAFold) to find RNA secondary structure with minimum free energy and similar to the native structure. HSRNAFold is compared with dynamic programming benchmark mfold and metaheuristic algorithms (RnaPredict, SetPSO and HelixPSO). The results showed that HSRNAFold is comparable to mfold and better than metaheuristics in finding the minimum free energies and the number of correct base pairs.
Keywords: Metaheuristic algorithms, dynamic programming algorithms, harmony search optimization, RNA folding, Minimum free energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23373423 Sloshing Control in Tilting Phases of the Pouring Process
Authors: Maria P. Tzamtzi, Fotis N. Koumboulis
Abstract:
We propose a control design scheme that aims to prevent undesirable liquid outpouring and suppress sloshing during the forward and backward tilting phases of the pouring process, for the case of liquid containers carried by manipulators. The proposed scheme combines a partial inverse dynamics controller with a PID controller, tuned with the use of a “metaheuristic" search algorithm. The “metaheuristic" search algorithm tunes the PID controller based on simulation results of the plant-s linearization around the operating point corresponding to the critical tilting angle, where outpouring initiates. Liquid motion is modeled using the well-known pendulumtype model. However, the proposed controller does not require measurements of the liquid-s motion within the tank.Keywords: Robotic systems, Controller design, Sloshingsuppression, Metaheuristic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19563422 Scheduling a Project to Minimize Costs of Material Requirements
Authors: Amir Abbas Najafi, Nima Zoraghi, Fatemeh Azimi
Abstract:
Traditionally, project scheduling and material planning have been treated independently. In this research, a mixed integer programming model is presented to integrate project scheduling and materials ordering problems. The goal is to minimize the total material holding and ordering costs. In addition, an efficient metaheuristic algorithm is proposed to solve the model. The proposed algorithm is computationally tested, the results are analyzed, and conclusions are given.
Keywords: Project scheduling, metaheuristic, material ordering, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17023421 A Hybrid Multi-Objective Firefly-Sine Cosine Algorithm for Multi-Objective Optimization Problem
Authors: Gaohuizi Guo, Ning Zhang
Abstract:
Firefly algorithm (FA) and Sine Cosine algorithm (SCA) are two very popular and advanced metaheuristic algorithms. However, these algorithms applied to multi-objective optimization problems have some shortcomings, respectively, such as premature convergence and limited exploration capability. Combining the privileges of FA and SCA while avoiding their deficiencies may improve the accuracy and efficiency of the algorithm. This paper proposes a hybridization of FA and SCA algorithms, named multi-objective firefly-sine cosine algorithm (MFA-SCA), to develop a more efficient meta-heuristic algorithm than FA and SCA.Keywords: Firefly algorithm, hybrid algorithm, multi-objective optimization, Sine Cosine algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5133420 Nature Inspired Metaheuristic Algorithms for Multilevel Thresholding Image Segmentation - A Survey
Authors: C. Deepika, J. Nithya
Abstract:
Segmentation is one of the essential tasks in image processing. Thresholding is one of the simplest techniques for performing image segmentation. Multilevel thresholding is a simple and effective technique. The primary objective of bi-level or multilevel thresholding for image segmentation is to determine a best thresholding value. To achieve multilevel thresholding various techniques has been proposed. A study of some nature inspired metaheuristic algorithms for multilevel thresholding for image segmentation is conducted. Here, we study about Particle swarm optimization (PSO) algorithm, artificial bee colony optimization (ABC), Ant colony optimization (ACO) algorithm and Cuckoo search (CS) algorithm.
Keywords: Ant colony optimization, Artificial bee colony optimization, Cuckoo search algorithm, Image segmentation, Multilevel thresholding, Particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35213419 Jobs Scheduling and Worker Assignment Problem to Minimize Makespan using Ant Colony Optimization Metaheuristic
Authors: Mian Tahir Aftab, Muhammad Umer, Riaz Ahmad
Abstract:
This article proposes an Ant Colony Optimization (ACO) metaheuristic to minimize total makespan for scheduling a set of jobs and assign workers for uniformly related parallel machines. An algorithm based on ACO has been developed and coded on a computer program Matlab®, to solve this problem. The paper explains various steps to apply Ant Colony approach to the problem of minimizing makespan for the worker assignment & jobs scheduling problem in a parallel machine model and is aimed at evaluating the strength of ACO as compared to other conventional approaches. One data set containing 100 problems (12 Jobs, 03 machines and 10 workers) which is available on internet, has been taken and solved through this ACO algorithm. The results of our ACO based algorithm has shown drastically improved results, especially, in terms of negligible computational effort of CPU, to reach the optimal solution. In our case, the time taken to solve all 100 problems is even lesser than the average time taken to solve one problem in the data set by other conventional approaches like GA algorithm and SPT-A/LMC heuristics.Keywords: Ant Colony Optimization (ACO), Genetic algorithms (GA), Makespan, SPT-A/LMC heuristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34723418 Mining Correlated Bicluster from Web Usage Data Using Discrete Firefly Algorithm Based Biclustering Approach
Authors: K. Thangavel, R. Rathipriya
Abstract:
For the past one decade, biclustering has become popular data mining technique not only in the field of biological data analysis but also in other applications like text mining, market data analysis with high-dimensional two-way datasets. Biclustering clusters both rows and columns of a dataset simultaneously, as opposed to traditional clustering which clusters either rows or columns of a dataset. It retrieves subgroups of objects that are similar in one subgroup of variables and different in the remaining variables. Firefly Algorithm (FA) is a recently-proposed metaheuristic inspired by the collective behavior of fireflies. This paper provides a preliminary assessment of discrete version of FA (DFA) while coping with the task of mining coherent and large volume bicluster from web usage dataset. The experiments were conducted on two web usage datasets from public dataset repository whereby the performance of FA was compared with that exhibited by other population-based metaheuristic called binary Particle Swarm Optimization (PSO). The results achieved demonstrate the usefulness of DFA while tackling the biclustering problem.
Keywords: Biclustering, Binary Particle Swarm Optimization, Discrete Firefly Algorithm, Firefly Algorithm, Usage profile Web usage mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21333417 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples
Authors: Wullapa Wongsinlatam
Abstract:
Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.Keywords: Artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10933416 Evaluation of the exIWO Algorithm Based On the Traveling Salesman Problem
Authors: Daniel Kostrzewa, Henryk Josiński
Abstract:
The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version created by the researchers from the University of Tehran. The authors of the present paper have extended the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals’ selection. The goal of the project was to evaluate the exIWO by testing its usefulness for solving some test instances of the traveling salesman problem (TSP) taken from the TSPLIB collection which allows comparing the experimental results with optimal values.
Keywords: Expanded Invasive Weed Optimization algorithm (exIWO), Traveling Salesman Problem (TSP), heuristic approach, inversion operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22513415 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms
Authors: Alper Akın, İbrahim Aydoğdu
Abstract:
This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teachinglearning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.Keywords: Optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24493414 Minimization of Non-Productive Time during 2.5D Milling
Authors: Satish Kumar, Arun Kumar Gupta, Pankaj Chandna
Abstract:
In the modern manufacturing systems, the use of thermal cutting techniques using oxyfuel, plasma and laser have become indispensable for the shape forming of high quality complex components; however, the conventional chip removal production techniques still have its widespread space in the manufacturing industry. Both these types of machining operations require the positioning of end effector tool at the edge where the cutting process commences. This repositioning of the cutting tool in every machining operation is repeated several times and is termed as non-productive time or airtime motion. Minimization of this non-productive machining time plays an important role in mass production with high speed machining. As, the tool moves from one region to the other by rapid movement and visits a meticulous region once in the whole operation, hence the non-productive time can be minimized by synchronizing the tool movements. In this work, this problem is being formulated as a general travelling salesman problem (TSP) and a genetic algorithm approach has been applied to solve the same. For improving the efficiency of the algorithm, the GA has been hybridized with a noble special heuristic and simulating annealing (SA). In the present work a novel heuristic in the combination of GA has been developed for synchronization of toolpath movements during repositioning of the tool. A comparative analysis of new Meta heuristic techniques with simple genetic algorithm has been performed. The proposed metaheuristic approach shows better performance than simple genetic algorithm for minimization of nonproductive toolpath length. Also, the results obtained with the help of hybrid simulated annealing genetic algorithm (HSAGA) are also found better than the results using simple genetic algorithm only.
Keywords: Non-productive time, Airtime, 2.5 D milling, Laser cutting, Metaheuristic, Genetic Algorithm, Simulated Annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27373413 Optimization of Distribution Network Configuration for Loss Reduction Using Artificial Bee Colony Algorithm
Authors: R. Srinivasa Rao, S.V.L. Narasimham, M. Ramalingaraju
Abstract:
Network reconfiguration in distribution system is realized by changing the status of sectionalizing switches to reduce the power loss in the system. This paper presents a new method which applies an artificial bee colony algorithm (ABC) for determining the sectionalizing switch to be operated in order to solve the distribution system loss minimization problem. The ABC algorithm is a new population based metaheuristic approach inspired by intelligent foraging behavior of honeybee swarm. The advantage of ABC algorithm is that it does not require external parameters such as cross over rate and mutation rate as in case of genetic algorithm and differential evolution and it is hard to determine these parameters in prior. The other advantage is that the global search ability in the algorithm is implemented by introducing neighborhood source production mechanism which is a similar to mutation process. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on 14, 33, and 119-bus systems and compared with different approaches available in the literature. The proposed method has outperformed the other methods in terms of the quality of solution and computational efficiency.
Keywords: Distribution system, Network reconfiguration, Loss reduction, Artificial Bee Colony Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37613412 Metaheuristic Algorithms for Decoding Binary Linear Codes
Authors: Hassan Berbia, Faissal Elbouanani, Rahal Romadi, Mostafa Belkasmi
Abstract:
This paper introduces two decoders for binary linear codes based on Metaheuristics. The first one uses a genetic algorithm and the second is based on a combination genetic algorithm with a feed forward neural network. The decoder based on the genetic algorithms (DAG) applied to BCH and convolutional codes give good performances compared to Chase-2 and Viterbi algorithm respectively and reach the performances of the OSD-3 for some Residue Quadratic (RQ) codes. This algorithm is less complex for linear block codes of large block length; furthermore their performances can be improved by tuning the decoder-s parameters, in particular the number of individuals by population and the number of generations. In the second algorithm, the search space, in contrast to DAG which was limited to the code word space, now covers the whole binary vector space. It tries to elude a great number of coding operations by using a neural network. This reduces greatly the complexity of the decoder while maintaining comparable performances.Keywords: Block code, decoding, methaheuristic, genetic algorithm, neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20793411 Design and Implementation of Optimal Winner Determination Algorithm in Combinatorial e- Auctions
Authors: S. Khanpour, A. Movaghar
Abstract:
The one of best robust search technique on large scale search area is heuristic and meta heuristic approaches. Especially in issue that the exploitation of combinatorial status in the large scale search area prevents the solution of the problem via classical calculating methods, so such problems is NP-complete. in this research, the problem of winner determination in combinatorial auctions have been formulated and by assessing older heuristic functions, we solve the problem by using of genetic algorithm and would show that this new method would result in better performance in comparison to other heuristic function such as simulated annealing greedy approach.Keywords: Bids, genetic algorithm, heuristic, metaheuristic, simulated annealing greedy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17863410 Solving the Set Covering Problem Using the Binary Cat Swarm Optimization Metaheuristic
Authors: Broderick Crawford, Ricardo Soto, Natalia Berrios, Eduardo Olguin
Abstract:
In this paper, we present a binary cat swarm optimization for solving the Set covering problem. The set covering problem is a well-known NP-hard problem with many practical applications, including those involving scheduling, production planning and location problems. Binary cat swarm optimization is a recent swarm metaheuristic technique based on the behavior of discrete cats. Domestic cats show the ability to hunt and are curious about moving objects. The cats have two modes of behavior: seeking mode and tracing mode. We illustrate this approach with 65 instances of the problem from the OR-Library. Moreover, we solve this problem with 40 new binarization techniques and we select the technical with the best results obtained. Finally, we make a comparison between results obtained in previous studies and the new binarization technique, that is, with roulette wheel as transfer function and V3 as discretization technique.Keywords: Binary cat swarm optimization, set covering problem, metaheuristic, binarization methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23283409 Metaheuristics Methods (GA and ACO) for Minimizing the Length of Freeman Chain Code from Handwritten Isolated Characters
Authors: Dewi Nasien, Habibollah Haron, Siti SophiayatiYuhaniz
Abstract:
This paper presents a comparison of metaheuristic algorithms, Genetic Algorithm (GA) and Ant Colony Optimization (ACO), in producing freeman chain code (FCC). The main problem in representing characters using FCC is the length of the FCC depends on the starting points. Isolated characters, especially the upper-case characters, usually have branches that make the traversing process difficult. The study in FCC construction using one continuous route has not been widely explored. This is our motivation to use the population-based metaheuristics. The experimental result shows that the route length using GA is better than ACO, however, ACO is better in computation time than GA.Keywords: Handwriting Recognition, Feature Extraction, Freeman Chain Code, Genetic Algorithm and Ant ColonyOptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20573408 A Hybrid Metaheuristic Framework for Evolving the PROAFTN Classifier
Authors: Feras Al-Obeidat, Nabil Belacel, Juan A. Carretero, Prabhat Mahanti,
Abstract:
In this paper, a new learning algorithm based on a hybrid metaheuristic integrating Differential Evolution (DE) and Reduced Variable Neighborhood Search (RVNS) is introduced to train the classification method PROAFTN. To apply PROAFTN, values of several parameters need to be determined prior to classification. These parameters include boundaries of intervals and relative weights for each attribute. Based on these requirements, the hybrid approach, named DEPRO-RVNS, is presented in this study. In some cases, the major problem when applying DE to some classification problems was the premature convergence of some individuals to local optima. To eliminate this shortcoming and to improve the exploration and exploitation capabilities of DE, such individuals were set to iteratively re-explored using RVNS. Based on the generated results on both training and testing data, it is shown that the performance of PROAFTN is significantly improved. Furthermore, the experimental study shows that DEPRO-RVNS outperforms well-known machine learning classifiers in a variety of problems.Keywords: Knowledge Discovery, Differential Evolution, Reduced Variable Neighborhood Search, Multiple criteria classification, PROAFTN, Supervised Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14763407 Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation
Authors: Rabia Korkmaz Tan, Şebnem Bora
Abstract:
The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies.
Keywords: Parameter tuning, agent based modeling and simulation, metaheuristic algorithms, complex systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12443406 A General Variable Neighborhood Search Algorithm to Minimize Makespan of the Distributed Permutation Flowshop Scheduling Problem
Authors: G. M. Komaki, S. Mobin, E. Teymourian, S. Sheikh
Abstract:
This paper addresses minimizing the makespan of the distributed permutation flow shop scheduling problem. In this problem, there are several parallel identical factories or flowshops each with series of similar machines. Each job should be allocated to one of the factories and all of the operations of the jobs should be performed in the allocated factory. This problem has recently gained attention and due to NP-Hard nature of the problem, metaheuristic algorithms have been proposed to tackle it. Majority of the proposed algorithms require large computational time which is the main drawback. In this study, a general variable neighborhood search algorithm (GVNS) is proposed where several time-saving schemes have been incorporated into it. Also, the GVNS uses the sophisticated method to change the shaking procedure or perturbation depending on the progress of the incumbent solution to prevent stagnation of the search. The performance of the proposed algorithm is compared to the state-of-the-art algorithms based on standard benchmark instances.Keywords: Distributed permutation flow shop, scheduling, makespan, general variable neighborhood search algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22713405 Ant Colony Optimization for Feature Subset Selection
Authors: Ahmed Al-Ani
Abstract:
The Ant Colony Optimization (ACO) is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It has recently attracted a lot of attention and has been successfully applied to a number of different optimization problems. Due to the importance of the feature selection problem and the potential of ACO, this paper presents a novel method that utilizes the ACO algorithm to implement a feature subset search procedure. Initial results obtained using the classification of speech segments are very promising.Keywords: Ant Colony Optimization, ant systems, feature selection, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31413404 A Hybridization of Constructive Beam Search with Local Search for Far From Most Strings Problem
Authors: Sayyed R Mousavi
Abstract:
The Far From Most Strings Problem (FFMSP) is to obtain a string which is far from as many as possible of a given set of strings. All the input and the output strings are of the same length, and two strings are said to be far if their hamming distance is greater than or equal to a given positive integer. FFMSP belongs to the class of sequences consensus problems which have applications in molecular biology. The problem is NP-hard; it does not admit a constant-ratio approximation either, unless P = NP. Therefore, in addition to exact and approximate algorithms, (meta)heuristic algorithms have been proposed for the problem in recent years. On the other hand, in the recent years, hybrid algorithms have been proposed and successfully used for many hard problems in a variety of domains. In this paper, a new metaheuristic algorithm, called Constructive Beam and Local Search (CBLS), is investigated for the problem, which is a hybridization of constructive beam search and local search algorithms. More specifically, the proposed algorithm consists of two phases, the first phase is to obtain several candidate solutions via the constructive beam search and the second phase is to apply local search to the candidate solutions obtained by the first phase. The best solution found is returned as the final solution to the problem. The proposed algorithm is also similar to memetic algorithms in the sense that both use local search to further improve individual solutions. The CBLS algorithm is compared with the most recent published algorithm for the problem, GRASP, with significantly positive results; the improvement is by order of magnitudes in most cases.
Keywords: Bioinformatics, Far From Most Strings Problem, Hybrid metaheuristics, Matheuristics, Sequences consensus problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17413403 Combining Ant Colony Optimization and Dynamic Programming for Solving a Dynamic Facility Layout Problem
Authors: A. Udomsakdigool, S. Bangsaranthip
Abstract:
This paper presents an algorithm which combining ant colony optimization in the dynamic programming for solving a dynamic facility layout problem. The problem is separated into 2 phases, static and dynamic phase. In static phase, ant colony optimization is used to find the best ranked of layouts for each period. Then the dynamic programming (DP) procedure is performed in the dynamic phase to evaluate the layout set during multi-period planning horizon. The proposed algorithm is tested over many problems with size ranging from 9 to 49 departments, 2 and 4 periods. The experimental results show that the proposed method is an alternative way for the plant layout designer to determine the layouts during multi-period planning horizon.Keywords: Ant colony optimization, Dynamicprogramming, Dynamic facility layout planning, Metaheuristic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19443402 Adapting the Chemical Reaction Optimization Algorithm to the Printed Circuit Board Drilling Problem
Authors: Taisir Eldos, Aws Kanan, Waleed Nazih, Ahmad Khatatbih
Abstract:
Chemical Reaction Optimization (CRO) is an optimization metaheuristic inspired by the nature of chemical reactions as a natural process of transforming the substances from unstable to stable states. Starting with some unstable molecules with excessive energy, a sequence of interactions takes the set to a state of minimum energy. Researchers reported successful application of the algorithm in solving some engineering problems, like the quadratic assignment problem, with superior performance when compared with other optimization algorithms. We adapted this optimization algorithm to the Printed Circuit Board Drilling Problem (PCBDP) towards reducing the drilling time and hence improving the PCB manufacturing throughput. Although the PCBDP can be viewed as instance of the popular Traveling Salesman Problem (TSP), it has some characteristics that would require special attention to the transactions that explore the solution landscape. Experimental test results using the standard CROToolBox are not promising for practically sized problems, while it could find optimal solutions for artificial problems and small benchmarks as a proof of concept.
Keywords: Evolutionary Algorithms, Chemical Reaction Optimization, Traveling Salesman, Board Drilling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32303401 A Flexible Flowshop Scheduling Problem with Machine Eligibility Constraint and Two Criteria Objective Function
Authors: Bita Tadayon, Nasser Salmasi
Abstract:
This research deals with a flexible flowshop scheduling problem with arrival and delivery of jobs in groups and processing them individually. Due to the special characteristics of each job, only a subset of machines in each stage is eligible to process that job. The objective function deals with minimization of sum of the completion time of groups on one hand and minimization of sum of the differences between completion time of jobs and delivery time of the group containing that job (waiting period) on the other hand. The problem can be stated as FFc / rj , Mj / irreg which has many applications in production and service industries. A mathematical model is proposed, the problem is proved to be NPcomplete, and an effective heuristic method is presented to schedule the jobs efficiently. This algorithm can then be used within the body of any metaheuristic algorithm for solving the problem.Keywords: flexible flowshop scheduling, group processing, machine eligibility constraint, mathematical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18333400 Hybrid Artificial Immune System for Job Shop Scheduling Problem
Authors: Bin Cai, Shilong Wang, Haibo Hu
Abstract:
The job shop scheduling problem (JSSP) is a notoriously difficult problem in combinatorial optimization. This paper presents a hybrid artificial immune system for the JSSP with the objective of minimizing makespan. The proposed approach combines the artificial immune system, which has a powerful global exploration capability, with the local search method, which can exploit the optimal antibody. The antibody coding scheme is based on the operation based representation. The decoding procedure limits the search space to the set of full active schedules. In each generation, a local search heuristic based on the neighborhood structure proposed by Nowicki and Smutnicki is applied to improve the solutions. The approach is tested on 43 benchmark problems taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.Keywords: Artificial immune system, Job shop scheduling problem, Local search, Metaheuristic algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19243399 A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem
Authors: C. E. Nugraheni, L. Abednego
Abstract:
This paper is concerned with minimization of mean tardiness and flow time in a real single machine production scheduling problem. Two variants of genetic algorithm as metaheuristic are combined with hyper-heuristic approach are proposed to solve this problem. These methods are used to solve instances generated with real world data from a company. Encouraging results are reported.
Keywords: Hyper-heuristics, evolutionary algorithms, production scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24123398 Feature Subset Selection Using Ant Colony Optimization
Authors: Ahmed Al-Ani
Abstract:
Feature selection is an important step in many pattern classification problems. It is applied to select a subset of features, from a much larger set, such that the selected subset is sufficient to perform the classification task. Due to its importance, the problem of feature selection has been investigated by many researchers. In this paper, a novel feature subset search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.Keywords: Ant Colony Optimization, ant systems, feature selection, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16013397 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm
Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn
Abstract:
Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731