Search results for: biometric smart pen BiSP
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 497

Search results for: biometric smart pen BiSP

377 Foundation of the Information Model for Connected-Cars

Authors: Hae-Won Seo, Yong-Gu Lee

Abstract:

Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.

Keywords: Connected-car, data modeling, route planning, navigation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
376 Enhancing Experiential Learning in a Smart Flipped Classroom: A Case Study

Authors: Fahri Benli, Sitalakshmi Venkatraman, Ye Wei, Fiona Wahr

Abstract:

A flipped classroom which is a form of blended learning shifts the focus from a teacher-centered approach to a learner-centered approach. However, not all learners are ready to take the active role of knowledge and skill acquisition through a flipped classroom and they continue to delve in a passive mode of learning. This challenges educators in designing, scaffolding and facilitating in-class activities for students to have active learning experiences in a flipped classroom environment. Experiential learning theories have been employed by educators in the past in physical classrooms based on the principle that knowledge could be actively developed through direct experience. However, with more of online teaching witnessed recently, there are inherent limitations in designing and simulating an experiential learning activity for an online environment. In this paper, we explore enhancing experiential learning using smart digital tools that could be employed in a flipped classroom within a higher education setting. We present the use of smart collaborative tools online to enhance the experiential learning activity to teach higher-order cognitive concepts of business process modeling as a case study.

Keywords: Experiential learning, flipped classroom, smart software tools, online learning higher-order learning attributes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 361
375 Interval Type-2 Fuzzy Vibration Control of an ERF Embedded Smart Structure

Authors: Chih-Jer Lin, Chun-Ying Lee, Ying Liu, Chiang-Ho Cheng

Abstract:

The main objective of this article is to present the semi-active vibration control using an electro-rheological fluid embedded sandwich structure for a cantilever beam. ER fluid is a smart material, which cause the suspended particles polarize and connect each other to form chain. The stiffness and damping coefficients of the ER fluid can be changed in 10 micro seconds; therefore, ERF is suitable to become the material embedded in the tunable vibration absorber to become a smart absorber. For the ERF smart material embedded structure, the fuzzy control law depends on the experimental expert database and the proposed self-tuning strategy. The electric field is controlled by a CRIO embedded system to implement the real application. This study investigates the different performances using the Type-1 fuzzy and interval Type-2 fuzzy controllers. The Interval type-2 fuzzy control is used to improve the modeling uncertainties for this ERF embedded shock absorber. The self-tuning vibration controllers using Type-1 and Interval Type-2 fuzzy law are implemented to the shock absorber system. Based on the resulting performance, Internal Type-2 fuzzy is better than the traditional Type-1 fuzzy control for this vibration control system.

 

Keywords: Electro-Rheological Fluid, Semi-active vibration control, shock absorber, type 2 fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
374 A Blockchain-Based Privacy-Preserving Physical Delivery System

Authors: Shahin Zanbaghi, Saeed Samet

Abstract:

The internet has transformed the way we shop. Previously, most of our purchases came in the form of shopping trips to a nearby store. Now, it is as easy as clicking a mouse. We have to be constantly vigilant about our personal information. In this work, our proposed approach is to encrypt the information printed on the physical packages, which include personal information in plain text using a symmetric encryption algorithm; then, we store that encrypted information into a Blockchain network rather than storing them in companies or corporations centralized databases. We present, implement and assess a blockchain-based system using Ethereum smart contracts. We present detailed algorithms that explain the details of our smart contract. We present the security, cost and performance analysis of the proposed method. Our work indicates that the proposed solution is economically attainable and provides data integrity, security, transparency and data traceability.

Keywords: Blockchain, Ethereum, smart contract, commit-reveal scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 377
373 FACTS Based Stabilization for Smart Grid Applications

Authors: Adel M. Sharaf, Foad H. Gandoman

Abstract:

Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PVhybrid- Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid- Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6- pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.

Keywords: AC FACTS, Smart grid, Stabilization, PV-Battery Storage, Switched Filter-Compensation (SFC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3196
372 Design and Implementation a Virtualization Platform for Providing Smart Tourism Services

Authors: Nam Don Kim, Jungho Moon, Tae Yun Chung

Abstract:

This paper proposes an Internet of Things (IoT) based virtualization platform for providing smart tourism services. The virtualization platform provides a consistent access interface to various types of data by naming IoT devices and legacy information systems as pathnames in a virtual file system. In the other words, the IoT virtualization platform functions as a middleware which uses the metadata for underlying collected data. The proposed platform makes it easy to provide customized tourism information by using tourist locations collected by IoT devices and additionally enables to create new interactive smart tourism services focused on the tourist locations. The proposed platform is very efficient so that the provided tourism services are isolated from changes in raw data and the services can be modified or expanded without changing the underlying data structure.

Keywords: Internet of Things, IoT platform, service platform, virtual file system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
371 3D-Vehicle Associated Research Fields for Smart City via Semantic Search Approach

Authors: Haluk Eren, Mucahit Karaduman

Abstract:

This paper presents 15-year trends for scientific studies in a scientific database considering 3D and vehicle words. Two words are selected to find their associated publications in IEEE scholar database. Both of keywords are entered individually for the years 2002, 2012, and 2016 on the database to identify the preferred subjects of researchers in same years. We have classified closer research fields after searching and listing. Three years (2002, 2012, and 2016) have been investigated to figure out progress in specified time intervals. The first one is assumed as the initial progress in between 2002-2012, and the second one is in 2012-2016 that is fast development duration. We have found very interesting and beneficial results to understand the scholars’ research field preferences for a decade. This information will be highly desirable in smart city-based research purposes consisting of 3D and vehicle-related issues.

Keywords: Vehicle, 3D, smart city, scholarly search, semantic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 833
370 Mobile Learning Adoption in Saudi Arabia

Authors: Mohamed E. Seliaman, M. S. Al-Turki

Abstract:

This paper investigates the use of mobile phones and tablets for learning purposes among university students in Saudi Arabia. For this purpose, an extended Technology Acceptance Model (TAM) is proposed to analyze the adoption of mobile devices and smart phones by Saudi university students for accessing course materials, searching the web for information related to their discipline, sharing knowledge, conducting assignments etc.

Keywords: Saudi Arabia, TAM, Mobile learning, e-learning, smart phones.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3639
369 The Development of Smart School Condition Assessment Based on Condition Survey Protocol (CSP) 1 Matrix: A Literature Review

Authors: N. Hamzah, M. Mahli, A. I. Che-Ani, M. M Tahir, N. A. G. Abdullah, N. M Tawil

Abstract:

Building inspection is one of the key components of building maintenance. The primary purpose of performing a building inspection is to evaluate the building-s condition. Without inspection, it is difficult to determine a built asset-s current condition, so failure to inspect can contribute to the asset-s future failure. Traditionally, a longhand survey description has been widely used for property condition reports. Surveys that employ ratings instead of descriptions are gaining wide acceptance in the industry because they cater to the need for numerical analysis output. These kinds of surveys are also in keeping with the new RICS HomeBuyer Report 2009. In this paper, we propose a new assessment method, derived from the current rating systems, for assessing the specifically smart school building-s condition and rating the seriousness of each defect identified. These two assessment criteria are then multiplied to find the building-s score, which we called the Condition Survey Protocol (CSP) 1 Matrix. Instead of a longhand description of a building-s defects, this matrix requires concise explanations about the defects identified, thus saving on-site time during a smart school building inspection. The full score is used to give the building an overall rating: Good, Fair or Dilapidated.

Keywords: Assessment matrix, building condition survey, rating system, smart school and survey protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2396
368 Controller Design for Euler-Bernoulli Smart Structures Using Robust Decentralized POF via Reduced Order Modeling

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

This paper features the proposed modeling and design of a Robust Decentralized Periodic Output Feedback (RDPOF) control technique for the active vibration control of smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Euler-Bernoulli beam theory and the Finite Element Method (FEM) technique by dividing the beam into 4 finite elements and placing the piezoelectric sensor / actuator at two finite element locations (positions 2 and 4) as collocated pairs, i.e., as surface mounted sensor / actuator, thus giving rise to a multivariable model of the smart structure plant with two inputs and two outputs. Five such multivariable models are obtained by varying the dimensions (aspect ratios) of the aluminum beam, thus giving rise to a multimodel of the smart structure system. Using model order reduction technique, the reduced order model of the higher order system is obtained based on dominant eigen value retention and the method of Davison. RDPOF controllers are designed for the above 5 multivariable-multimodel plant. The closed loop responses with the RDPOF feedback gain and the magnitudes of the control input are observed and the performance of the proposed multimodel smart structure system with the controller is evaluated for vibration control.

Keywords: Smart structure, Euler-Bernoulli beam theory, Periodic output feedback control, Finite Element Method, State space model, SISO, Embedded sensors and actuators, Vibration control, Reduced order model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
367 Experimental Study on Smart Anchor Head

Authors: Young-Jun You, Ki-Tae Park, Kyu-Wan Lee

Abstract:

Since prestressed concrete members rely on the tensile strength of the prestressing strands to resist loads, loss of even few them could result catastrophic. Therefore, it is important to measure present residual prestress force. Although there are some techniques for obtaining present prestress force, some problems still remain. One method is to install load cell in front of anchor head but this may increase cost. Load cell is a transducer using the elastic material property. Anchor head is also an elastic material and this might result in monitoring monitor present prestress force. Features of fiber optic sensor such as small size, great sensitivity, high durability can assign sensing function to anchor head. This paper presents the concept of smart anchor head which acts as load cell and experiment for the applicability of it. Test results showed the smart anchor head worked good and strong linear relationship between load and response.

Keywords: SHM, prestress force, anchor head, fiber optic sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
366 Atomic Clusters: A Unique Building Motif for Future Smart Nanomaterials

Authors: Debesh R. Roy

Abstract:

The fundamental issue in understanding the origin and growth mechanism of nanomaterials, from a fundamental unit is a big challenging problem to the scientists. Recently, an immense attention is generated to the researchers for prediction of exceptionally stable atomic cluster units as the building units for future smart materials. The present study is a systematic investigation on the stability and electronic properties of a series of bimetallic (semiconductor-alkaline earth) clusters, viz., BxMg3 (x=1-5) is performed, in search for exceptional and/ or unusual stable motifs. A very popular hybrid exchange-correlation functional, B3LYP along with a higher basis set, viz., 6-31+G[d,p] is employed for this purpose under the density functional formalism. The magic stability among the concerned clusters is explained using the jellium model. It is evident from the present study that the magic stability of B4Mg3 cluster arises due to the jellium shell closure.

Keywords: Atomic Clusters, Density Functional Theory, Jellium Model, Magic Clusters, Smart Nanomaterials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
365 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: Short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, Gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
364 Acceptance of Health Information Application in Smart National Identity Card (SNIC) Using a New I-P Framework

Authors: Ismail Bile Hassan, Masrah Azrifah Azmi Murad

Abstract:

This study discovers a novel framework of individual level technology adoption known as I-P (Individual- Privacy) towards health information application in Smart National Identity Card. Many countries introduced smart national identity card (SNIC) with various applications such as health information application embedded inside it. However, the degree to which citizens accept and use some of the embedded applications in smart national identity remains unknown to many governments and application providers as well. Moreover, the factors of trust, perceived risk, Privacy concern and perceived credibility need to be incorporated into more comprehensive models such as extended Unified Theory of Acceptance and Use of Technology known as UTAUT2. UTAUT2 is a mainly widespread and leading theory up to now. This research identifies factors affecting the citizens’ behavioural intention to use health information application embedded in SNIC and extends better understanding on the relevant factors that the government and the application providers would need to consider in predicting citizens’ new technology acceptance in the future. We propose a conceptual framework by combining the UTAUT2 and Privacy Calculus Model constructs and also adding perceived credibility as a new variable. The proposed framework may provide assistance to any government planning, decision, and policy makers involving e-government projects. Empirical study may be conducted in the future to provide proof and empirically validate this I-P framework.

Keywords: Unified Theory of Acceptance and Use of Technology (UTAUT) model, UTAUT2 model, Smart National Identity Card (SNIC), Health information application, Privacy Calculus Model (PCM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2955
363 Controller Design for Euler-Bernoulli Smart Structures Using Robust Decentralized FOS via Reduced Order Modeling

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

This paper features the modeling and design of a Robust Decentralized Fast Output Sampling (RDFOS) Feedback control technique for the active vibration control of a smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Euler-Bernoulli beam theory and the Finite Element Method (FEM) technique by dividing the beam into 4 finite elements and placing the piezoelectric sensor / actuator at two finite element locations (positions 2 and 4) as collocated pairs, i.e., as surface mounted sensor / actuator, thus giving rise to a multivariable model of the smart structure plant with two inputs and two outputs. Five such multivariable models are obtained by varying the dimensions (aspect ratios) of the aluminium beam. Using model order reduction technique, the reduced order model of the higher order system is obtained based on dominant Eigen value retention and the Davison technique. RDFOS feedback controllers are designed for the above 5 multivariable-multimodel plant. The closed loop responses with the RDFOS feedback gain and the magnitudes of the control input are obtained and the performance of the proposed multimodel smart structure system is evaluated for vibration control.

Keywords: Smart structure, Euler-Bernoulli beam theory, Fastoutput sampling feedback control, Finite Element Method, Statespace model, Vibration control, LMI, Model order Reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
362 Mathematical Modeling of SISO based Timoshenko Structures – A Case Study

Authors: T.C. Manjunath, Student Member, B. Bandyopadhyay

Abstract:

This paper features the mathematical modeling of a single input single output based Timoshenko smart beam. Further, this mathematical model is used to design a multirate output feedback based discrete sliding mode controller using Bartoszewicz law to suppress the flexural vibrations. The first 2 dominant vibratory modes is retained. Here, an application of the discrete sliding mode control in smart systems is presented. The algorithm uses a fast output sampling based sliding mode control strategy that would avoid the use of switching in the control input and hence avoids chattering. This method does not need the measurement of the system states for feedback as it makes use of only the output samples for designing the controller. Thus, this methodology is more practical and easy to implement.

Keywords: Smart structure, Timoshenko beam theory, Discretesliding mode control, Bartoszewicz law, Finite Element Method, State space model, Vibration control, Mathematical model, SISO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2351
361 Digital Twin of Real Electrical Distribution System with Real Time Recursive Load Flow Calculation and State Estimation

Authors: Anosh Arshad Sundhu, Francesco Giordano, Giacomo Della Croce, Maurizio Arnone

Abstract:

Digital Twin (DT) is a technology that generates a virtual representation of a physical system or process, enabling real-time monitoring, analysis, and simulation. DT of an Electrical Distribution System (EDS) can perform online analysis by integrating the static and real-time data in order to show the current grid status and predictions about the future status to the Distribution System Operator (DSO), producers and consumers. DT technology for EDS also offers the opportunity to DSO to test hypothetical scenarios. This paper discusses the development of a DT of an EDS by Smart Grid Controller (SGC) application, which is developed using open-source libraries and languages. The developed application can be integrated with Supervisory Control and Data Acquisition System (SCADA) of any EDS for creating the DT. The paper shows the performance of developed tools inside the application, tested on real EDS for grid observability, Smart Recursive Load Flow (SRLF) calculation and state estimation of loads in MV feeders.

Keywords: Digital Twin, Distribution System Operator, Electrical Distribution System, Smart Grid Controller, Supervisory Control and Data Acquisition System, Smart Recursive Load Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155
360 Increasing the Resilience of Cyber Physical Systems in Smart Grid Environments using Dynamic Cells

Authors: Andrea Tundis, Carlos García Cordero, Rolf Egert, Alfredo Garro, Max Mühlhäuser

Abstract:

Resilience is an important system property that relies on the ability of a system to automatically recover from a degraded state so as to continue providing its services. Resilient systems have the means of detecting faults and failures with the added capability of automatically restoring their normal operations. Mastering resilience in the domain of Cyber-Physical Systems is challenging due to the interdependence of hybrid hardware and software components, along with physical limitations, laws, regulations and standards, among others. In order to overcome these challenges, this paper presents a modeling approach, based on the concept of Dynamic Cells, tailored to the management of Smart Grids. Additionally, a heuristic algorithm that works on top of the proposed modeling approach, to find resilient configurations, has been defined and implemented. More specifically, the model supports a flexible representation of Smart Grids and the algorithm is able to manage, at different abstraction levels, the resource consumption of individual grid elements on the presence of failures and faults. Finally, the proposal is evaluated in a test scenario where the effectiveness of such approach, when dealing with complex scenarios where adequate solutions are difficult to find, is shown.

Keywords: Cyber-physical systems, energy management, optimization, smart grids, self-healing, resilience, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
359 Sensing Pressure for Authentication System Using Keystroke Dynamics

Authors: Hidetoshi Nonaka, Masahito Kurihara

Abstract:

In this paper, an authentication system using keystroke dynamics is presented. We introduced pressure sensing for the improvement of the accuracy of measurement and durability against intrusion using key-logger, and so on, however additional instrument is needed. As the result, it has been found that the pressure sensing is also effective for estimation of real moment of keystroke.

Keywords: Biometric authentication, Keystroke dynamics, Pressure sensing, Time-frequency analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
358 Developing a Smart Card Using Internet of Things: Uni-C

Authors: Shatha S. Alshehri, Enji E. Alzamzami, Roaa H. Alansari, Rahaf J. Alwafi, Kholod A. Almwallad, Aeshah A. Alsiyami

Abstract:

This paper demonstrates a system that helps solve the congestion problem at the entrance gates and limits the spread of viruses among people in crowded environments, such as COVID-19, using the IoT (Internet of Things). Uni-C system may assist in organizing the campus entry process efficiently by developing a smart card application supported by NFC (Near Field Communication) technology through which users' information could be sent to a reader to share it with the server and allow the server to perform its tasks and send a confirmation response for the request either by acceptance or rejection.

Keywords: COVID-19, IoT, NFC technology, Uni-C.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97
357 A Power-Controlled Scheduling Scheme Using a Directional Antenna in Smart Home

Authors: Yongsun Kim, Hoyong Kang

Abstract:

This paper proposes a power-controlled scheduling scheme for devices using a directional antenna in smart home. In the case of the home network using directional antenna, devices can concurrently transmit data in the same frequency band. Accordingly, the throughput increases compared to that of devices using omni-directional antenna in proportional to the number of concurrent transmissions. Also, the number of concurrent transmissions depends on the beamwidth of antenna, the number of devices operating in the network , transmission power, interference and so on. In particular, the less transmission power is used, the more concurrent transmissions occur due to small transmission range. In this paper, we considered sub-optimal scheduling scheme for throughput maximization and power consumption minimization. In the scheme, each device is equipped with a directional antenna. Various beamwidths, path loss components, and antenna radiation efficiencies are considered. Numerical results show that the proposed schemes outperform the scheduling scheme using directional antennas without power control.

Keywords: Mmwave WPANs, directional scheduling, power-controlled scheduling scheme, smart home.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
356 Electronic Government in the GCC Countries

Authors: A.M. Al-Khouri, J. Bal

Abstract:

The study investigated the practices of organisations in Gulf Cooperation Council (GCC) countries with regards to G2C egovernment maturity. It reveals that e-government G2C initiatives in the surveyed countries in particular, and arguably around the world in general, are progressing slowly because of the lack of a trusted and secure medium to authenticate the identities of online users. The authors conclude that national ID schemes will play a major role in helping governments reap the benefits of e-government if the three advanced technologies of smart card, biometrics and public key infrastructure (PKI) are utilised to provide a reliable and trusted authentication medium for e-government services.

Keywords: e-Government, G2C, national ID, online authentication, biometrics, PKI, smart card.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
355 Creating Smart and Healthy Cities by Exploring the Potentials of Emerging Technologies and Social Innovation for Urban Efficiency: Lessons from the Innovative City of Boston

Authors: Mohammed Agbali, Claudia Trillo, Yusuf Arayici, Terrence Fernando

Abstract:

The wide-spread adoption of the Smart City concept has introduced a new era of computing paradigm with opportunities for city administrators and stakeholders in various sectors to re-think the concept of urbanization and development of healthy cities. With the world population rapidly becoming urban-centric especially amongst the emerging economies, social innovation will assist greatly in deploying emerging technologies to address the development challenges in core sectors of the future cities. In this context, sustainable health-care delivery and improved quality of life of the people is considered at the heart of the healthy city agenda. This paper examines the Boston innovation landscape from the perspective of smart services and innovation ecosystem for sustainable development, especially in transportation and healthcare. It investigates the policy implementation process of the Healthy City agenda and eHealth economy innovation based on the experience of Massachusetts’s City of Boston initiatives. For this purpose, three emerging areas are emphasized, namely the eHealth concept, the innovation hubs, and the emerging technologies that drive innovation. This was carried out through empirical analysis on results of public sector and industry-wide interviews/survey about Boston’s current initiatives and the enabling environment. The paper highlights few potential research directions for service integration and social innovation for deploying emerging technologies in the healthy city agenda. The study therefore suggests the need to prioritize social innovation as an overarching strategy to build sustainable Smart Cities in order to avoid technology lock-in. Finally, it concludes that the Boston example of innovation economy is unique in view of the existing platforms for innovation and proper understanding of its dynamics, which is imperative in building smart and healthy cities where quality of life of the citizenry can be improved.

Keywords: Smart city, social innovation, eHealth, innovation hubs, emerging technologies, equitable healthcare, healthy cities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
354 Using the Keystrokes Dynamic for Systems of Personal Security

Authors: Gláucya C. Boechat, Jeneffer C. Ferreira, Edson C. B. Carvalho

Abstract:

This paper presents a boarding on biometric authentication through the Keystrokes Dynamics that it intends to identify a person from its habitual rhythm to type in conventional keyboard. Seven done experiments: verifying amount of prototypes, threshold, features and the variation of the choice of the times of the features vector. The results show that the use of the Keystroke Dynamics is simple and efficient for personal authentication, getting optimum resulted using 90% of the features with 4.44% FRR and 0% FAR.

Keywords: Biometrics techniques, Keystroke Dynamics, patternrecognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
353 Cryptanalysis of Two-Factor Authenticated Key Exchange Protocol in Public Wireless LANs

Authors: Hyunseung Lee, Donghyun Choi, Yunho Lee, Dongho Won, Seungjoo Kim

Abstract:

In Public Wireless LANs(PWLANs), user anonymity is an essential issue. Recently, Juang et al. proposed an anonymous authentication and key exchange protocol using smart cards in PWLANs. They claimed that their proposed scheme provided identity privacy, mutual authentication, and half-forward secrecy. In this paper, we point out that Juang et al.'s protocol is vulnerable to the stolen-verifier attack and does not satisfy user anonymity.

Keywords: PWLANs, user privacy, smart card, authentication, key exchange

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338
352 A Robust Implementation of a Building Resources Access Rights Management System

Authors: E. Neagoe, V. Balanica

Abstract:

A Smart Building Controller (SBC) is a server software that offers secured access to a pool of building specific resources, executes monitoring tasks and performs automatic administration of a building, thus optimizing the exploitation cost and maximizing comfort. This paper brings to discussion the issues that arise with the secure exploitation of the SBC administered resources and proposes a technical solution to implement a robust secure access system based on roles, individual rights and privileges (special rights).

Keywords: Access authorization, smart building controller, software security, access rights.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
351 Development of Affordable and Reliable Diagnostic Tools to Record Vital Parameters for Improving Health Care in Low Resources Settings

Authors: Mannan Mridha, Usama Gazay, Kosovare V. Aslani, Hugo Linder, Alice Ravizza, Carmelo de Maria

Abstract:

In most developing countries, although the vast majority of the people are living in the rural areas, the qualified medical doctors are not available there. Health care workers and paramedics, called village doctors, informal healthcare providers, are largely responsible for the rural medical care. Mishaps due to wrong diagnosis and inappropriate medication have been causing serious suffering that is preventable. While innovators have created many devices, the vast majority of these technologies do not find applications to address the needs and conditions in low-resource settings. The primary motive is to address the acute lack of affordable medical technologies for the poor people in low-resource settings. A low cost smart medical device that is portable, battery operated and can be used at any point of care has been developed to detect breathing rate, electrocardiogram (ECG) and arterial pulse rate to improve diagnosis and monitoring of patients and thus improve care and safety. This simple and easy to use smart medical device can be used, managed and maintained effectively and safely by any health worker with some training. In order to empower the health workers and village doctors, our device is being further developed to integrate with ICT tools like smart phones and connect to the medical experts wherever available, to manage the serious health problems.

Keywords: Healthcare for low resources settings, health awareness education, improve patient care and safety, smart and affordable medical device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
350 A Smart-Visio Microphone for Audio-Visual Speech Recognition “Vmike“

Authors: Y. Ni, K. Sebri

Abstract:

The practical implementation of audio-video coupled speech recognition systems is mainly limited by the hardware complexity to integrate two radically different information capturing devices with good temporal synchronisation. In this paper, we propose a solution based on a smart CMOS image sensor in order to simplify the hardware integration difficulties. By using on-chip image processing, this smart sensor can calculate in real time the X/Y projections of the captured image. This on-chip projection reduces considerably the volume of the output data. This data-volume reduction permits a transmission of the condensed visual information via the same audio channel by using a stereophonic input available on most of the standard computation devices such as PC, PDA and mobile phones. A prototype called VMIKE (Visio-Microphone) has been designed and realised by using standard 0.35um CMOS technology. A preliminary experiment gives encouraged results. Its efficiency will be further investigated in a large variety of applications such as biometrics, speech recognition in noisy environments, and vocal control for military or disabled persons, etc.

Keywords: Audio-Visual Speech recognition, CMOS Smartsensor, On-Chip image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
349 Proposing Robotics Challenge Centered on Material Transportation in Smart Manufacturing

Authors: Brehme D’napoli Reis de Mesquita, Marcus Vin´ıcius de Souza Almeida, Caio Vin´ıcius Silva do Carmo

Abstract:

Educational robotics has emerged as a pedagogical tool, utilizing technological artifacts to engage students’ curiosity and interest. It fosters active learning of STEM education competencies while also cultivating essential behavioral skills. Robotic competitions provide students with platforms to collaboratively devise diverse solutions to shared problems, fostering experience exchange, collaboration, and personal growth. Despite the prevalence of current robotic competitions, especially in Brazil, simulating real-world challenges like natural disasters, there is a notable absence of industry-related tasks. This article presents an educational robotics initiative centered around material transportation within smart manufacturing using automated guided vehicles. The proposed robotics challenge was executed in a competition held in Ac¸ailˆandia city, Maranh˜ao, Brazil, yielding satisfactory results and inspiring teams to develop time-limited solution strategies.

Keywords: Educational robotics, STEM education, robotic competitions, material transportation, smart manufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189
348 Cooperative Energy Efficient Routing for Wireless Sensor Networks in Smart Grid Communications

Authors: Ghazi AL-Sukkar, Iyad Jafar, Khalid Darabkh, Raed Al-Zubi, Mohammed Hawa

Abstract:

Smart Grids employ wireless sensor networks for their control and monitoring. Sensors are characterized by limitations in the processing power, energy supply and memory spaces, which require a particular attention on the design of routing and data management algorithms. Since most routing algorithms for sensor networks, focus on finding energy efficient paths to prolong the lifetime of sensor networks, the power of sensors on efficient paths depletes quickly, and consequently sensor networks become incapable of monitoring events from some parts of their target areas. In consequence, the design of routing protocols should consider not only energy efficiency paths, but also energy efficient algorithms in general. In this paper we propose an energy efficient routing protocol for wireless sensor networks without the support of any location information system. The reliability and the efficiency of this protocol have been demonstrated by simulation studies where we compare them to the legacy protocols. Our simulation results show that these algorithms scale well with network size and density.

Keywords: Data-centric storage, Dynamic Address Allocation, Sensor networks, Smart Grid Communications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811