Search results for: Color image
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1812

Search results for: Color image

1812 Developing the Color Temperature Histogram Method for Improving the Content-Based Image Retrieval

Authors: P. Phokharatkul, S. Chaisriya, S. Somkuarnpanit, S. Phaiboon, C. Kimpan

Abstract:

This paper proposes a new method for image searches and image indexing in databases with a color temperature histogram. The color temperature histogram can be used for performance improvement of content–based image retrieval by using a combination of color temperature and histogram. The color temperature histogram can be represented by a range of 46 colors. That is more than the color histogram and the dominant color temperature. Moreover, with our method the colors that have the same color temperature can be separated while the dominant color temperature can not. The results showed that the color temperature histogram retrieved an accurate image more often than the dominant color temperature method or color histogram method. This also took less time so the color temperature can be used for indexing and searching for images.

Keywords: Color temperature histogram, color temperature, animage retrieval and content-based image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2453
1811 Improved Posterized Color Images based on Color Quantization and Contrast Enhancement

Authors: Oh-Yeol Kwon, Sung-Il Chien

Abstract:

A conventional image posterization method occasionally fails to preserve the shape and color of objects due to the uneffective color reduction. This paper proposes a new image posterizartion method by using modified color quantization for preserving the shape and color of objects and color contrast enhancement for improving lightness contrast and saturation. Experiment results show that our proposed method can provide visually more satisfactory posterization result than that of the conventional method.

Keywords: Color contrast enhancement, color quantization, color segmentation, image posterization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675
1810 Effectiveness of Dominant Color Descriptor Technique in Medical Image Retrieval Application

Authors: Mohd Kamir Yusof

Abstract:

This paper presents a dominant color descriptor technique for medical image retrieval. The medical image system will collect and store into medical database. The purpose of dominant color descriptor (DCD) technique is to retrieve medical image and to display similar image using queried image. First, this technique will search and retrieve medical image based on keyword entered by user. After image is found, the system will assign this image as a queried image. DCD technique will calculate the image value of dominant color. Then, system will search and retrieve again medical image based on value of dominant color query image. Finally, the system will display similar images with the queried image to user. Simple application has been developed and tested using dominant color descriptor. Result based on experiment indicates this technique is effective and can be used for medical image retrieval.

Keywords: Medical Image Retrieval, Dominant ColorDescriptor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
1809 A Way of Converting Color Images to Gray Scale Ones for the Color Blinds -Reducing the Colors for Tokyo Subway Map-

Authors: Katsuhiro Narikiyo, Naoto Kobayakawa

Abstract:

We proposes a way of removing noises and reducing the number of colors contained in a JPEG image. Main purpose of this project is to convert color images to monochrome images for the color blinds. We treat the crispy color images like the Tokyo subway map. Each color in the image has an important information. But for the color blinds, similar colors cannot be distinguished. If we can convert those colors to different gray values, they can distinguish them.

Keywords: Image processing, Color blind, JPEG

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
1808 A Way of Converting Color Images to Gray Scale Ones for the Color-Blind -Applying to the Part of the Tokyo Subway Map-

Authors: Katsuhiro Narikiyo, Shota Hashikawa

Abstract:

This paper proposes a way of removing noises and reducing the number of colors contained in a JPEG image. Main purpose of this project is to convert color images to monochrome images for the color-blind. We treat the crispy color images like the Tokyo subway map. Each color in the image has an important information. But for the color blinds, similar colors cannot be distinguished. If we can convert those colors to different gray values, they can distinguish them. Therefore we try to convert color images to monochrome images.

Keywords: Color-blind, JPEG, Monochrome image, Denoise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
1807 Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries

Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed

Abstract:

This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast.

Keywords: Image segmentation, hierarchical analysis, 2-D histogram, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
1806 Enhancing capabilities of Texture Extraction for Color Image Retrieval

Authors: Pranam Janney, Sridhar G, Sridhar V.

Abstract:

Content-Based Image Retrieval has been a major area of research in recent years. Efficient image retrieval with high precision would require an approach which combines usage of both the color and texture features of the image. In this paper we propose a method for enhancing the capabilities of texture based feature extraction and further demonstrate the use of these enhanced texture features in Texture-Based Color Image Retrieval.

Keywords: Image retrieval, texture feature extraction, color extraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
1805 Creating the Color Panoramic View using Medley of Grayscale and Color Partial Images

Authors: Dr. H. B. Kekre, Sudeep D. Thepade

Abstract:

Panoramic view generation has always offered novel and distinct challenges in the field of image processing. Panoramic view generation is nothing but construction of bigger view mosaic image from set of partial images of the desired view. The paper presents a solution to one of the problems of image seascape formation where some of the partial images are color and others are grayscale. The simplest solution could be to convert all image parts into grayscale images and fusing them to get grayscale image panorama. But in the multihued world, obtaining the colored seascape will always be preferred. This could be achieved by picking colors from the color parts and squirting them in grayscale parts of the seascape. So firstly the grayscale image parts should be colored with help of color image parts and then these parts should be fused to construct the seascape image. The problem of coloring grayscale images has no exact solution. In the proposed technique of panoramic view generation, the job of transferring color traits from reference color image to grayscale image is done by palette based method. In this technique, the color palette is prepared using pixel windows of some degrees taken from color image parts. Then the grayscale image part is divided into pixel windows with same degrees. For every window of grayscale image part the palette is searched and equivalent color values are found, which could be used to color grayscale window. For palette preparation we have used RGB color space and Kekre-s LUV color space. Kekre-s LUV color space gives better quality of coloring. The searching time through color palette is improved over the exhaustive search using Kekre-s fast search technique. After coloring the grayscale image pieces the next job is fusion of all these pieces to obtain panoramic view. For similarity estimation between partial images correlation coefficient is used.

Keywords: Panoramic View, Similarity Estimate, Color Transfer, Color Palette, Kekre's Fast Search, Kekre's LUV

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
1804 A Novel Approach to Image Compression of Colour Images by Plane Reduction Technique

Authors: K.Sowmyan, A.Siddarth, D.Menaka

Abstract:

Several methods have been proposed for color image compression but the reconstructed image had very low signal to noise ratio which made it inefficient. This paper describes a lossy compression technique for color images which overcomes the drawbacks. The technique works on spatial domain where the pixel values of RGB planes of the input color image is mapped onto two dimensional planes. The proposed technique produced better results than JPEG2000, 2DPCA and a comparative study is reported based on the image quality measures such as PSNR and MSE.Experiments on real time images are shown that compare this methodology with previous ones and demonstrate its advantages.

Keywords: Color Image compression, spatial domain, planereduction, root mean square, image restoration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
1803 Color Image Edge Detection using Pseudo-Complement and Matrix Operations

Authors: T. N. Janakiraman, P. V. S. S. R. Chandra Mouli

Abstract:

A color image edge detection algorithm is proposed in this paper using Pseudo-complement and matrix rotation operations. First, pseudo-complement method is applied on the image for each channel. Then, matrix operations are applied on the output image of the first stage. Dominant pixels are obtained by image differencing between the pseudo-complement image and the matrix operated image. Median filtering is carried out to smoothen the image thereby removing the isolated pixels. Finally, the dominant or core pixels occurring in at least two channels are selected. On plotting the selected edge pixels, the final edge map of the given color image is obtained. The algorithm is also tested in HSV and YCbCr color spaces. Experimental results on both synthetic and real world images show that the accuracy of the proposed method is comparable to other color edge detectors. All the proposed procedures can be applied to any image domain and runs in polynomial time.

Keywords: Color edge detection, dominant pixels, matrixrotation/shift operations, pseudo-complement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331
1802 Content-Based Image Retrieval Using HSV Color Space Features

Authors: Hamed Qazanfari, Hamid Hassanpour, Kazem Qazanfari

Abstract:

In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods.

Keywords: Content-based image retrieval, color difference histogram, efficient features selection, entropy, correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660
1801 Color Image Segmentation and Multi-Level Thresholding by Maximization of Conditional Entropy

Authors: R.Sukesh Kumar, Abhisek Verma, Jasprit Singh

Abstract:

In this work a novel approach for color image segmentation using higher order entropy as a textural feature for determination of thresholds over a two dimensional image histogram is discussed. A similar approach is applied to achieve multi-level thresholding in both grayscale and color images. The paper discusses two methods of color image segmentation using RGB space as the standard processing space. The threshold for segmentation is decided by the maximization of conditional entropy in the two dimensional histogram of the color image separated into three grayscale images of R, G and B. The features are first developed independently for the three ( R, G, B ) spaces, and combined to get different color component segmentation. By considering local maxima instead of the maximum of conditional entropy yields multiple thresholds for the same image which forms the basis for multilevel thresholding.

Keywords: conditional entropy, multi-level thresholding, segmentation, two dimensional image histogram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2998
1800 Image Retrieval Using Fused Features

Authors: K. Sakthivel, R. Nallusamy, C. Kavitha

Abstract:

The system is designed to show images which are related to the query image. Extracting color, texture, and shape features from an image plays a vital role in content-based image retrieval (CBIR). Initially RGB image is converted into HSV color space due to its perceptual uniformity. From the HSV image, Color features are extracted using block color histogram, texture features using Haar transform and shape feature using Fuzzy C-means Algorithm. Then, the characteristics of the global and local color histogram, texture features through co-occurrence matrix and Haar wavelet transform and shape are compared and analyzed for CBIR. Finally, the best method of each feature is fused during similarity measure to improve image retrieval effectiveness and accuracy.

Keywords: Color Histogram, Haar Wavelet Transform, Fuzzy C-means, Co-occurrence matrix; Similarity measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
1799 Grouping and Indexing Color Features for Efficient Image Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

Content-based Image Retrieval (CBIR) aims at searching image databases for specific images that are similar to a given query image based on matching of features derived from the image content. This paper focuses on a low-dimensional color based indexing technique for achieving efficient and effective retrieval performance. In our approach, the color features are extracted using the mean shift algorithm, a robust clustering technique. Then the cluster (region) mode is used as representative of the image in 3-D color space. The feature descriptor consists of the representative color of a region and is indexed using a spatial indexing method that uses *R -tree thus avoiding the high-dimensional indexing problems associated with the traditional color histogram. Alternatively, the images in the database are clustered based on region feature similarity using Euclidian distance. Only representative (centroids) features of these clusters are indexed using *R -tree thus improving the efficiency. For similarity retrieval, each representative color in the query image or region is used independently to find regions containing that color. The results of these methods are compared. A JAVA based query engine supporting query-by- example is built to retrieve images by color.

Keywords: Content-based, indexing, cluster, region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
1798 A Neural Approach for Color-Textured Images Segmentation

Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui

Abstract:

In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.

Keywords: Segmentation, color-texture, neural networks, fractal, watershed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
1797 A Study of Color Transformation on Website Images for the Color Blind

Authors: Siew-Li Ching, Maziani Sabudin

Abstract:

In this paper, we study on color transformation method on website images for the color blind. The most common category of color blindness is red-green color blindness which is viewed as beige color. By transforming the colors of the images, the color blind can improve their color visibility. They can have a better view when browsing through the websites. To transform colors on the website images, we study on two algorithms which are the conversion techniques from RGB color space to HSV color space and self-organizing color transformation. The comparative study focuses on criteria based on the ease of use, quality, accuracy and efficiency. The outcome of the study leads to enhancement of website images to meet the color blinds- vision requirements in perceiving image detailed.

Keywords: Color blind, color transformation, HSV (Hue, Saturation, Value), RGB (Red, Green, Blue).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2654
1796 Lifting Wavelet Transform and Singular Values Decomposition for Secure Image Watermarking

Authors: Siraa Ben Ftima, Mourad Talbi, Tahar Ezzedine

Abstract:

In this paper, we present a technique of secure watermarking of grayscale and color images. This technique consists in applying the Singular Value Decomposition (SVD) in LWT (Lifting Wavelet Transform) domain in order to insert the watermark image (grayscale) in the host image (grayscale or color image). It also uses signature in the embedding and extraction steps. The technique is applied on a number of grayscale and color images. The performance of this technique is proved by the PSNR (Pick Signal to Noise Ratio), the MSE (Mean Square Error) and the SSIM (structural similarity) computations.

Keywords: Color image, grayscale image, singular values decomposition, lifting wavelet transform, image watermarking, watermark, secure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028
1795 Journey on Image Clustering Based on Color Composition

Authors: Achmad Nizar Hidayanto, Elisabeth Martha Koeanan

Abstract:

Image clustering is a process of grouping images based on their similarity. The image clustering usually uses the color component, texture, edge, shape, or mixture of two components, etc. This research aims to explore image clustering using color composition. In order to complete this image clustering, three main components should be considered, which are color space, image representation (feature extraction), and clustering method itself. We aim to explore which composition of these factors will produce the best clustering results by combining various techniques from the three components. The color spaces use RGB, HSV, and L*a*b* method. The image representations use Histogram and Gaussian Mixture Model (GMM), whereas the clustering methods use KMeans and Agglomerative Hierarchical Clustering algorithm. The results of the experiment show that GMM representation is better combined with RGB and L*a*b* color space, whereas Histogram is better combined with HSV. The experiments also show that K-Means is better than Agglomerative Hierarchical for images clustering.

Keywords: Image clustering, feature extraction, RGB, HSV, L*a*b*, Gaussian Mixture Model (GMM), histogram, Agglomerative Hierarchical Clustering (AHC), K-Means, Expectation-Maximization (EM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
1794 Volterra Filter for Color Image Segmentation

Authors: M. B. Meenavathi, K. Rajesh

Abstract:

Color image segmentation plays an important role in computer vision and image processing areas. In this paper, the features of Volterra filter are utilized for color image segmentation. The discrete Volterra filter exhibits both linear and nonlinear characteristics. The linear part smoothes the image features in uniform gray zones and is used for getting a gross representation of objects of interest. The nonlinear term compensates for the blurring due to the linear term and preserves the edges which are mainly used to distinguish the various objects. The truncated quadratic Volterra filters are mainly used for edge preserving along with Gaussian noise cancellation. In our approach, the segmentation is based on K-means clustering algorithm in HSI space. Both the hue and the intensity components are fully utilized. For hue clustering, the special cyclic property of the hue component is taken into consideration. The experimental results show that the proposed technique segments the color image while preserving significant features and removing noise effects.

Keywords: Color image segmentation, HSI space, K–means clustering, Volterra filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
1793 Adaptive Skin Segmentation Using Color Distance Map

Authors: Mohammad Shoyaib, M. Abdullah-Al-Wadud, Oksam Chae

Abstract:

In this paper an effective approach for segmenting human skin regions in images taken at different environment is proposed. The proposed method uses a color distance map that is flexible enough to reliably detect the skin regions even if the illumination conditions of the image vary. Local image conditions is also focused, which help the technique to adaptively detect differently illuminated skin regions of an image. Moreover, usage of local information also helps the skin detection process to get rid of picking up much noisy pixels.

Keywords: Color Distance map, Reference skin color, Regiongrowing, Skin segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
1792 A Hybrid Approach for Color Image Quantization Using K-means and Firefly Algorithms

Authors: Parisut Jitpakdee, Pakinee Aimmanee, Bunyarit Uyyanonvara

Abstract:

Color Image quantization (CQ) is an important problem in computer graphics, image and processing. The aim of quantization is to reduce colors in an image with minimum distortion. Clustering is a widely used technique for color quantization; all colors in an image are grouped to small clusters. In this paper, we proposed a new hybrid approach for color quantization using firefly algorithm (FA) and K-means algorithm. Firefly algorithm is a swarmbased algorithm that can be used for solving optimization problems. The proposed method can overcome the drawbacks of both algorithms such as the local optima converge problem in K-means and the early converge of firefly algorithm. Experiments on three commonly used images and the comparison results shows that the proposed algorithm surpasses both the base-line technique k-means clustering and original firefly algorithm.

Keywords: Clustering, Color quantization, Firefly algorithm, Kmeans.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
1791 A Fragile Watermarking Scheme for Color Image Authentication

Authors: M. Hamad Hassan, S.A.M. Gilani

Abstract:

In this paper, a fragile watermarking scheme is proposed for color image specified object-s authentication. The color image is first transformed from RGB to YST color space, suitable for watermarking the color media. The T channel corresponds to the chrominance component of a color image andYS ÔèÑ T , therefore selected for embedding the watermark. The T channel is first divided into 2×2 non-overlapping blocks and the two LSBs are set to zero. The object that is to be authenticated is also divided into 2×2 nonoverlapping blocks and each block-s intensity mean is computed followed by eight bit encoding. The generated watermark is then embedded into T channel randomly selected 2×2 block-s LSBs using 2D-Torus Automorphism. Selection of block size is paramount for exact localization and recovery of work. The proposed scheme is blind, efficient and secure with ability to detect and locate even minor tampering applied to the image with full recovery of original work. The quality of watermarked media is quite high both subjectively and objectively. The technique is suitable for class of images with format such as gif, tif or bitmap.

Keywords: Image Authentication, LSBs, PSNR, 2D-Torus Automorphism, YST Color Space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
1790 Design and Development of 5-DOF Color Sorting Manipulator for Industrial Applications

Authors: Atef. A. Ata, Sohair F. Rezeka, Ahmed El-Shenawy, Mohammed Diab

Abstract:

Image processing in today’s world grabs massive attentions as it leads to possibilities of broaden application in many fields of high technology. The real challenge is how to improve existing sorting system applications which consists of two integrated stations of processing and handling with a new image processing feature. Existing color sorting techniques use a set of inductive, capacitive, and optical sensors to differentiate object color. This research presents a mechatronic color sorting system solution with the application of image processing. A 5-DOF robot arm is designed and developed with pick and place operation to act as the main part of the color sorting system. Image processing procedure senses the circular objects in an image captured in real time by a webcam fixed at the end-effector then extracts color and position information out of it. This information is passed as a sequence of sorting commands to the manipulator that has pick-and-place mechanism. Performance analysis proves that this color based object sorting system works accurately under ideal condition in term of adequate illumination, circular objects shape and color. The circular objects tested for sorting are red, green and blue. For non-ideal condition, such as unspecified color the accuracy reduces to 80%.

Keywords: Robotics manipulator, 5-DOF manipulator, image processing, Color sorting, Pick-and-place.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4218
1789 Object Motion Tracking Based On Color Detection for Android Devices

Authors: Zacharenia I. Garofalaki, John T. Amorginos, John N. Ellinas

Abstract:

This paper presents the development of a robot car that can track the motion of an object by detecting its color through an Android device. The employed computer vision algorithm uses the OpenCV library, which is embedded into an Android application of a smartphone, for manipulating the captured image of the object. The captured image of the object is subjected to color conversion and is transformed to a binary image for further processing after color filtering. The desired object is clearly determined after removing pixel noise by applying image morphology operations and contour definition. Finally, the area and the center of the object are determined so that object’s motion to be tracked. The smartphone application has been placed on a robot car and transmits by Bluetooth to an Arduino assembly the motion directives so that to follow objects of a specified color. The experimental evaluation of the proposed algorithm shows reliable color detection and smooth tracking characteristics.

Keywords: Android, Arduino Uno, Image processing, Object motion detection, OpenCV library.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4564
1788 Color Constancy using Superpixel

Authors: Xingsheng Yuan, Zhengzhi Wang

Abstract:

Color constancy algorithms are generally based on the simplified assumption about the spectral distribution or the reflection attributes of the scene surface. However, in reality, these assumptions are too restrictive. The methodology is proposed to extend existing algorithm to applying color constancy locally to image patches rather than globally to the entire images. In this paper, a method based on low-level image features using superpixels is proposed. Superpixel segmentation partition an image into regions that are approximately uniform in size and shape. Instead of using entire pixel set for estimating the illuminant, only superpixels with the most valuable information are used. Based on large scale experiments on real-world scenes, it can be derived that the estimation is more accurate using superpixels than when using the entire image.

Keywords: color constancy, illuminant estimation, superpixel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
1787 Color Image Segmentation Using SVM Pixel Classification Image

Authors: K. Sakthivel, R. Nallusamy, C. Kavitha

Abstract:

The goal of image segmentation is to cluster pixels into salient image regions. Segmentation could be used for object recognition, occlusion boundary estimation within motion or stereo systems, image compression, image editing, or image database lookup. In this paper, we present a color image segmentation using support vector machine (SVM) pixel classification. Firstly, the pixel level color and texture features of the image are extracted and they are used as input to the SVM classifier. These features are extracted using the homogeneity model and Gabor Filter. With the extracted pixel level features, the SVM Classifier is trained by using FCM (Fuzzy C-Means).The image segmentation takes the advantage of both the pixel level information of the image and also the ability of the SVM Classifier. The Experiments show that the proposed method has a very good segmentation result and a better efficiency, increases the quality of the image segmentation compared with the other segmentation methods proposed in the literature.

Keywords: Image Segmentation, Support Vector Machine, Fuzzy C–Means, Pixel Feature, Texture Feature, Homogeneity model, Gabor Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6746
1786 Application of LSB Based Steganographic Technique for 8-bit Color Images

Authors: Mamta Juneja, Parvinder S. Sandhu, Ekta Walia

Abstract:

Steganography is the process of hiding one file inside another such that others can neither identify the meaning of the embedded object, nor even recognize its existence. Current trends favor using digital image files as the cover file to hide another digital file that contains the secret message or information. One of the most common methods of implementation is Least Significant Bit Insertion, in which the least significant bit of every byte is altered to form the bit-string representing the embedded file. Altering the LSB will only cause minor changes in color, and thus is usually not noticeable to the human eye. While this technique works well for 24-bit color image files, steganography has not been as successful when using an 8-bit color image file, due to limitations in color variations and the use of a colormap. This paper presents the results of research investigating the combination of image compression and steganography. The technique developed starts with a 24-bit color bitmap file, then compresses the file by organizing and optimizing an 8-bit colormap. After the process of compression, a text message is hidden in the final, compressed image. Results indicate that the final technique has potential of being useful in the steganographic world.

Keywords: Compression, Colormap, Encryption, Steganographyand LSB Insertion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3001
1785 A Semi-Fragile Watermarking Scheme for Color Image Authentication

Authors: M. Hamad Hassan, S.A.M. Gilani

Abstract:

In this paper, a semi-fragile watermarking scheme is proposed for color image authentication. In this particular scheme, the color image is first transformed from RGB to YST color space, suitable for watermarking the color media. Each channel is divided into 4×4 non-overlapping blocks and its each 2×2 sub-block is selected. The embedding space is created by setting the two LSBs of selected sub-block to zero, which will hold the authentication and recovery information. For verification of work authentication and parity bits denoted by 'a' & 'p' are computed for each 2×2 subblock. For recovery, intensity mean of each 2×2 sub-block is computed and encoded upto six to eight bits depending upon the channel selection. The size of sub-block is important for correct localization and fast computation. For watermark distribution 2DTorus Automorphism is implemented using a private key to have a secure mapping of blocks. The perceptibility of watermarked image is quite reasonable both subjectively and objectively. Our scheme is oblivious, correctly localizes the tampering and able to recovery the original work with probability of near one.

Keywords: Image Authentication, YST Color Space, Intensity Mean, LSBs, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
1784 Contrast Enhancement of Color Images with Color Morphing Approach

Authors: Javed Khan, Aamir Saeed Malik, Nidal Kamel, Sarat Chandra Dass, Azura Mohd Affandi

Abstract:

Low contrast images can result from the wrong setting of image acquisition or poor illumination conditions. Such images may not be visually appealing and can be difficult for feature extraction. Contrast enhancement of color images can be useful in medical area for visual inspection. In this paper, a new technique is proposed to improve the contrast of color images. The RGB (red, green, blue) color image is transformed into normalized RGB color space. Adaptive histogram equalization technique is applied to each of the three channels of normalized RGB color space. The corresponding channels in the original image (low contrast) and that of contrast enhanced image with adaptive histogram equalization (AHE) are morphed together in proper proportions. The proposed technique is tested on seventy color images of acne patients. The results of the proposed technique are analyzed using cumulative variance and contrast improvement factor measures. The results are also compared with decorrelation stretch. Both subjective and quantitative analysis demonstrates that the proposed techniques outperform the other techniques.

Keywords: Contrast enhancement, normalized RGB, adaptive histogram equalization, cumulative variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
1783 Image Similarity: A Genetic Algorithm Based Approach

Authors: R. C. Joshi, Shashikala Tapaswi

Abstract:

The paper proposes an approach using genetic algorithm for computing the region based image similarity. The image is denoted using a set of segmented regions reflecting color and texture properties of an image. An image is associated with a family of image features corresponding to the regions. The resemblance of two images is then defined as the overall similarity between two families of image features, and quantified by a similarity measure, which integrates properties of all the regions in the images. A genetic algorithm is applied to decide the most plausible matching. The performance of the proposed method is illustrated using examples from an image database of general-purpose images, and is shown to produce good results.

Keywords: Image Features, color descriptor, segmented classes, texture descriptors, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326