Search results for: after resuscitation from cardiac arrest
95 Impact of Standardized Therapeutic Hypothermia Protocol on Neurological Performance after Resuscitation from Cardiac Arrest
Authors: Tahsien Mohamed Okasha, Warda Youssef Mohamed Morsy, Hanan Elsayed Zaghla
Abstract:
We hypothesized that post cardiac arrest patients with Glasgow Coma Scale (GCS) score of less than 8 and who will be exposed to therapeutic hypothermia protocol will exhibit improvement in their neurological performance. 17 subjects were enrolled in this study all over one year. The study was carried out using Quasi-experimental research design. Four tools were used for data collection of this study: Demographic and medical data sheet, Post cardiac arrest health assessment sheet, Bedside Shivering Assessment Scale (BSAS), and Glasgow Pittsburgh cerebral performance category scale (CPC). The mean age was X̅ ± SD = 53 ± 8.122 years, 47.1% were arrested because of cardiac etiology. 35.3% subjects were initially arrested in form of ventricular tachycardia (VT), 23.5% initially arrested in form of ventricular fibrillation (VF), and 29.4% in form of A-Systole. Favorable neurological outcome was seen among 70.6%. There was significant statistical difference in WBC, Platelets, blood gases value, random blood sugar. Also, initial arrest rhythm, etiology of cardiac arrest, and shivering status were significantly correlated with cerebral performance categories score. Therapeutic hypothermia has positive effects on neurological performance among post cardiac arrest patients with GCS score of less than 8. Replication of the study on larger probability sample, with randomized control trial design is recommended with further study for suggesting nursing protocol for patients undergoing therapeutic hypothermia is recommended.
Keywords: Therapeutic hypothermia, neurological performance, after resuscitation from cardiac arrest, initial arrest rhythm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29294 Data-driven Multiscale Tsallis Complexity: Application to EEG Analysis
Authors: Young-Seok Choi
Abstract:
This work proposes a data-driven multiscale based quantitative measures to reveal the underlying complexity of electroencephalogram (EEG), applying to a rodent model of hypoxic-ischemic brain injury and recovery. Motivated by that real EEG recording is nonlinear and non-stationary over different frequencies or scales, there is a need of more suitable approach over the conventional single scale based tools for analyzing the EEG data. Here, we present a new framework of complexity measures considering changing dynamics over multiple oscillatory scales. The proposed multiscale complexity is obtained by calculating entropies of the probability distributions of the intrinsic mode functions extracted by the empirical mode decomposition (EMD) of EEG. To quantify EEG recording of a rat model of hypoxic-ischemic brain injury following cardiac arrest, the multiscale version of Tsallis entropy is examined. To validate the proposed complexity measure, actual EEG recordings from rats (n=9) experiencing 7 min cardiac arrest followed by resuscitation were analyzed. Experimental results demonstrate that the use of the multiscale Tsallis entropy leads to better discrimination of the injury levels and improved correlations with the neurological deficit evaluation after 72 hours after cardiac arrest, thus suggesting an effective metric as a prognostic tool.
Keywords: Electroencephalogram (EEG), multiscale complexity, empirical mode decomposition, Tsallis entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206193 Correlated Neural Activity in Cortex and Thalamus Following Brain Injury
Authors: Young-Seok Choi
Abstract:
It has been known that a characteristic Burst-Suppression (BS) pattern appears in EEG during the early recovery period following Cardiac Arrest (CA). Here, to explore the relationship between cortical and subcortical neural activities underlying BS, extracellular activity in the parietal cortex and the centromedian nucleus of the thalamus and extradural EEG were recorded in a rodent CA model. During the BS, the cortical firing rate is extraordinarily high, and that bursts in EEG correlate to dense spikes in cortical neurons. Newly observed phenomena are that 1) thalamic activity reemerges earlier than cortical activity following CA, and 2) the correlation coefficient of cortical and thalamic activities rises during BS period. These results would help elucidate the underlying mechanism of brain recovery after CA injury.Keywords: Cortex, thalamus, cardiac arrest, burst-suppression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192892 Hospital Based Electrocardiogram Sensor Grid
Authors: Suken Nayak, Aditya Kambli, Bharati Ingale, Gauri Shukla
Abstract:
The technological concepts such as wireless hospital and portable cardiac telemetry system require the development of physiological signal acquisition devices to be easily integrated into the hospital database. In this paper we present the low cost, portable wireless ECG acquisition hardware that transmits ECG signals to a dedicated computer.The front end of the system obtains and processes incoming signals, which are then transmitted via a microcontroller and wireless Bluetooth module. A monitoring purpose Bluetooth based end user application integrated with patient database management module is developed for the computers. The system will act as a continuous event recorder, which can be used to follow up patients who have been resuscitatedfrom cardiac arrest, ventricular tachycardia but also for diagnostic purposes for patients with arrhythmia symptoms. In addition, cardiac information can be saved into the patient-s database of the hospital.Keywords: ECG, Bluetooth communication, monitoring application, patient database
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 213391 Involving Action Potential Morphology on a New Cellular Automata Model of Cardiac Action Potential Propagation
Authors: F. Pourhasanzade, S. H. Sabzpoushan
Abstract:
Computer modeling has played a unique role in understanding electrocardiography. Modeling and simulating cardiac action potential propagation is suitable for studying normal and pathological cardiac activation. This paper presents a 2-D Cellular Automata model for simulating action potential propagation in cardiac tissue. We demonstrate a novel algorithm in order to use minimum neighbors. This algorithm uses the summation of the excitability attributes of excited neighboring cells. We try to eliminate flat edges in the result patterns by inserting probability to the model. We also preserve the real shape of action potential by using linear curve fitting of one well known electrophysiological model.Keywords: Cellular Automata, Action Potential Propagation, cardiac tissue, Isotropic Pattern, accurate shape of cardiac actionpotential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132890 Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI
Authors: Hae-Yeoun Lee
Abstract:
Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring, which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.
Keywords: Cardiac MRI, Graph searching, Left ventricle segmentation, K-means clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 209489 Thermosensitive Hydrogel Development for Its Possible Application in Cardiac Cell Therapy
Authors: Lina Paola Orozco-Marín, Yuliet Montoya, John Bustamante
Abstract:
Ischemic events can culminate in acute myocardial infarction with irreversible cardiac lesions that cannot be restored due to the limited regenerative capacity of the heart. Tissue engineering proposes therapeutic alternatives by using biomaterials to resemble the native extracellular medium combined with healthy and functional cells. This research focused on developing a natural thermosensitive hydrogel, its physical-chemical characterization and in vitro biocompatibility determination. Hydrogels’ morphological characterization was carried out through scanning electron microscopy and its chemical characterization by employing Infrared Spectroscopy technic. In addition, the biocompatibility was determined using fetal human ventricular cardiomyocytes cell line RL-14 and the MTT cytotoxicity test according to the ISO 10993-5 standard. Four biocompatible and thermosensitive hydrogels were obtained with a three-dimensional internal structure and two gelation times. The results show the potential of the hydrogel to increase the cell survival rate to the cardiac cell therapies under investigation and lay the foundations to continue with its characterization and biological evaluation both in vitro and in vivo models.
Keywords: cardiac cell therapy, cardiac ischemia, natural polymers, thermosensitive hydrogel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75088 Obstacles as Switches between Different Cardiac Arrhythmias
Authors: Daniel Olmos-Liceaga
Abstract:
Ventricular fibrillation is a very important health problem as is the cause of most of the sudden deaths in the world. Waves of electrical activity are sent by the SA node, propagate through the cardiac tissue and activate the mechanisms of cell contraction, and therefore are responsible to pump blood to the body harmonically. A spiral wave is an abnormal auto sustainable wave that is responsible of certain types of arrhythmias. When these waves break up, give rise to the fibrillation regime, in which there is a complete loss in the coordination of the contraction of the heart muscle. Interaction of spiral waves and obstacles is also of great importance as it is believed that the attachment of a spiral wave to an obstacle can provide with a transition of two different arrhythmias. An obstacle can be partially excitable or non excitable. In this talk, we present a numerical study of the interaction of meandering spiral waves with partially and non excitable obstacles and focus on the problem where the obstacle plays a fundamental role in the switch between different spiral regimes, which represent different arrhythmic regimes. Particularly, we study the phenomenon of destabilization of spiral waves due to the presence of obstacles, a phenomenon not completely understood (This work will appear as a Chapter in a Book named Cardiac Arrhytmias by INTECH under the name "Spiral Waves, Obstacles and Cardiac Arrhythmias", ISBN 979-953-307-050-5.).Keywords: Arrhythmias, Cardiac tissue, Obstacles, Spiral waves
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164387 A Robust and Efficient Segmentation Method Applied for Cardiac Left Ventricle with Abnormal Shapes
Authors: Peifei Zhu, Zisheng Li, Yasuki Kakishita, Mayumi Suzuki, Tomoaki Chono
Abstract:
Segmentation of left ventricle (LV) from cardiac ultrasound images provides a quantitative functional analysis of the heart to diagnose disease. Active Shape Model (ASM) is widely used for LV segmentation, but it suffers from the drawback that initialization of the shape model is not sufficiently close to the target, especially when dealing with abnormal shapes in disease. In this work, a two-step framework is improved to achieve a fast and efficient LV segmentation. First, a robust and efficient detection based on Hough forest localizes cardiac feature points. Such feature points are used to predict the initial fitting of the LV shape model. Second, ASM is applied to further fit the LV shape model to the cardiac ultrasound image. With the robust initialization, ASM is able to achieve more accurate segmentation. The performance of the proposed method is evaluated on a dataset of 810 cardiac ultrasound images that are mostly abnormal shapes. This proposed method is compared with several combinations of ASM and existing initialization methods. Our experiment results demonstrate that accuracy of the proposed method for feature point detection for initialization was 40% higher than the existing methods. Moreover, the proposed method significantly reduces the number of necessary ASM fitting loops and thus speeds up the whole segmentation process. Therefore, the proposed method is able to achieve more accurate and efficient segmentation results and is applicable to unusual shapes of heart with cardiac diseases, such as left atrial enlargement.Keywords: Hough forest, active shape model, segmentation, cardiac left ventricle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150486 Amelioration of Cardiac Arrythmias Classification Performance Using Artificial Neural Network, Adaptive Neuro-Fuzzy and Fuzzy Inference Systems Classifiers
Authors: Alexandre Boum, Salomon Madinatou
Abstract:
This paper aims at bringing a scientific contribution to the cardiac arrhythmia biomedical diagnosis systems; more precisely to the study of the amelioration of cardiac arrhythmia classification performance using artificial neural network, adaptive neuro-fuzzy and fuzzy inference systems classifiers. The purpose of this amelioration is to enable cardiologists to make reliable diagnosis through automatic cardiac arrhythmia analyzes and classifications based on high confidence classifiers. In this study, six classes of the most commonly encountered arrhythmias are considered: the Right Bundle Branch Block, the Left Bundle Branch Block, the Ventricular Extrasystole, the Auricular Extrasystole, the Atrial Fibrillation and the Normal Cardiac rate beat. From the electrocardiogram (ECG) extracted parameters, we constructed a matrix (360x360) serving as an input data sample for the classifiers based on neural networks and a matrix (1x6) for the classifier based on fuzzy logic. By varying three parameters (the quality of the neural network learning, the data size and the quality of the input parameters) the automatic classification permitted us to obtain the following performances: in terms of correct classification rate, 83.6% was obtained using the fuzzy logic based classifier, 99.7% using the neural network based classifier and 99.8% for the adaptive neuro-fuzzy based classifier. These results are based on signals containing at least 360 cardiac cycles. Based on the comparative analysis of the aforementioned three arrhythmia classifiers, the classifiers based on neural networks exhibit a better performance.
Keywords: Adaptive neuro-fuzzy, artificial neural network, cardiac arrythmias, fuzzy inference systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70985 Design and Simulation of Portable Telemedicine System for High Risk Cardiac Patients
Authors: V. Thulasi Bai, Srivatsa S. K.
Abstract:
Deaths from cardiovascular diseases have decreased substantially over the past two decades, largely as a result of advances in acute care and cardiac surgery. These developments have produced a growing population of patients who have survived a myocardial infarction. These patients need to be continuously monitored so that the initiation of treatment can be given within the crucial golden hour. The available conventional methods of monitoring mostly perform offline analysis and restrict the mobility of these patients within a hospital or room. Hence the aim of this paper is to design a Portable Cardiac Telemedicine System to aid the patients to regain their independence and return to an active work schedule, there by improving the psychological well being. The portable telemedicine system consists of a Wearable ECG Transmitter (WET) and a slightly modified mobile phone, which has an inbuilt ECG analyzer. The WET is placed on the body of the patient that continuously acquires the ECG signals from the high-risk cardiac patients who can move around anywhere. This WET transmits the ECG to the patient-s Bluetooth enabled mobile phone using blue tooth technology. The ECG analyzer inbuilt in the mobile phone continuously analyzes the heartbeats derived from the received ECG signals. In case of any panic condition, the mobile phone alerts the patients care taker by an SMS and initiates the transmission of a sample ECG signal to the doctor, via the mobile network.
Keywords: WET, ECG analyzer, Bluetooth, mobilecellular network, high risk cardiac patients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210184 Human Immunodeficiency Virus Infection and Cardiac Autonomic Neuropathy
Authors: Sharan Badiger, Prema T. Akkasaligar, Deepak Kadeli
Abstract:
Human Immunodeficiency Virus is known to affect almost all organ systems in the body. In addition to central nervous system it also affects the autonomic nervous system. Autonomic nervous dysfunction has been known to severely affect the quality of life in human immunodeficiency virus positive patients. It is known to have caused fatal consequences in late stages of the disease in patients who go in for invasive diagnostic or therapeutic procedures. The aim of this review is to determine the incidence, clinical significance and frequency of cardiac autonomic neuropathy in patients human immunodeficiency virus infection.Keywords: Autonomic nervous system, autonomic nervous dysfunction, cardiac autonomic dysfunction, human immunodeficiency virus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 108183 Ellagic Acid Enhanced Apoptotic Radiosensitivity via G1 Cell Cycle Arrest and γ-H2AX Foci Formation in HeLa Cells in vitro
Authors: V. R. Ahire, A. Kumar, B. N. Pandey, K. P. Mishra, G. R. Kulkarni
Abstract:
Radiation therapy is an effective vital strategy used globally in the treatment of cervical cancer. However, radiation efficacy principally depends on the radiosensitivity of the tumor, and not all patient exhibit significant response to irradiation. A radiosensitive tumor is easier to cure than a radioresistant tumor which later advances to local recurrence and metastasis. Herbal polyphenols are gaining attention for exhibiting radiosensitization through various signaling. Current work focuses to study the radiosensitization effect of ellagic acid (EA), on HeLa cells. EA intermediated radiosensitization of HeLa cells was due to the induction γ-H2AX foci formation, G1 phase cell cycle arrest, and loss of reproductive potential, growth inhibition, drop in the mitochondrial membrane potential and protein expression studies that eventually induced apoptosis. Irradiation of HeLa in presence of EA (10 μM) to doses of 2 and 4 Gy γ-radiation produced marked tumor cytotoxicity. EA also demonstrated radio-protective effect on normal cell, NIH3T3 and aided recovery from the radiation damage. Our results advocate EA to be an effective adjuvant for improving cancer radiotherapy as it displays striking tumor cytotoxicity and reduced normal cell damage instigated by irradiation.Keywords: Apoptotic radiosensitivity, ellagic acid, mitochondrial potential, cell-cycle arrest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87682 Possible Exposure of Persons with Cardiac Pacemakers to Extremely Low Frequency (ELF) Electric and Magnetic Fields
Authors: Leena Korpinen, Rauno Pääkkönen, Fabriziomaria Gobba, Vesa Virtanen
Abstract:
The number of persons with implanted cardiac pacemakers (PM) has increased in Western countries. The aim of this paper is to investigate the possible situations where persons with a PM may be exposed to extremely low frequency (ELF) electric (EF) and magnetic fields (MF) that may disturb their PM. Based on our earlier studies, it is possible to find such high public exposure to EFs only in some places near 400 kV power lines, where an EF may disturb a PM in unipolar mode. Such EFs cannot be found near 110 kV power lines. Disturbing MFs can be found near welding machines. However, we do not have measurement data from welding. Based on literature and earlier studies at Tampere University of Technology, it is difficult to find public EF or MF exposure that is high enough to interfere with PMs.
Keywords: Cardiac Pacemaker, Electric Field, Magnetic Field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 253881 Cardiac Function and Morphological Adaptations in Endurance and Resistance Athletes: Evaluation using a new Method
Authors: K. Hosseini, MD., R. Mazaheri, MD., H.R. Khoddami Vishteh, MD., M.A. Mansournia, MD., H. Angoorani, MD
Abstract:
Background: Tissue Doppler Echocardiography (TDE) assesses diastolic function more accurately than routine pulse Doppler echo. Assessment of the effects of dynamic and static exercises on the heart by using TDE can provides new information about the athlete-s heart syndrome. Methods: This study was conducted on 20 elite wrestlers, 14 endurance runners at national level and 21 non-athletes as the control group. Participants underwent two-dimensional echocardiography, standard Doppler and TDE. Results: Wrestlers had the highest left ventricular mass index, enddiastolic inter-ventricular septum thickness and left ventricular Posterior wall thickness. Runners had the highest Left ventricular end-diastolic volume, LV ejection fraction, stroke volume and cardiac output. In TDE, the early diastolic velocity of mitral annulus to the late diastolic velocity ratio in athletic groups was greater than the controls with no significant difference. Conclusion: In spite of cardiac morphological changes in athletes, TDE shows that cardiac diastolic function won-t be adversely affected.Keywords: Tissue Doppler Echocardiography, Diastolic function, Athlete's heart syndrome, Static exercise, Dynamic exercise
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161680 Camel Thorn Has Hepatoprotective Activity against Carbon Tetrachloride or Acetaminophen Induced Hepatotoxicity, but Enhances the Cardiac Toxicity of Adriamycin in Rodents
Authors: A. G. Abdellatif, H. M.Gargoum, A. A. Debani, M. Bengleil, S. Alshalmani, N. El Zuki, O. El Fitouri
Abstract:
In this study the administration of 660 mg/kg of the ethanolic extract of the Alhagigraecorum (Camel Thorn)to mice, showed a significant decrease in the level of transaminases in animals treated with a combination of CTE plus carbon tetrachloride (CCl4) or acetaminophen as compared to animals receiving CCl4 or acetaminophen alone. Histopatological investigation also confirmed that, camel thorn extract protects liver against damage-induced either by carbon tetrachloride or acetaminophen. On the other hand the cardiac toxicity produced by adriamycine was significantly increased in the presence of the ethanolic extract of camel thorn. Our study suggested that camel thorn can protect the liver against the injury produced by carbon tetrachloride or acetaminophen, with unexpected increase in the cardiac toxicity –induced by adriamycin in rodents.
Keywords: Acetaminophen, Adriamycin, Alhagi graecorum, Carbon tetrachloride.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188479 IOT Based Process Model for Heart Monitoring Process
Authors: Dalyah Y. Al-Jamal, Maryam H. Eshtaiwi, Liyakathunisa Syed
Abstract:
Connecting health services with technology has a huge demand as people health situations are becoming worse day by day. In fact, engaging new technologies such as Internet of Things (IOT) into the medical services can enhance the patient care services. Specifically, patients suffering from chronic diseases such as cardiac patients need a special care and monitoring. In reality, some efforts were previously taken to automate and improve the patient monitoring systems. However, the previous efforts have some limitations and lack the real-time feature needed for chronic kind of diseases. In this paper, an improved process model for patient monitoring system specialized for cardiac patients is presented. A survey was distributed and interviews were conducted to gather the needed requirements to improve the cardiac patient monitoring system. Business Process Model and Notation (BPMN) language was used to model the proposed process. In fact, the proposed system uses the IOT Technology to assist doctors to remotely monitor and follow-up with their heart patients in real-time. In order to validate the effectiveness of the proposed solution, simulation analysis was performed using Bizagi Modeler tool. Analysis results show performance improvements in the heart monitoring process. For the future, authors suggest enhancing the proposed system to cover all the chronic diseases.
Keywords: Business process model and notation, cardiac patient, cardiac monitoring, heart monitoring, healthcare, internet of things, remote patient monitoring system, process model, telemedicine, wearable sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167578 Cardiac Disorder Classification Based On Extreme Learning Machine
Authors: Chul Kwak, Oh-Wook Kwon
Abstract:
In this paper, an extreme learning machine with an automatic segmentation algorithm is applied to heart disorder classification by heart sound signals. From continuous heart sound signals, the starting points of the first (S1) and the second heart pulses (S2) are extracted and corrected by utilizing an inter-pulse histogram. From the corrected pulse positions, a single period of heart sound signals is extracted and converted to a feature vector including the mel-scaled filter bank energy coefficients and the envelope coefficients of uniform-sized sub-segments. An extreme learning machine is used to classify the feature vector. In our cardiac disorder classification and detection experiments with 9 cardiac disorder categories, the proposed method shows significantly better performance than multi-layer perceptron, support vector machine, and hidden Markov model; it achieves the classification accuracy of 81.6% and the detection accuracy of 96.9%.
Keywords: Heart sound classification, extreme learning machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193477 The Estimation of Human Vital Signs Complexity
Authors: L. Bikulciene, E. Venskaityte, G. Jarusevicius
Abstract:
Nonstationary and nonlinear signals generated by living complex systems defy traditional mechanistic approaches, which are based on homeostasis. Previous our studies have shown that the evaluation of the interactions of physiological signals by using special analysis methods is suitable for observation of physiological processes. It is demonstrated the possibility of using deep physiological model, based on the interpretation of the changes of the human body’s functional states combined with an application of the analytical method based on matrix theory for the physiological signals analysis, which was applied on high risk cardiac patients. It is shown that evaluation of cardiac signals interactions show peculiar for each individual functional changes at the onset of hemodynamic restoration procedure. Therefore, we suggest that the alterations of functional state of the body, after patients overcome surgery can be complemented by the data received from the suggested approach of the evaluation of functional variables’ interactions.
Keywords: Cardiac diseases, Complex systems theory, ECG analysis, matrix analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224776 The Cardiac Diagnostic Prediction Applied to a Designed Holter
Authors: Leonardo Juan Ramírez López, Javier Oswaldo Rodriguez Velasquez
Abstract:
We have designed a Holter that measures the heart´s activity for over 24 hours, implemented a prediction methodology, and generate alarms as well as indicators to patients and treating physicians. Various diagnostic advances have been developed in clinical cardiology thanks to Holter implementation; however, their interpretation has largely been conditioned to clinical analysis and measurements adjusted to diverse population characteristics, thus turning it into a subjective examination. This, however, requires vast population studies to be validated that, in turn, have not achieved the ultimate goal: mortality prediction. Given this context, our Insight Research Group developed a mathematical methodology that assesses cardiac dynamics through entropy and probability, creating a numerical and geometrical attractor which allows quantifying the normalcy of chronic and acute disease as well as the evolution between such states, and our Tigum Research Group developed a holter device with 12 channels and advanced computer software. This has been shown in different contexts with 100% sensitivity and specificity results.
Keywords: Entropy, mathematical, prediction, cardiac, holter, attractor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71175 Association of Zinc with New Generation Cardiovascular Risk Markers in Childhood Obesity
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Zinc (Zn) is a vital element required for growth and development particularly in children. It exhibits some protective effects against cardiovascular diseases (CVDs). Zn may be a potential biomarker of cardiovascular health. High sensitive cardiac troponin T (hs-cTnT) and cardiac myosin binding protein C (cMyBP-C) are new generation markers used for prediagnosis, diagnosis and prognosis of CVDs. The aim of this study is to determine Zn as well as new generation cardiac markers’ profiles in children with normal body mass index (N-BMI), obese (OB), morbid obese (MO) children and children with metabolic syndrome (MetS) findings. The association among them will also be investigated. Four study groups were constituted. The study protocol was approved by the institutional Ethics Committee of Tekirdag Namik Kemal University. Parents of the participants filled informed consent forms to participate in the study. Group 1 is composed of 44 children with N-BMI. Group 2 and Group 3 comprised 43 OB and 45 MO children, respectively. 45 MO children with MetS findings were included in Group 4. World Health Organization age- and sex-adjusted BMI percentile tables were used to constitute groups. These values were 15-85, 95-99 and above 99 for N-BMI, OB and MO, respectively. Criteria for MetS findings were determined. Routine biochemical analyses including Zn were performed. hs-cTnT and cMyBP-C concentrations were measured by enzyme-linked immunosorbent assay. Data were analyzed by using SPSS software. p < 0.05 was accepted as significant. Four groups were matched for age and gender. Decreased Zn concentrations were measured in Groups 2, 3 and 4 compared to Group 1. Groups did not differ from one another in terms of hs-cTnT. There were statistically significant differences between cMyBP-C levels of MetS group and N-BMI as well as OB groups. There was an increasing trend going from N-BMI group to MetS group. There were statistically significant negative correlations between Zn and hs-cTnT as well as cMyBP-C concentrations in MetS group. In conclusion, inverse correlations detected between Zn and new generation cardiac markers (hs-TnT and cMyBP-C) have pointed out that decreased levels of Zn accompany increased levels of hs-cTnT as well as cMyBP-C in children with MetS. This finding emphasizes that both Zn and these new generation cardiac markers may be evaluated as biomarkers of cardiovascular health during severe childhood obesity precipitated with MetS findings and also suggested as the messengers of the future risk in the adulthood periods of children with MetS.
Keywords: Cardiac myosin binding protein-C, cardiovascular diseases, children, high sensitive cardiac troponin T, obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52574 A new Cellular Automata Model of Cardiac Action Potential Propagation based on Summation of Excited Neighbors
Authors: F. Pourhasanzade, S. H. Sabzpoushan
Abstract:
The heart tissue is an excitable media. A Cellular Automata is a type of model that can be used to model cardiac action potential propagation. One of the advantages of this approach against the methods based on differential equations is its high speed in large scale simulations. Recent cellular automata models are not able to avoid flat edges in the result patterns or have large neighborhoods. In this paper, we present a new model to eliminate flat edges by minimum number of neighbors.Keywords: Cellular Automata, Action Potential Simulation, Isotropic Pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194973 The Evaluation of a Cardiac Index Derived from Anthropometric and Biochemical Parameters in Pediatric Morbid Obesity and Metabolic Syndrome
Authors: Mustafa M. Donma
Abstract:
Metabolic syndrome (MetS) components are noteworthy among children with obesity and morbid obesity, because they point out the cases with MetS, which have the great tendency to severe health problems such as cardiovascular diseases both in childhood and adulthood. In clinical practice, considerable efforts are being observed to bring into the open the striking differences between morbid obese cases and those with MetS findings. The most privileged aspect is concerning cardiometabolic features. The aim of this study was to derive an index, which behaves different in children with and without MetS from the cardiac point of view. For the purpose, aspartate transaminase (AST), a cardiac enzyme still being used independently to predict cardiac-related problems was used. 124 children were recruited from the outpatient clinic of Department of Pediatrics in Tekirdag Namik Kemal University, Faculty of Medicine. 43 children with normal body mass index, 41 and 40 morbid obese (MO) children with MetS and without the characteristic features of MetS, respectively, were included in the study. Weight, height, waist circumference (WC), hip circumference (HC), head circumference (HdC), neck circumference (NC), systolic and diastolic blood pressure values were measured and recorded. Body mass index and anthropometric ratios were calculated. Fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein cholesterol (HDL-C) analyses were performed. The values for AST, alanine transaminase (ALT) and AST/ALT were obtained. Advanced Donma cardiac index (ADCI) values were calculated. Statistical evaluations including correlation analysis were done by a statistical package program. The statistical significance degree was accepted as p < 0.05. The index, ADCI, was developed from both anthropometric and biochemical parameters. All anthropometric measurements except weight were included in the equation. Besides all biochemical parameters concerning MetS components were also added. This index was tested in each of three groups. Its performance was compared with the performance of cardiometabolic index (CMI). It was also checked whether it was compatible with AST activity. The performance of ADCI was better than that of CMI. Instead of double increase, the increase of three times was observed in children with MetS compared to MO children. The index was correlated with AST in MO group and with AST/ALT in MetS group. In conclusion, this index was superior in discovering cardiac problems in MO and in diagnosing MetS in MetS groups. It was also arbiter to point out cardiovascular and MetS aspects among the groups.
Keywords: Aspartate transaminase, cardiac index, metabolic syndrome, obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8272 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death
Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar
Abstract:
In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.Keywords: Early stage prediction, heart rate variability, linear and non linear analysis, sudden cardiac death.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180671 Determination of Myocardial Function Using Heart Accumulated Radiopharmaceuticals
Authors: C. C. D. Kulathilake, M. Jayatilake, T. Takahashi
Abstract:
The myocardium is composed of specialized muscle which relies mainly on fatty acid and sugar metabolism and it is widely contribute to the heart functioning. The changes of the cardiac energy-producing system during heart failure have been proved using autoradiography techniques. This study focused on evaluating sugar and fatty acid metabolism in myocardium as cardiac energy getting system using heart-accumulated radiopharmaceuticals. Two sets of autoradiographs of heart cross sections of Lewis male rats were analyzed and the time- accumulation curve obtained with use of the MATLAB image processing software to evaluate fatty acid and sugar metabolic functions.Keywords: Autoradiographs, fatty acid, radiopharmaceuticals and sugar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 244370 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection
Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi
Abstract:
In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.Keywords: HTM, Real time anomaly detection, ECG, Cardiac Anomalies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79569 Improving Health Care and Patient Safety at the ICU by Using Innovative Medical Devices and ICT Tools: Examples from Bangladesh
Authors: Mannan Mridha, Mohammad S. Islam
Abstract:
Innovative medical technologies offer more effective medical care, with less risk to patient and healthcare personnel. Medical technology and devices when properly used provide better data, precise monitoring and less invasive treatments and can be more targeted and often less costly. The Intensive Care Unit (ICU) equipped with patient monitoring, respiratory and cardiac support, pain management, emergency resuscitation and life support devices is particularly prone to medical errors for various reasons. Many people in the developing countries now wonder whether their visit to hospital might harm rather than help them. This is because; clinicians in the developing countries are required to maintain an increasing workload with limited resources and absence of well-functioning safety system. A team of experts from the medical, biomedical and clinical engineering in Sweden and Bangladesh have worked together to study the incidents, adverse events at the ICU in Bangladesh. The study included both public and private hospitals to provide a better understanding for physical structure, organization and practice in operating processes of care, and the occurrence of adverse outcomes the errors, risks and accidents related to medical devices at the ICU, and to develop a ICT based support system in order to reduce hazards and errors and thus improve the quality of performance, care and cost effectiveness at the ICU. Concrete recommendations and guidelines have been made for preparing appropriate ICT related tools and methods for improving the routine for use of medical devices, reporting and analyzing of the incidents at the ICU in order to reduce the number of undetected and unsolved incidents and thus improve the patient safety.
Keywords: Accidents reporting system, patient car and safety, safe medical devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81668 Apoptosis Activity of Persea declinata (Bl.) Kosterm Bark Methanolic Crude Extract
Authors: P. Narrima, C. Y. Looi, M. A. Mohd, H. M. Ali
Abstract:
Persea declinata (Bl.) Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill), which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl.) Kosterm bark methanolic crude extract (PDM). PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 .g/mL after 48h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH) release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development.
Keywords: Antiproliferative, apoptosis, MCF-7 human breast cancer, Persea declinata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197867 Recent Trends in Nonlinear Methods of HRV Analysis: A Review
Authors: Ramesh K. Sunkaria
Abstract:
The linear methods of heart rate variability analysis such as non-parametric (e.g. fast Fourier transform analysis) and parametric methods (e.g. autoregressive modeling) has become an established non-invasive tool for marking the cardiac health, but their sensitivity and specificity were found to be lower than expected with positive predictive value <30%. This may be due to considering the RR-interval series as stationary and re-sampling them prior to their use for analysis, whereas actually it is not. This paper reviews the non-linear methods of HRV analysis such as correlation dimension, largest Lyupnov exponent, power law slope, fractal analysis, detrended fluctuation analysis, complexity measure etc. which are currently becoming popular as these uses the actual RR-interval series. These methods are expected to highly accurate cardiac health prognosis.Keywords: chaos, nonlinear dynamics, sample entropy, approximate entropy, detrended fluctuation analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 235166 Using Data Mining Techniques for Finding Cardiac Outlier Patients
Authors: Farhan Ismaeel Dakheel, Raoof Smko, K. Negrat, Abdelsalam Almarimi
Abstract:
In this paper we used data mining techniques to identify outlier patients who are using large amount of drugs over a long period of time. Any healthcare or health insurance system should deal with the quantities of drugs utilized by chronic diseases patients. In Kingdom of Bahrain, about 20% of health budget is spent on medications. For the managers of healthcare systems, there is no enough information about the ways of drug utilization by chronic diseases patients, is there any misuse or is there outliers patients. In this work, which has been done in cooperation with information department in the Bahrain Defence Force hospital; we select the data for Cardiac patients in the period starting from 1/1/2008 to December 31/12/2008 to be the data for the model in this paper. We used three techniques for finding the drug utilization for cardiac patients. First we applied a clustering technique, followed by measuring of clustering validity, and finally we applied a decision tree as classification algorithm. The clustering results is divided into three clusters according to the drug utilization, for 1603 patients, who received 15,806 prescriptions during this period can be partitioned into three groups, where 23 patients (2.59%) who received 1316 prescriptions (8.32%) are classified to be outliers. The classification algorithm shows that the use of average drug utilization and the age, and the gender of the patient can be considered to be the main predictive factors in the induced model.Keywords: Data Mining, Clustering, Classification, Drug Utilization..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898