Search results for: Thermal Deformation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1698

Search results for: Thermal Deformation

1368 Micro Particles Effect on Mechanical and Thermal Properties of Ceramic Composites - A Review

Authors: S. I. Durowaye, O. P. Gbenebor, B. O. Bolasodun, I. O. Rufai, V. O. Durowaye

Abstract:

Particles are the most common and cheapest reinforcement producing discontinuous reinforced composites with isotropic properties. Conventional fabrication methods can be used to produce a wide range of product forms, making them relatively inexpensive. Optimising composite development must include consideration of all the fundamental aspect of particles including their size, shape, volume fraction, distribution and mechanical properties. Research has shown that the challenges of low fracture toughness, poor crack growth resistance and low thermal stability can be overcome by reinforcement with particles. The unique properties exhibited by micro particles reinforced ceramic composites have made them to be highly attractive in a vast array of applications.

Keywords: Ceramic composites, Mechanical properties, Microparticles, Thermal stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
1367 The Building Thermal Performance and Carbon Sequestration Evaluation for Psophocarpus tetrogonobulus on Biofaçade Wall in the Tropical Environment

Authors: Abdul M. A. Rahman , Foong S. Yeok, Atikah F. Amir

Abstract:

Plants are commonly known for its positive correlation in reducing temperature. Since it can benefit buildings by modifying the microclimate, it-s also believed capable of reducing the internal temperature. Various experiments have been done in Universiti Sains Malaysia, Penang to investigate the comparison in thermal benefits between two rooms, one being a typical control room (exposed wall) and the other a biofacade room (plant shaded wall). The investigations were conducted during non-rainy season for approximately a month. Climbing plant Psophocarpus tetrogonobulus from legume species was selected as insulation for the biofacade wall. Conclusions were made on whether the biofacade can be used to tackle the energy efficiency, based on the parameters taken into consideration.

Keywords: biofacade, thermal benefits, carbon sequestration, Psophocarpus tetrogonobulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5105
1366 Optimum Conditions for Effective Decomposition of Toluene as VOC Gas by Pilot-Scale Regenerative Thermal Oxidizer

Authors: S. Iijima, K. Nakayama, D. Kuchar, M. Kubota, H. Matsuda

Abstract:

Regenerative Thermal Oxidizer (RTO) is one of the best solutions for removal of Volatile Organic Compounds (VOC) from industrial processes. In the RTO, VOC in a raw gas are usually decomposed at 950-1300 K and the combustion heat of VOC is recovered by regenerative heat exchangers charged with ceramic honeycombs. The optimization of the treatment of VOC leads to the reduction of fuel addition to VOC decomposition, the minimization of CO2 emission and operating cost as well. In the present work, the thermal efficiency of the RTO was investigated experimentally in a pilot-scale RTO unit using toluene as a typical representative of VOC. As a result, it was recognized that the radiative heat transfer was dominant in the preheating process of a raw gas when the gas flow rate was relatively low. Further, it was found that a minimum heat exchanger volume to achieve self combustion of toluene without additional heating of the RTO by fuel combustion was dependent on both the flow rate of a raw gas and the concentration of toluene. The thermal efficiency calculated from fuel consumption and the decomposed toluene ratio, was found to have a maximum value of 0.95 at a raw gas mass flow rate of 1810 kg·h-1 and honeycombs height of 1.5m.

Keywords: Regenerative Heat Exchange, Self Combustion, Toluene, Volatile Organic Compounds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2385
1365 Effect of Eccentricity on Conjugate Natural Convection in Vertical Eccentric Annuli

Authors: A. Jamal, M. A. I. El-Shaarawi, E. M. A. Mokheimer

Abstract:

Combined conduction-free convection heat transfer in vertical eccentric annuli is numerically investigated using a finitedifference technique. Numerical results, representing the heat transfer parameters such as annulus walls temperature, heat flux, and heat absorbed in the developing region of the annulus, are presented for a Newtonian fluid of Prandtl number 0.7, fluid-annulus radius ratio 0.5, solid-fluid thermal conductivity ratio 10, inner and outer wall dimensionless thicknesses 0.1 and 0.2, respectively, and dimensionless eccentricities 0.1, 0.3, 0.5, and 0.7. The annulus walls are subjected to thermal boundary conditions, which are obtained by heating one wall isothermally whereas keeping the other wall at inlet fluid temperature. In the present paper, the annulus heights required to achieve thermal full development for prescribed eccentricities are obtained. Furthermore, the variation in the height of thermal full development as function of the geometrical parameter, i.e., eccentricity is also investigated.

Keywords: Conjugate natural convection, eccentricity, heat transfer, vertical eccentric annuli.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189
1364 Conduction Model Compatible for Multi-Physical Domain Dynamic Investigations: Bond Graph Approach

Authors: A. Zanj, F. He

Abstract:

In the current paper, a domain independent conduction model compatible for multi-physical system dynamic investigations is suggested. By means of a port-based approach, a classical nonlinear conduction model containing physical states is first represented. A compatible discrete configuration of the thermal domain in line with the elastic domain is then generated through the enhancement of the configuration of the conventional thermal element. The presented simulation results of a sample structure indicate that the suggested conductive model can cover a wide range of dynamic behavior of the thermal domain.

Keywords: Multi-physical domain, conduction model, port-based modeling, dynamic interaction, physical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
1363 Design Optimization of Aerocapture with Aerodynamic-Environment-Adaptive Variable Geometry Flexible Aeroshell

Authors: Naohiko Honma, Kojiro Suzuki

Abstract:

This paper proposes the concept of aerocapture with aerodynamic-environment-adaptive variable geometry flexible aeroshell that vehicle deploys. The flexible membrane is composed of thin-layer film or textile as its aeroshell in order to solve some problems obstructing realization of aerocapture technique. Multi-objective optimization study is conducted to investigate solutions and derive design guidelines. As a result, solutions which can avoid aerodynamic heating and enlarge the corridor width up to 10% are obtained successfully, so that the effectiveness of this concept can be demonstrated. The deformation-use optimum solution changes its drag coefficient from 1.6 to 1.1, along with the change in dynamic pressure. Moreover, optimization results show that deformation-use solution requires the membrane for which upper temperature limit and strain limit are more than 700 K and 120%, respectively, and elasticity (Young-s modulus) is of order of 106 Pa.

Keywords: Aerocapture, flexible aeroshell, optimization, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
1362 Study of Fly Ash Geopolymer Based Composites with Polyester Waste Addition

Authors: Konstantinos Sotiriadis, Olesia Mikhailova

Abstract:

In the present work, fly ash geopolymer based composites including polyester (PES) waste were studied. Specimens of three compositions were prepared: (a) fly ash geopolymer with 5% PES waste; (b) fly ash geopolymer mortar with 5% PES waste; (c) fly ash geopolymer mortar with 6.25% PES waste. Compressive and bending strength measurements, water absorption test and determination of thermal conductivity coefficient were performed. The results showed that the addition of sand in a mixture of geopolymer with 5% PES content led to higher compressive strength, while it increased water absorption and reduced thermal conductivity coefficient. The increase of PES addition in geopolymer mortars resulted in a more dense structure, indicated by the increase of strength and thermal conductivity and the decrease of water absorption.

Keywords: Fly ash, geopolymers, polyester waste, composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449
1361 Molecular Dynamics Simulation of Thermal Properties of Au3Ni Nanowire

Authors: J. Davoodi, F. Katouzi

Abstract:

The aim of this research was to calculate the thermal properties of Au3Ni Nanowire. The molecular dynamics (MD) simulation technique was used to obtain the effect of radius size on the energy, the melting temperature and the latent heat of fusion at the isobaric-isothermal (NPT) ensemble. The Quantum Sutton-Chen (Q-SC) many body interatomic potentials energy have been used for Gold (Au) and Nickel (Ni) elements and a mixing rule has been devised to obtain the parameters of these potentials for nanowire stats. Our MD simulation results show the melting temperature and latent heat of fusion increase upon increasing diameter of nanowire. Moreover, the cohesive energy decreased with increasing diameter of nanowire.

Keywords: Au3Ni Nanowire, Thermal properties, Molecular dynamics simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
1360 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb

Abstract:

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/Poly (ethylene-co vinyl acetate) (EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nanocomposite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25oC) and (480 ± 25oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1oC) and captured double melting point at 84 (±2oC) and 108 (±2oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

Keywords: Cable and Wire, LDPE/EVA, Nano MH, Nano Particles, Thermal properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3001
1359 Thermoelastic Waves in Anisotropic Platesusing Normal Mode Expansion Method with Thermal Relaxation Time

Authors: K.L. Verma

Abstract:

Analysis for the generalized thermoelastic Lamb waves, which propagates in anisotropic thin plates in generalized thermoelasticity, is presented employing normal mode expansion method. The displacement and temperature fields are expressed by a summation of the symmetric and antisymmetric thermoelastic modes in the surface thermal stresses and thermal gradient free orthotropic plate, therefore the theory is particularly appropriate for waveform analyses of Lamb waves in thin anisotropic plates. The transient waveforms excited by the thermoelastic expansion are analyzed for an orthotropic thin plate. The obtained results show that the theory provides a quantitative analysis to characterize anisotropic thermoelastic stiffness properties of plates by wave detection. Finally numerical calculations have been presented for a NaF crystal, and the dispersion curves for the lowest modes of the symmetric and antisymmetric vibrations are represented graphically at different values of thermal relaxation time. However, the methods can be used for other materials as well

Keywords: Anisotropic, dispersion, frequency, normal, thermoelasticity, wave modes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
1358 Thermal Treatment Influence on the Quality of Rye Bread Packaged in Different Polymer Films

Authors: Tatjana Rakcejeva, Lija Dukalska, Olga Petrova, Dace Klava, Emils Kozlinskis, Martins Sabovics

Abstract:

this study was carried out to investigate the changes in quality parameters of rye bread packaged in different polymer films during convection air-flow thermal treatment process. Whole loafs of bread were placed in polymer pouches, which were sealed in reduced pressure air ambiance, bread was thermally treated in at temperature +(130; 140; and 150) ± 5 ºC within 40min, as long as the core temperature of the samples have reached accordingly +80±1 ºC. For bread packaging pouches were used: anti-fog Mylar®OL12AF and thermo resistant combined polymer material. Main quality parameters was analysed using standard methods: temperature in bread core, bread crumb and crust firmness value, starch granules volume and microflora. In the current research it was proved, that polymer films significantly influence rye bread quality parameters changes during thermal treatment. Thermo resistant combined polymer material film could be recommendable for packaged rye bread pasteurization, for maximal bread quality parameter keeping.

Keywords: bread, thermal treatment, bread crumb, bread crust, starch granule's volume.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3317
1357 Multi-Sensor Image Fusion for Visible and Infrared Thermal Images

Authors: Amit Kr. Happy

Abstract:

This paper is motivated by the importance of multi-sensor image fusion with specific focus on Infrared (IR) and Visible image (VI) fusion for various applications including military reconnaissance. Image fusion can be defined as the process of combining two or more source images into a single composite image with extended information content that improves visual perception or feature extraction. These images can be from different modalities like Visible camera & IR Thermal Imager. While visible images are captured by reflected radiations in the visible spectrum, the thermal images are formed from thermal radiation (IR) that may be reflected or self-emitted. A digital color camera captures the visible source image and a thermal IR camera acquires the thermal source image. In this paper, some image fusion algorithms based upon Multi-Scale Transform (MST) and region-based selection rule with consistency verification have been proposed and presented. This research includes implementation of the proposed image fusion algorithm in MATLAB along with a comparative analysis to decide the optimum number of levels for MST and the coefficient fusion rule. The results are presented, and several commonly used evaluation metrics are used to assess the suggested method's validity. Experiments show that the proposed approach is capable of producing good fusion results. While deploying our image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, but they also make it hard to become deployed in system and applications that require real-time operation, high flexibility and low computation ability. So, the methods presented in this paper offer good results with minimum time complexity.

Keywords: Image fusion, IR thermal imager, multi-sensor, Multi-Scale Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 353
1356 Classification of Buckling Behavior on Uniaxial Compression using A5052-O Sheets

Authors: S. Onoda, S. Yoshihara, B. J. MacDonald, Y. Okude

Abstract:

Aluminum alloy sheets have several advantages such as the lightweight, high-specific strength and recycling efficiency. Therefore, aluminum alloy sheets in sheet forming have been used in various areas as automotive components and so forth. During the process of sheet forming, wrinkling which is caused by compression stress might occur and the formability of sheets was affected by occurrence of wrinkling. A few studies of uniaxial compressive test by using square tubes, pipes and sheets were carried out to clarify the each wrinkling behavior. However, on uniaxial compressive test, deformation behavior of the sheets hasn-t be cleared. Then, it is necessary to clarify the relationship between the buckling behavior and the forming conditions. In this study, the effect of dimension of the sheet in the buckling behavior on compression test of aluminum alloy sheet was cleared by experiment and FEA. As the results, the buckling deformation was classified by three modes in terms of the distribution of equivalent plastic strain.

Keywords: Sheet forming, Compression test, Aluminum alloy sheet, Buckling behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
1355 Thermal Post-buckling of Shape Memory Alloy Composite Plates under Non-uniform Temperature Distribution

Authors: Z.A. Rasid, R. Zahari, A. Ayob, D.L. Majid, A.S.M. Rafie

Abstract:

Aerospace vehicles are subjected to non-uniform thermal loading that may cause thermal buckling. A study was conducted on the thermal post-buckling of shape memory alloy composite plates subjected to the non-uniform tent-like temperature field. The shape memory alloy wires were embedded within the laminated composite plates to add recovery stress to the plates. The non-linear finite element model that considered the recovery stress of the shape memory alloy and temperature dependent properties of the shape memory alloy and composite matrix along with its source codes were developed. It was found that the post-buckling paths of the shape memory alloy composite plates subjected to various tentlike temperature fields were stable within the studied temperature range. The addition of shape memory alloy wires to the composite plates was found to significantly improve the post-buckling behavior of laminated composite plates under non-uniform temperature distribution.

Keywords: Post-buckling, shape memory alloy, temperaturedependent property, tent-like temperature distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
1354 Development of the Measurement Apparatus for the Effective Thermal Conductivity of Core Material

Authors: Jongmin Kim, Tae-Ho Song

Abstract:

A measurement apparatus is designed and fabricated to measure the effective thermal conductivity (keff) of a VIP (vacuum insulation panel) core specimen under various vacuum states and external loads. The apparatus consists of part for measuring keff, and parts for controlling external load and vacuum condition. Uncertainty of the apparatus is validated by measuring the standard reference material and comparing with commercial devices with VIP samples. Assessed uncertainty is maximum 2.5 % in case of the standard reference material, 10 % in case of VIP samples. Using the apparatus, keff of glass paper under various vacuum levels is examined.

Keywords: Effective thermal conductivity, guarded hot plate method, vacuum insulation panel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
1353 Investigation of Gas Tungsten Arc Welding Parameters on Residual Stress of Heat Affected Zone in Inconel X750 Super Alloy Welding Using Finite Element Method

Authors: Kimia Khoshdel Vajari, Saber Saffar

Abstract:

Reducing the residual stresses caused by welding is desirable for the industry. The effect of welding sequence, as well as the effect of yield stress on the number of residual stresses generated in Inconel X750 superalloy sheets and beams, have been investigated. The finite element model used in this research is a three-dimensional thermal and mechanical model, and the type of analysis is indirect coupling. This analysis is done in two stages. First, thermal analysis is performed, and then the thermal changes of the first analysis are used as the applied load in the second analysis. ABAQUS has been used for modeling, and the Dflux subroutine has been used in the Fortran programming environment to move the arc and the molten pool. The results of this study show that the amount of tensile residual stress in symmetric, discontinuous, and symmetric-discontinuous welds is reduced to a maximum of 27%, 54%, and 37% compared to direct welding, respectively. The results also show that the amount of residual stresses created by welding increases linearly with increasing yield stress with a slope of 40%.

Keywords: Residual stress, X750 superalloy, finite element, welding, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115
1352 Characteristics Analysis of Thermal Resistance of Cryogenic Pipeline in Vacuum Environment

Authors: Wang Zijuan, Ding Wenjing, Liu Ran

Abstract:

If an unsteady heat transfer or heat impulse happens in part of the cryogenic pipeline system of large space environment simulation equipment while running in vacuum environment, it will lead to abnormal flow of the cryogenic fluid in the pipeline. When the situation gets worse, the cryogenic fluid in the pipeline will have phase change and a gas block which results in the malfunction of the cryogenic pipeline system. Referring to the structural parameter of a typical cryogenic pipeline system and the basic equation, an analytical model and a calculation model for cryogenic pipeline system can be built. The various factors which influence the thermal resistance of a cryogenic pipeline system can be analyzed and calculated by using the qualitative analysis relation deduced for thermal resistance of pipeline. The research conclusion could provide theoretical support for the design and operation of a cryogenic pipeline system

Keywords: pipeline, vacuum, vapor quality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
1351 Enhanced Thermal Properties of Rigid PVC Foams Using Fly Ash

Authors: Nidal H. Abu-Zahra, Parisa Khoshnoud, Murtatha Jamel, Subhashini Gunashekar

Abstract:

PVC foam-fly ash composites (PVC-FA) are characterized for their structural, morphological, mechanical and thermal properties. The tensile strength of the composites increased modestly with higher fly ash loading, while there was a significant increase in the elastic modulus for the same composites. On the other hand, a decrease in elongation at UTS was observed upon increasing fly ash content due to increased rigidity of the composites. Similarly, the flexural modulus increased as the fly ash loading increased, where the composites containing 25 phr fly ash showed the highest flexural strength. Thermal properties of PVC-fly ash composites were determined by Thermo Gravimetric Analysis (TGA). The microstructural properties were studied by Scanning Electron Microscopy (SEM). SEM results confirm that fly ash particles were mechanically interlocked in PVC matrix with good interfacial interaction with the matrix. Particle agglomeration and debonding was observed in samples containing higher amounts of fly ash.

Keywords: PVC Foam, Polyvinyl Chloride, Rigid PVC, Fly Ash Composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3194
1350 Economical Analysis of Thermal Energy Storage by Partially Operation

Authors: Z. Noranai, M.Z. Md Yusof

Abstract:

Building Sector is the major electricity consumer and it is costly to building owners. Therefore the application of thermal energy storage (TES) has gained attractive to reduce energy cost. Many attractive tariff packages are being offered by the electricity provider to promote TES. The tariff packages offered higher cost of electricity during peak period and lower cost of electricity during off peak period. This paper presented the return of initial investment by implementing a centralized air-conditioning plant integrated with thermal energy storage with partially operation strategies. Building load profile will be calculated hourly according to building specification and building usage trend. TES operation conditions will be designed according to building load demand profile, storage capacity, tariff packages and peak/off peak period. The Payback Period analysis method was used to evaluate economic analysis. The investment is considered a good investment where by the initial cost is recovered less than ten than seven years.

Keywords: building load profile, energy consumption, payback period, thermal energy storage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
1349 Material Properties Evolution Affecting Demisability for Space Debris Mitigation

Authors: Chetan Mahawar, Sarath Chandran, Sridhar Panigrahi, V. P. Shaji

Abstract:

The ever-growing advancement in space exploration has led to an alarming concern for space debris removal as it restricts further launch operations and adventurous space missions; hence various technologies and methods are explored for re-entry predictions and material selection processes for mitigating space debris. The selection of material and operating conditions is determined with the objective of lightweight structure and ability to demise faster subject to spacecraft survivability during its mission. The various evolving thermal material properties such as emissivity, specific heat capacity, thermal conductivity, radiation intensity, etc. affect demisability of spacecraft. Thus, this paper presents the analysis of evolving thermal material properties of spacecraft, which affect the demisability process and thus estimate demise time using the demisability model by incorporating evolving thermal properties for sensible heating followed by the complete or partial break-up of spacecraft. The demisability analysis thus concludes that the best suitable spacecraft material is based on the least estimated demise time, which fulfills the criteria of design-for-survivability and as well as of design-for-demisability.

Keywords: Demisability, emissivity, lightweight, re-entry, survivability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 268
1348 Estimation of Seismic Deformation Demands of Tall Buildings with Symmetric Setbacks

Authors: A. Alirezaei, S. Vahdani

Abstract:

This study estimates the seismic demands of tall buildings with central symmetric setbacks by using nonlinear time history analysis. Three setback structures, all 60-story high with setback in three levels, are used for evaluation. The effects of irregularities occurred by setback are evaluated by determination of global-drift, story-displacement and story drift. Story-displacement is modified by roof displacement and first story displacement and story drift is modified by global drift. All results are calculated at the center of mass and in x and y direction. Also the absolute values of these quantities are determined. The results show that increasing of vertical irregularities increases the global drift of the structure and enlarges the deformations in the height of the structure. It is also observed that the effects of geometry irregularity in the seismic deformations of setback structures are higher than those of mass irregularity.

Keywords: Deformation demand, drift, setback, tall building.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
1347 A Study on Barreling Behavior during Upsetting Process using Artificial Neural Networks with Levenberg Algorithm

Authors: H.Mohammadi Majd, M.Jalali Azizpour

Abstract:

In this paper back-propagation artificial neural network (BPANN )with Levenberg–Marquardt algorithm is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting process

Keywords: Back-propagation artificial neural network(BPANN), prediction, upsetting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
1346 Vibration of Functionally Graded Cylindrical Shells under Free-Free Boundary Conditions

Authors: A.R.Tahmasebi Birgani, M.Hosseinjani Zamenjani, M.R.Isvandzibaei

Abstract:

In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free boundary conditions.

Keywords: Vibration, FGM, Cylindrical shell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
1345 The Effect of Clamping Restrain on the Prediction of Drape Simulation Software Tool

Authors: T.A. Adegbola, IEA Aghachi, E.R. Sadiku

Abstract:

To investigates the effect of fiberglass clamping process improvement on drape simulation prediction. This has great effect on the mould and the fiber during manufacturing process. This also, improves the fiber strain, the quality of the fiber orientation in the area of folding and wrinkles formation during the press-forming process. Drape simulation software tool was used to digitalize the process, noting the formation problems on the contour sensitive part. This was compared with the real life clamping processes using single and double frame set-ups to observe the effects. Also, restrains are introduced by using clips, and the G-clamps with predetermine revolution to; restrain the fabric deformation during the forming process.The incorporation of clamping and fabric restrain deformation improved on the prediction of the simulation tool. Therefore, for effective forming process, incorporation of clamping process into the drape simulation process will assist in the development of fiberglass application in manufacturing process.

Keywords: clamping, fiberglass, drape simulation, pressforming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
1344 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation

Authors: Gyo Woo Lee, Man Young Kim

Abstract:

A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.

Keywords: Reheating Furnace, Steel Slab, Radiative Heat Transfer, WSGGM, Emissivity, Residence Time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4133
1343 Thermodynamic Performance Assessment of Steam-Injection Gas-Turbine Systems

Authors: Kyoung Hoon Kim, Giman Kim

Abstract:

The cycles of the steam-injection gas-turbine systems are studied. The analyses of the parametric effects and the optimal operating conditions for the steam-injection gas-turbine (STIG) system and the regenerative steam-injection gas-turbine (RSTIG) system are investigated to ensure the maximum performance. Using the analytic model, the performance parameters of the system such as thermal efficiency, fuel consumption and specific power, and also the optimal operating conditions are evaluated in terms of pressure ratio, steam injection ratio, ambient temperature and turbine inlet temperature (TIT). It is shown that the computational results are presented to have a notable enhancement of thermal efficiency and specific power.

Keywords: gas turbine, RSTIG, steam injection, STIG, thermal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502
1342 Installation Stability of Low Temperature Steel Mesh in LNG Storage

Authors: Rui Yu, Huiqing Ying

Abstract:

To enhance installation security, a LNG storage in Rudong of Jiangsu province was adopted as a practical work, and it was analyzed by nonlinear finite element method to research overall and local stability performance, as well as the stress and deformation under the action of wind load and self-weight. Results indicate that deformation is tiny when steel mesh maintains as an overall ring, and stress caused by vertical bending moment and tension of bottom tie wire are also in the safe range. However, axial forces of lap reinforcement in adjacent steel mesh exceed the ultimate bearing capacity of tie wire. Hence, tie wires are ruptured; single mesh loses lateral connection and turns into monolithic status as the destruction of overall structure. Further more, monolithic steel mesh is led to collapse by the damage of bottom connection. So, in order to prevent connection failure and enhance installation security, the overlapping parts of steel mesh should be taken more reliable measures.

Keywords: low temperature steel mesh, installation stability, nonlinear finite element, tie wire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
1341 Instability Analysis of Laminated Composite Beams Subjected to Parametric Axial Load

Authors: Alireza Fereidooni, Kamran Behdinan, Zouheir Fawaz

Abstract:

The integral form of equations of motion of composite beams subjected to varying time loads are discretized using a developed finite element model. The model consists of a straight five node twenty-two degrees of freedom beam element. The stability analysis of the beams is studied by solving the matrix form characteristic equations of the system. The principle of virtual work and the first order shear deformation theory are employed to analyze the beams with large deformation and small strains. The regions of dynamic instability of the beam are determined by solving the obtained Mathieu form of differential equations. The effects of nonconservative loads, shear stiffness, and damping parameters on stability and response of the beams are examined. Several numerical calculations are presented to compare the results with data reported by other researchers.

Keywords: Finite element beam model, Composite Beams, stability analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
1340 The Temperature Range in the Simulation of Residual Stress and Hot Tearing During Investment Casting

Authors: Saeid Norouzi, Ali Shams, Hassan Farhangi, Alireza Darvish

Abstract:

Hot tear cracking and residual stress are two different consequences of thermal stress both of which can be considered as casting problem. The purpose of the present study is simulation of the effect of casting shape characteristic on hot tearing and residual stress. This study shows that the temperature range for simulation of hot tearing and residual stress are different. In this study, in order to study the development of thermal stress and to predict the hot tearing and residual stress of shaped casting, MAGMASOFT simulation program was used. The strategy of this research was the prediction of hot tear location using pinpointing hot spot and thermal stress concentration zones. The results shows that existing of stress concentration zone increases the hot tearing probability and consequently reduces the amount of remaining residual stress in casting parts.

Keywords: Hot tearing, residual stress, simulation, investment casting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2679
1339 Modes of Collapse of Compress–Expand Member under Axial Loading

Authors: Shigeyuki Haruyama, Aidil Khaidir Bin Muhamad, Ken Kaminishi, Dai-Heng Chen

Abstract:

In this paper, a study on the modes of collapse of compress- expand members are presented. Compress- expand member is a compact, multiple-combined cylinders, to be proposed as energy absorbers. Previous studies on the compress- expand member have clarified its energy absorption efficiency, proposed an approximate equation to describe its deformation characteristics and also highlighted the improvement that it has brought. However, for the member to be practical, the actual range of geometrical dimension that it can maintain its applicability must be investigated. In this study, using a virtualized materials that comply the bilinear hardening law, Finite element Method (FEM) analysis on the collapse modes of compress- expand member have been conducted. Deformation maps that plotted the member's collapse modes with regards to the member's geometric and material parameters were then presented in order to determine the dimensional range of each collapse modes.

Keywords: Axial collapse, compress-expand member, tubular member, finite element method, modes of collapse, thin-walled cylindrical tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976