Search results for: real-coded genetic algorithm.
695 Optimal Design of Reference Node Placement for Wireless Indoor Positioning Systems in Multi-Floor Building
Authors: Kittipob Kondee, Chutima Prommak
Abstract:
In this paper, we propose an optimization technique that can be used to optimize the placements of reference nodes and improve the location determination performance for the multi-floor building. The proposed technique is based on Simulated Annealing algorithm (SA) and is called MSMR-M. The performance study in this work is based on simulation. We compare other node-placement techniques found in the literature with the optimal node-placement solutions obtained from our optimization. The results show that using the optimal node-placement obtained by our proposed technique can improve the positioning error distances up to 20% better than those of the other techniques. The proposed technique can provide an average error distance within 1.42 meters.
Keywords: Indoor positioning System, Optimization System design, Multi-Floor Building, Wireless Sensor Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983694 Simultaneous Clustering and Feature Selection Method for Gene Expression Data
Authors: T. Chandrasekhar, K. Thangavel, E. N. Sathishkumar
Abstract:
Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this work K-Means algorithms has been applied for clustering of Gene Expression Data. Further, rough set based Quick reduct algorithm has been applied for each cluster in order to select the most similar genes having high correlation. Then the ACV measure is used to evaluate the refined clusters and classification is used to evaluate the proposed method. They could identify compact clusters with feature selection method used to genes are selected.
Keywords: Clustering, Feature selection, Gene expression data, Quick reduct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967693 Nonlinear Dynamic Modeling and Active Vibration Control of a System with Fuel Sloshing
Authors: A. A. Jafari, A. M. Khoshnood, J. Roshanian
Abstract:
Attitude control of aerospace system with liquid containers may face to a problem associate with fuel sloshing. The sloshing phenomena can degrade the stability of control system and in the worst case, interaction between the attitude control system and fuel vibration leading to resonance. In this paper, a full process of nonlinear dynamic modeling of an aerospace launch vehicle with fuel sloshing is given. Then, a new control system based on model reference adaptive filter is proposed and its algorithm is extracted. This controller implemented on the main attitude control system. Finally, numerical simulation of nonlinear model and control system is carried out to examine the performance of the new controller. Results of simulations show that the inconvenient effects of the fuel sloshing by augmenting this control system are reduced and attitude control system performs, satisfactorily.
Keywords: nonlinear dynamic modeling, fuel sloshing, vibration control, model reference, adaptive filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298692 Tracking Objects in Color Image Sequences: Application to Football Images
Authors: Mourad Moussa, Ali Douik, Hassani Messaoud
Abstract:
In this paper, we present a comparative study between two computer vision systems for objects recognition and tracking, these algorithms describe two different approach based on regions constituted by a set of pixels which parameterized objects in shot sequences. For the image segmentation and objects detection, the FCM technique is used, the overlapping between cluster's distribution is minimized by the use of suitable color space (other that the RGB one). The first technique takes into account a priori probabilities governing the computation of various clusters to track objects. A Parzen kernel method is described and allows identifying the players in each frame, we also show the importance of standard deviation value research of the Gaussian probability density function. Region matching is carried out by an algorithm that operates on the Mahalanobis distance between region descriptors in two subsequent frames and uses singular value decomposition to compute a set of correspondences satisfying both the principle of proximity and the principle of exclusion.
Keywords: Image segmentation, objects tracking, Parzen window, singular value decomposition, target recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985691 A Security Cloud Storage Scheme Based Accountable Key-Policy Attribute-Based Encryption without Key Escrow
Authors: Ming Lun Wang, Yan Wang, Ning Ruo Sun
Abstract:
With the development of cloud computing, more and more users start to utilize the cloud storage service. However, there exist some issues: 1) cloud server steals the shared data, 2) sharers collude with the cloud server to steal the shared data, 3) cloud server tampers the shared data, 4) sharers and key generation center (KGC) conspire to steal the shared data. In this paper, we use advanced encryption standard (AES), hash algorithms, and accountable key-policy attribute-based encryption without key escrow (WOKE-AKP-ABE) to build a security cloud storage scheme. Moreover, the data are encrypted to protect the privacy. We use hash algorithms to prevent the cloud server from tampering the data uploaded to the cloud. Analysis results show that this scheme can resist conspired attacks.
Keywords: Cloud storage security, sharing storage, attributes, Hash algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037690 A Grid Synchronization Phase Locked Loop Method for Grid-Connected Inverters Systems
Authors: Naima Ikken, Abdelhadi Bouknadel, Nour-eddine Tariba Ahmed Haddou, Hafsa El Omari
Abstract:
The operation of grid-connected inverters necessity a single-phase phase locked loop (PLL) is proposed in this article to accurately and quickly estimate and detect the grid phase angle. This article presents the improvement of a method of phase-locked loop. The novelty is to generate a method (PLL) of synchronizing the grid with a Notch filter based on adaptive fuzzy logic for inverter systems connected to the grid. The performance of the proposed method was tested under normal and abnormal operating conditions (amplitude, frequency and phase shift variations). In addition, simulation results with ISPM software are developed to verify the effectiveness of the proposed method strategy. Finally, the experimental test will be used to extract the result and discuss the validity of the proposed algorithm.Keywords: Phase locked loop, PLL, notch filter, fuzzy logic control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764689 An Exact Solution of Axi-symmetric Conductive Heat Transfer in Cylindrical Composite Laminate under the General Boundary Condition
Authors: M.kayhani, M.Nourouzi, A. Amiri Delooei
Abstract:
This study presents an exact general solution for steady-state conductive heat transfer in cylindrical composite laminates. Appropriate Fourier transformation has been obtained using Sturm-Liouville theorem. Series coefficients are achieved by solving a set of equations that related to thermal boundary conditions at inner and outer of the cylinder, also related to temperature continuity and heat flux continuity between each layer. The solution of this set of equations are obtained using Thomas algorithm. In this paper, the effect of fibers- angle on temperature distribution of composite laminate is investigated under general boundary conditions. Here, we show that the temperature distribution for any composite laminates is between temperature distribution for laminates with θ = 0° and θ = 90° .Keywords: exact solution, composite laminate, heat conduction, cylinder, Fourier transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447688 Clustering Protein Sequences with Tailored General Regression Model Technique
Authors: G. Lavanya Devi, Allam Appa Rao, A. Damodaram, GR Sridhar, G. Jaya Suma
Abstract:
Cluster analysis divides data into groups that are meaningful, useful, or both. Analysis of biological data is creating a new generation of epidemiologic, prognostic, diagnostic and treatment modalities. Clustering of protein sequences is one of the current research topics in the field of computer science. Linear relation is valuable in rule discovery for a given data, such as if value X goes up 1, value Y will go down 3", etc. The classical linear regression models the linear relation of two sequences perfectly. However, if we need to cluster a large repository of protein sequences into groups where sequences have strong linear relationship with each other, it is prohibitively expensive to compare sequences one by one. In this paper, we propose a new technique named General Regression Model Technique Clustering Algorithm (GRMTCA) to benignly handle the problem of linear sequences clustering. GRMT gives a measure, GR*, to tell the degree of linearity of multiple sequences without having to compare each pair of them.Keywords: Clustering, General Regression Model, Protein Sequences, Similarity Measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567687 Medical Image Edge Detection Based on Neuro-Fuzzy Approach
Authors: J. Mehena, M. C. Adhikary
Abstract:
Edge detection is one of the most important tasks in image processing. Medical image edge detection plays an important role in segmentation and object recognition of the human organs. It refers to the process of identifying and locating sharp discontinuities in medical images. In this paper, a neuro-fuzzy based approach is introduced to detect the edges for noisy medical images. This approach uses desired number of neuro-fuzzy subdetectors with a postprocessor for detecting the edges of medical images. The internal parameters of the approach are optimized by training pattern using artificial images. The performance of the approach is evaluated on different medical images and compared with popular edge detection algorithm. From the experimental results, it is clear that this approach has better performance than those of other competing edge detection algorithms for noisy medical images.Keywords: Edge detection, neuro-fuzzy, image segmentation, artificial image, object recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282686 Applying Spanning Tree Graph Theory for Automatic Database Normalization
Authors: Chetneti Srisa-an
Abstract:
In Knowledge and Data Engineering field, relational database is the best repository to store data in a real world. It has been using around the world more than eight decades. Normalization is the most important process for the analysis and design of relational databases. It aims at creating a set of relational tables with minimum data redundancy that preserve consistency and facilitate correct insertion, deletion, and modification. Normalization is a major task in the design of relational databases. Despite its importance, very few algorithms have been developed to be used in the design of commercial automatic normalization tools. It is also rare technique to do it automatically rather manually. Moreover, for a large and complex database as of now, it make even harder to do it manually. This paper presents a new complete automated relational database normalization method. It produces the directed graph and spanning tree, first. It then proceeds with generating the 2NF, 3NF and also BCNF normal forms. The benefit of this new algorithm is that it can cope with a large set of complex function dependencies.
Keywords: Relational Database, Functional Dependency, Automatic Normalization, Primary Key, Spanning tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2866685 A Context-Aware Supplier Selection Model
Authors: Mohammadreza Razzazi, Maryam Bayat
Abstract:
Selection of the best possible set of suppliers has a significant impact on the overall profitability and success of any business. For this reason, it is usually necessary to optimize all business processes and to make use of cost-effective alternatives for additional savings. This paper proposes a new efficient context-aware supplier selection model that takes into account possible changes of the environment while significantly reducing selection costs. The proposed model is based on data clustering techniques while inspiring certain principles of online algorithms for an optimally selection of suppliers. Unlike common selection models which re-run the selection algorithm from the scratch-line for any decision-making sub-period on the whole environment, our model considers the changes only and superimposes it to the previously defined best set of suppliers to obtain a new best set of suppliers. Therefore, any recomputation of unchanged elements of the environment is avoided and selection costs are consequently reduced significantly. A numerical evaluation confirms applicability of this model and proves that it is a more optimal solution compared with common static selection models in this field.Keywords: Supplier Selection, Context-Awareness, OnlineAlgorithms, Data Clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818684 Supervisory Fuzzy Learning Control for Underwater Target Tracking
Authors: C.Kia, M.R.Arshad, A.H.Adom, P.A.Wilson
Abstract:
This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed.Keywords: Fuzzy logic, Underwater target tracking, Autonomous underwater vehicles, Artificial intelligence, Simulations, Robot navigation, Vision system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898683 Multiple-Level Sequential Pattern Discovery from Customer Transaction Databases
Abstract:
Mining sequential patterns from large customer transaction databases has been recognized as a key research topic in database systems. However, the previous works more focused on mining sequential patterns at a single concept level. In this study, we introduced concept hierarchies into this problem and present several algorithms for discovering multiple-level sequential patterns based on the hierarchies. An experiment was conducted to assess the performance of the proposed algorithms. The performances of the algorithms were measured by the relative time spent on completing the mining tasks on two different datasets. The experimental results showed that the performance depends on the characteristics of the datasets and the pre-defined threshold of minimal support for each level of the concept hierarchy. Based on the experimental results, some suggestions were also given for how to select appropriate algorithm for a certain datasets.Keywords: Data Mining, Multiple-Level Sequential Pattern, Concept Hierarchy, Customer Transaction Database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454682 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model
Authors: N. Jinesh, K. Shankar
Abstract:
This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.
Keywords: Structural identification, PZT patches, inverse problem, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931681 Application of Feed-Forward Neural Networks Autoregressive Models in Gross Domestic Product Prediction
Authors: Ε. Giovanis
Abstract:
In this paper we present an autoregressive model with neural networks modeling and standard error backpropagation algorithm training optimization in order to predict the gross domestic product (GDP) growth rate of four countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer after the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model in the out-of-sample period. The idea behind this approach is to propose a parametric regression with weighted variables in order to test for the statistical significance and the magnitude of the estimated autoregressive coefficients and simultaneously to estimate the forecasts.Keywords: Autoregressive model, Error back-propagation Feed-Forward neural networks, , Gross Domestic Product
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420680 A General Framework for Modeling Replicated Real-Time Database
Authors: Hala Abdel hameed, Hazem M. El-Bakry, Torky Sultan
Abstract:
There are many issues that affect modeling and designing real-time databases. One of those issues is maintaining consistency between the actual state of the real-time object of the external environment and its images as reflected by all its replicas distributed over multiple nodes. The need to improve the scalability is another important issue. In this paper, we present a general framework to design a replicated real-time database for small to medium scale systems and maintain all timing constrains. In order to extend the idea for modeling a large scale database, we present a general outline that consider improving the scalability by using an existing static segmentation algorithm applied on the whole database, with the intent to lower the degree of replication, enables segments to have individual degrees of replication with the purpose of avoiding excessive resource usage, which all together contribute in solving the scalability problem for DRTDBS.
Keywords: Database modeling, Distributed database, Real time databases, Replication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367679 Application of GM (1, 1) Model Group Based on Recursive Solution in China's Energy Demand Forecasting
Authors: Yeqing Guan, Fen Yang
Abstract:
To learn about China-s future energy demand, this paper first proposed GM(1,1) model group based on recursive solutions of parameters estimation, setting up a general solving-algorithm of the model group. This method avoided the problems occurred on the past researches that remodeling, loss of information and large amount of calculation. This paper established respectively all-data-GM(1,1), metabolic GM(1,1) and new information GM (1,1)model according to the historical data of energy consumption in China in the year 2005-2010 and the added data of 2011, then modeling, simulating and comparison of accuracies we got the optimal models and to predict. Results showed that the total energy demand of China will be 37.2221 billion tons of equivalent coal in 2012 and 39.7973 billion tons of equivalent coal in 2013, which are as the same as the overall planning of energy demand in The 12th Five-Year Plan.
Keywords: energy demands, GM(1, 1) model group, least square estimation, prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555678 Heterogeneous Attribute Reduction in Noisy System based on a Generalized Neighborhood Rough Sets Model
Authors: Siyuan Jing, Kun She
Abstract:
Neighborhood Rough Sets (NRS) has been proven to be an efficient tool for heterogeneous attribute reduction. However, most of researches are focused on dealing with complete and noiseless data. Factually, most of the information systems are noisy, namely, filled with incomplete data and inconsistent data. In this paper, we introduce a generalized neighborhood rough sets model, called VPTNRS, to deal with the problem of heterogeneous attribute reduction in noisy system. We generalize classical NRS model with tolerance neighborhood relation and the probabilistic theory. Furthermore, we use the neighborhood dependency to evaluate the significance of a subset of heterogeneous attributes and construct a forward greedy algorithm for attribute reduction based on it. Experimental results show that the model is efficient to deal with noisy data.Keywords: attribute reduction, incomplete data, inconsistent data, tolerance neighborhood relation, rough sets
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588677 Packaging in a Multivariate Conceptual Design Synthesis of a BWB Aircraft
Authors: Paul Okonkwo, Howard Smith
Abstract:
A study to estimate the size of the cabin and major aircraft components as well as detect and avoid interference between internally placed components and the external surface, during the conceptual design synthesis and optimisation to explore the design space of a BWB, was conducted. Sizing of components follows the Bradley cabin sizing and rubber engine scaling procedures to size the cabin and engine respectively. The interference detection and avoidance algorithm relies on the ability of the Class Shape Transform parameterisation technique to generate polynomial functions of the surfaces of a BWB aircraft configuration from the sizes of the cabin and internal objects using few variables. Interference detection is essential in packaging of non-conventional configuration like the BWB because of the non-uniform airfoil-shaped sections and resultant varying internal space. The unique configuration increases the need for a methodology to prevent objects from being placed in locations that do not sufficiently enclose them within the geometry.
Keywords: Packaging, Optimisation, BWB, Parameterisation, Aircraft Conceptual Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412676 Human Pose Estimation using Active Shape Models
Authors: Changhyuk Jang, Keechul Jung
Abstract:
Human pose estimation can be executed using Active Shape Models. The existing techniques for applying to human-body research using Active Shape Models, such as human detection, primarily take the form of silhouette of human body. This technique is not able to estimate accurately for human pose to concern two arms and legs, as the silhouette of human body represents the shape as out of round. To solve this problem, we applied the human body model as stick-figure, “skeleton". The skeleton model of human body can give consideration to various shapes of human pose. To obtain effective estimation result, we applied background subtraction and deformed matching algorithm of primary Active Shape Models in the fitting process. The images which were used to make the model were 600 human bodies, and the model has 17 landmark points which indicate body junction and key features of human pose. The maximum iteration for the fitting process was 30 times and the execution time was less than .03 sec.
Keywords: Active shape models, skeleton, pose estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416675 A New Vector Quantization Front-End Process for Discrete HMM Speech Recognition System
Authors: M. Debyeche, J.P Haton, A. Houacine
Abstract:
The paper presents a complete discrete statistical framework, based on a novel vector quantization (VQ) front-end process. This new VQ approach performs an optimal distribution of VQ codebook components on HMM states. This technique that we named the distributed vector quantization (DVQ) of hidden Markov models, succeeds in unifying acoustic micro-structure and phonetic macro-structure, when the estimation of HMM parameters is performed. The DVQ technique is implemented through two variants. The first variant uses the K-means algorithm (K-means- DVQ) to optimize the VQ, while the second variant exploits the benefits of the classification behavior of neural networks (NN-DVQ) for the same purpose. The proposed variants are compared with the HMM-based baseline system by experiments of specific Arabic consonants recognition. The results show that the distributed vector quantization technique increase the performance of the discrete HMM system.
Keywords: Hidden Markov Model, Vector Quantization, Neural Network, Speech Recognition, Arabic Language
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056674 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression
Authors: Wanatchapong Kongkaew
Abstract:
This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.
Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235673 Bin Bloom Filter Using Heuristic Optimization Techniques for Spam Detection
Authors: N. Arulanand, K. Premalatha
Abstract:
Bloom filter is a probabilistic and memory efficient data structure designed to answer rapidly whether an element is present in a set. It tells that the element is definitely not in the set but its presence is with certain probability. The trade-off to use Bloom filter is a certain configurable risk of false positives. The odds of a false positive can be made very low if the number of hash function is sufficiently large. For spam detection, weight is attached to each set of elements. The spam weight for a word is a measure used to rate the e-mail. Each word is assigned to a Bloom filter based on its weight. The proposed work introduces an enhanced concept in Bloom filter called Bin Bloom Filter (BBF). The performance of BBF over conventional Bloom filter is evaluated under various optimization techniques. Real time data set and synthetic data sets are used for experimental analysis and the results are demonstrated for bin sizes 4, 5, 6 and 7. Finally analyzing the results, it is found that the BBF which uses heuristic techniques performs better than the traditional Bloom filter in spam detection.
Keywords: Cuckoo search algorithm, levy’s flight, metaheuristic, optimal weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262672 Analysis of the EEG Signal for a Practical Biometric System
Authors: Muhammad Kamil Abdullah, Khazaimatol S Subari, Justin Leo Cheang Loong, Nurul Nadia Ahmad
Abstract:
This paper discusses the effectiveness of the EEG signal for human identification using four or less of channels of two different types of EEG recordings. Studies have shown that the EEG signal has biometric potential because signal varies from person to person and impossible to replicate and steal. Data were collected from 10 male subjects while resting with eyes open and eyes closed in 5 separate sessions conducted over a course of two weeks. Features were extracted using the wavelet packet decomposition and analyzed to obtain the feature vectors. Subsequently, the neural networks algorithm was used to classify the feature vectors. Results show that, whether or not the subjects- eyes were open are insignificant for a 4– channel biometrics system with a classification rate of 81%. However, for a 2–channel system, the P4 channel should not be included if data is acquired with the subjects- eyes open. It was observed that for 2– channel system using only the C3 and C4 channels, a classification rate of 71% was achieved.Keywords: Biometric, EEG, Wavelet Packet Decomposition, NeuralNetworks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3027671 An Efficient Cache Replacement Strategy for the Hybrid Cache Consistency Approach
Authors: Aline Zeitunlian, Ramzi A. Haraty
Abstract:
Caching was suggested as a solution for reducing bandwidth utilization and minimizing query latency in mobile environments. Over the years, different caching approaches have been proposed, some relying on the server to broadcast reports periodically informing of the updated data while others allowed the clients to request for the data whenever needed. Until recently a hybrid cache consistency scheme Scalable Asynchronous Cache Consistency Scheme SACCS was proposed, which combined the two different approaches benefits- and is proved to be more efficient and scalable. Nevertheless, caching has its limitations too, due to the limited cache size and the limited bandwidth, which makes the implementation of cache replacement strategy an important aspect for improving the cache consistency algorithms. In this thesis, we proposed a new cache replacement strategy, the Least Unified Value strategy (LUV) to replace the Least Recently Used (LRU) that SACCS was based on. This paper studies the advantages and the drawbacks of the new proposed strategy, comparing it with different categories of cache replacement strategies.
Keywords: Cache consistency, hybrid algorithm, and mobileenvironments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202670 Study of Photonic Crystal Band Gap and Hexagonal Microcavity Based on Elliptical Shaped Holes
Authors: A. Benmerkhi, A. Bounouioua, M. Bouchemat, T. Bouchemat
Abstract:
In this paper, we present a numerical optical properties of a triangular periodic lattice of elliptical air holes. We report the influence of the ratio (semi-major axis length of elliptical hole to the filling ratio) on the photonic band gap. Then by using the finite difference time domain (FDTD) algorithm, the resonant wavelength of the point defect microcavities in a two-dimensional photonic crystal (PC) shifts towards the low wavelengths with significantly increased filing ratio. It can be noted that the Q factor is gradually changed to higher when the filling ratio increases. It is due to an increase in reflectivity of the PC mirror. Also we theoretically investigate the H1 cavity, where the value of semi-major axis (Rx) of the six holes surrounding the cavity are fixed at 0.5a and the Rx of the two edge air holes are fixed at the optimum value of 0.52a. The highest Q factor of 4.1359 × 106 is achieved at the resonant mode located at λ = 1.4970 µm.
Keywords: Photonic crystal, microcavity, filling ratio, elliptical holes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597669 Bit Error Rate Monitoring for Automatic Bias Control of Quadrature Amplitude Modulators
Authors: Naji Ali Albakay, Abdulrahman Alothaim, Isa Barshushi
Abstract:
The most common quadrature amplitude modulator (QAM) applies two Mach-Zehnder Modulators (MZM) and one phase shifter to generate high order modulation format. The bias of MZM changes over time due to temperature, vibration, and aging factors. The change in the biasing causes distortion to the generated QAM signal which leads to deterioration of bit error rate (BER) performance. Therefore, it is critical to be able to lock MZM’s Q point to the required operating point for good performance. We propose a technique for automatic bias control (ABC) of QAM transmitter using BER measurements and gradient descent optimization algorithm. The proposed technique is attractive because it uses the pertinent metric, BER, which compensates for bias drifting independently from other system variations such as laser source output power. The proposed scheme performance and its operating principles are simulated using OptiSystem simulation software for 4-QAM and 16-QAM transmitters.
Keywords: Automatic bias control, optical fiber communication, optical modulation, optical devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 564668 Turbine Follower Control Strategy Design Based on Developed FFPP Model
Authors: Ali Ghaffari, Mansour Nikkhah Bahrami, Hesam Parsa
Abstract:
In this paper a comprehensive model of a fossil fueled power plant (FFPP) is developed in order to evaluate the performance of a newly designed turbine follower controller. Considering the drawbacks of previous works, an overall model is developed to minimize the error between each subsystem model output and the experimental data obtained at the actual power plant. The developed model is organized in two main subsystems namely; Boiler and Turbine. Considering each FFPP subsystem characteristics, different modeling approaches are developed. For economizer, evaporator, superheater and reheater, first order models are determined based on principles of mass and energy conservation. Simulations verify the accuracy of the developed models. Due to the nonlinear characteristics of attemperator, a new model, based on a genetic-fuzzy systems utilizing Pittsburgh approach is developed showing a promising performance vis-à-vis those derived with other methods like ANFIS. The optimization constraints are handled utilizing penalty functions. The effect of increasing the number of rules and membership functions on the performance of the proposed model is also studied and evaluated. The turbine model is developed based on the equation of adiabatic expansion. Parameters of all evaluated models are tuned by means of evolutionary algorithms. Based on the developed model a fuzzy PI controller is developed. It is then successfully implemented in the turbine follower control strategy of the plant. In this control strategy instead of keeping control parameters constant, they are adjusted on-line with regard to the error and the error rate. It is shown that the response of the system improves significantly. It is also shown that fuel consumption decreases considerably.Keywords: Attemperator, Evolutionary algorithms, Fossil fuelled power plant (FFPP), Fuzzy set theory, Gain scheduling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792667 Detecting and Measuring Fabric Pills Using Digital Image Analysis
Authors: Dariush Semnani, Hossein Ghayoor
Abstract:
In this paper a novel method was presented for evaluating the fabric pills using digital image processing techniques. This work provides a novel technique for detecting pills and also measuring their heights, surfaces and volumes. Surely, measuring the intensity of defects by human vision is an inaccurate method for quality control; as a result, this problem became a motivation for employing digital image processing techniques for detection of defects of fabric surface. In the former works, the systems were just limited to measuring of the surface of defects, but in the presented method the height and the volume of defects were also measured, which leads to a more accurate quality control. An algorithm was developed to first, find pills and then measure their average intensity by using three criteria of height, surface and volume. The results showed a meaningful relation between the number of rotations and the quality of pilled fabrics.Keywords: 3D analysis, computer vision, fabric, pile, surface evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2620666 Optimization of Loudspeaker Part Design Parameters by Air Viscosity Damping Effect
Authors: Yue Hu, Xilu Zhao, Takao Yamaguchi, Manabu Sasajima, Yoshio Koike, Akira Hara
Abstract:
This study optimized the design parameters of a cone loudspeaker as an example of high flexibility of the product design. We developed an acoustic analysis software program that considers the impact of damping caused by air viscosity. In sound reproduction, it is difficult to optimize each parameter of the loudspeaker design. To overcome the limitation of the design problem in practice, this study presents an acoustic analysis algorithm to optimize the design parameters of the loudspeaker. The material character of cone paper and the loudspeaker edge were the design parameters, and the vibration displacement of the cone paper was the objective function. The results of the analysis showed that the design had high accuracy as compared to the predicted value. These results suggested that although the parameter design is difficult, with experience and intuition, the design can be performed easily using the optimized design found with the acoustic analysis software.
Keywords: Air viscosity, design parameters, loudspeaker, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194