Search results for: special methods.
1757 Artificial Neural Networks and Multi-Class Support Vector Machines for Classifying Magnetic Measurements in Tokamak Reactors
Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci
Abstract:
This paper is mainly concerned with the application of a novel technique of data interpretation for classifying measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artificial Neural Networks and Multi-Class Support Vector Machines have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compared with earlier methods.Keywords: Tokamak, Classification, Artificial Neural Network, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12771756 A Simple Autonomous Hovering and Operating Control of Multicopter Using Only Web Camera
Authors: Kazuya Sato, Toru Kasahara, Junji Kuroda, Tomoyuki Izu
Abstract:
In this paper, an autonomous hovering control method of multicopter using only Web camera is proposed. Recently, various control method of an autonomous flight for multicopter are proposed. But, in the previous proposed methods, a motion capture system (i. e., OptiTrack) and laser range finder are often used to measure the position and posture of multicopter. To achieve an autonomous flight control of multicopter with simple equipments, we propose an autonomous flight control method using AR marker and Web camera. AR marker can measure the position of multicopter with Cartesian coordinate in three dimensional, then its position connects with aileron, elevator, and accelerator throttle operation. A simple PID control method is applied to the each operation and adjust the controller gains. Experimental results are given to show the effectiveness of our proposed method. Moreover, another simple operation method for autonomous flight control multicopter is also proposed.Keywords: Autonomous hovering control, multicopter, Web camera.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18281755 BIP-Based Alarm Declaration and Clearing in SONET Networks Employing Automatic Protection Switching
Authors: Vitalice K. Oduol, C. Ardil
Abstract:
The paper examines the performance of bit-interleaved parity (BIP) methods in error rate monitoring, and in declaration and clearing of alarms in those transport networks that employ automatic protection switching (APS). The BIP-based error rate monitoring is attractive for its simplicity and ease of implementation. The BIP-based results are compared with exact results and are found to declare the alarms too late, and to clear the alarms too early. It is concluded that the standards development and systems implementation should take into account the fact of early clearing and late declaration of alarms. The window parameters defining the detection and clearing thresholds should be set so as to build sufficient hysteresis into the system to ensure that BIP-based implementations yield acceptable performance results.
Keywords: Automatic protection switching, bit interleaved parity, excessive bit error rate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18921754 Enhancing Learning Experiences in Outcomebased Higher Education: A Step towards Student Centered Learning
Authors: K. Kumpas
Abstract:
Bologna process has influenced enhancing studentcentered learning in Estonian higher education since 2009, but there is no information about what helps or hinders students to achieve learning outcomes and how quality of student-centered learning might be improved. The purpose of this study is to analyze two questions from outcome-based course evaluation questionnaire which is used in Estonian Entrepreneurship University of Applied Sciences. In this qualitative research, 384 students from 22 different courses described what helped and hindered them to achieve learning outcomes. The analysis showed that the aspects that hinder students to achieve learning outcomes are mostly personal: time management, family and personal matters, motivation and non-academic activities. The results indicate that students- learning is commonly supported by school, where teacher, teaching and characteristics of teaching methods help mostly to achieve learning outcomes, also learning material, practical assignments and independent study was brought up as one of the key elements.Keywords: Learning outcomes, learning quality, student-centered learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17531753 Computing Fractal Dimension of Signals using Multiresolution Box-counting Method
Authors: B. S. Raghavendra, D. Narayana Dutt
Abstract:
In this paper, we have developed a method to compute fractal dimension (FD) of discrete time signals, in the time domain, by modifying the box-counting method. The size of the box is dependent on the sampling frequency of the signal. The number of boxes required to completely cover the signal are obtained at multiple time resolutions. The time resolutions are made coarse by decimating the signal. The loglog plot of total number of boxes required to cover the curve versus size of the box used appears to be a straight line, whose slope is taken as an estimate of FD of the signal. The results are provided to demonstrate the performance of the proposed method using parametric fractal signals. The estimation accuracy of the method is compared with that of Katz, Sevcik, and Higuchi methods. In addition, some properties of the FD are discussed.Keywords: Box-counting, Fractal dimension, Higuchi method, Katz method, Parametric fractal signals, Sevcik method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45931752 Wavelet Feature Selection Approach for Heart Murmur Classification
Authors: G. Venkata Hari Prasad, P. Rajesh Kumar
Abstract:
Phonocardiography is important in appraisal of congenital heart disease and pulmonary hypertension as it reflects the duration of right ventricular systoles. The systolic murmur in patients with intra-cardiac shunt decreases as pulmonary hypertension develops and may eventually disappear completely as the pulmonary pressure reaches systemic level. Phonocardiography and auscultation are non-invasive, low-cost, and accurate methods to assess heart disease. In this work an objective signal processing tool to extract information from phonocardiography signal using Wavelet is proposed to classify the murmur as normal or abnormal. Since the feature vector is large, a Binary Particle Swarm Optimization (PSO) with mutation for feature selection is proposed. The extracted features improve the classification accuracy and were tested across various classifiers including Naïve Bayes, kNN, C4.5, and SVM.Keywords: Phonocardiography, Coiflet, Feature selection, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24721751 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy
Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko
Abstract:
In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.
Keywords: Inverse problems, multi-component solutions, neural networks, Raman spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19261750 Adaptive Few-Shot Deep Metric Learning
Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian
Abstract:
Currently the most prevalent deep learning methods require a large amount of data for training, whereas few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.
Keywords: Few-shot learning, triplet network, adaptive margin, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9071749 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks
Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia
Abstract:
This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.Keywords: Image forensics, computer graphics, classification, deep learning, convolutional neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11741748 Effect of FES Cycling Training on Spasticity in Spinal Cord Injured Subjects
Authors: Werner Reichenfelser, Harald Hackl, Josef Hufgard, Karin Gstaltner, Margit Gfoehler
Abstract:
Training with Functional Electrical Stimulation (FES) has both physiological and psychological benefits for spinal cord injured subjects. Commonly used methods for quantification of spasticity have shown controversial reliability. In this study we propose a method for quick determination of spasticity in spinal cord injured subjects on a cycling and measurement system. 23 patients did training sessions on an instrumented mobile FES cycle three times a week over two months as part of their clinical rehabilitation program. Spasticity (MAS) and the legs resistance to the pedaling motion were assessed before and after the FES training and measurements were done on the subjects ability to pedal with our without motor assistance. Measurements with test persons with incomplete spastic paraplegia have shown that spasticity is decreased after a 30 min cycling training with functional electrical stimulation (FES).Keywords: Spasticity, paraplegia, spinal cord injury, functional electrical stimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20771747 A Dynamic RGB Intensity Based Steganography Scheme
Authors: Mandep Kaur, Surbhi Gupta, Parvinder S. Sandhu, Jagdeep Kaur
Abstract:
Steganography meaning covered writing. Steganography includes the concealment of information within computer files [1]. In other words, it is the Secret communication by hiding the existence of message. In this paper, we will refer to cover image, to indicate the images that do not yet contain a secret message, while we will refer to stego images, to indicate an image with an embedded secret message. Moreover, we will refer to the secret message as stego-message or hidden message. In this paper, we proposed a technique called RGB intensity based steganography model as RGB model is the technique used in this field to hide the data. The methods used here are based on the manipulation of the least significant bits of pixel values [3][4] or the rearrangement of colors to create least significant bit or parity bit patterns, which correspond to the message being hidden. The proposed technique attempts to overcome the problem of the sequential fashion and the use of stego-key to select the pixels.
Keywords: Steganography, Stego Image, RGB Image, Cryptography, LSB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21101746 MTSSM - A Framework for Multi-Track Segmentation of Symbolic Music
Authors: Brigitte Rafael, Stefan M. Oertl
Abstract:
Music segmentation is a key issue in music information retrieval (MIR) as it provides an insight into the internal structure of a composition. Structural information about a composition can improve several tasks related to MIR such as searching and browsing large music collections, visualizing musical structure, lyric alignment, and music summarization. The authors of this paper present the MTSSM framework, a twolayer framework for the multi-track segmentation of symbolic music. The strength of this framework lies in the combination of existing methods for local track segmentation and the application of global structure information spanning via multiple tracks. The first layer of the MTSSM uses various string matching techniques to detect the best candidate segmentations for each track of a multi-track composition independently. The second layer combines all single track results and determines the best segmentation for each track in respect to the global structure of the composition.Keywords: Pattern Recognition, Music Information Retrieval, Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16271745 Modeling of Bisphenol A (BPA) Removal from Aqueous Solutions by Adsorption Using Response Surface Methodology (RSM)
Authors: Mohammad Ali Zazouli, Farzaneh Veisi, Amir Veisi
Abstract:
Bisphenol A (BPA) is an organic synthetic compound that has many applications in various industries and is known as persistent pollutant. The aim of this research was to evaluate the efficiency of bone ash and banana peel as adsorbents for BPA adsorption from aqueous solution by using Response Surface Methodology. The effects of some variables such as sorbent dose, detention time, solution pH, and BPA concentration on the sorption efficiency was examined. All analyses were carried out according to Standard Methods. The sample size was performed using Box-Benken design and also optimization of BPA removal was done using response surface methodology (RSM). The results showed that the BPA adsorption increases with increasing of contact time and BPA concentration. However, it decreases with higher pH. More adsorption efficiency of a banana peel is very smaller than a bone ash so that BPA removal for bone ash and banana peel is 62 and 28 percent, respectively. It is concluded that a bone ash has a good ability for the BPA adsorption.
Keywords: Adsorbent, banana peel, bisphenol A (BPA), bone ash, wastewater treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16511744 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks
Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz
Abstract:
Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.Keywords: Customer relationship management, churn prediction, telecom industry, deep learning, Artificial Neural Networks, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7591743 The Early Stages of the Standardization of Finnish Building Sector
Authors: A. Soikkeli
Abstract:
Early 20th century functionalism aimed at generalising living and rationalising construction, thus laying the foundation for the standardisation of construction components and products. From the 1930s onwards, all measurement and quality instructions for building products, different types of building components, descriptions of working methods complying with advisable building practises, planning, measurement and calculation guidelines, terminology, etc. were called standards. Standardisation was regarded as a necessary prerequisite for the mass production of housing.
This article examines the early stages of standardisation in Finland in the 1940s and 1950s, as reflected on the working history of an individual architect, ErkkiKoiso-Kanttila (1914-2006). In 1950 Koiso-Kanttila was appointed the Head of Design of the Finnish Association of Architects’ Building Standards Committee, a position which he held until 1958. His main responsibilities were the development of the RT Building Information File and compiling of the files.
Keywords: Architecture, Post WWII period, Reconstruction, Standardisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15551742 Noise Removal from Surface Respiratory EMG Signal
Authors: Slim Yacoub, Kosai Raoof
Abstract:
The aim of this study was to remove the two principal noises which disturb the surface electromyography signal (Diaphragm). These signals are the electrocardiogram ECG artefact and the power line interference artefact. The algorithm proposed focuses on a new Lean Mean Square (LMS) Widrow adaptive structure. These structures require a reference signal that is correlated with the noise contaminating the signal. The noise references are then extracted : first with a noise reference mathematically constructed using two different cosine functions; 50Hz (the fundamental) function and 150Hz (the first harmonic) function for the power line interference and second with a matching pursuit technique combined to an LMS structure for the ECG artefact estimation. The two removal procedures are attained without the use of supplementary electrodes. These techniques of filtering are validated on real records of surface diaphragm electromyography signal. The performance of the proposed methods was compared with already conducted research results.Keywords: Surface EMG, Adaptive, Matching Pursuit, Powerline interference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43241741 An Integrated Cognitive Performance Evaluation Framework for Urban Search and Rescue Applications
Authors: Antonio D. Lee, Steven X. Jiang
Abstract:
A variety of techniques and methods are available to evaluate cognitive performance in Urban Search and Rescue (USAR) applications. However, traditional cognitive performance evaluation techniques typically incorporate either the conscious or systematic aspect, failing to take into consideration the subconscious or intuitive aspect. This leads to incomplete measures and produces ineffective designs. In order to fill the gaps in past research, this study developed a theoretical framework to facilitate the integration of situation awareness (SA) and intuitive pattern recognition (IPR) to enhance the cognitive performance representation in USAR applications. This framework provides guidance to integrate both SA and IPR in order to evaluate the cognitive performance of the USAR responders. The application of this framework will help improve the system design.Keywords: Cognitive performance, intuitive pattern recognition, situation awareness, urban search and rescue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14941740 Podcasting as an Instructional Method: Case Study of a School Psychology Class
Authors: Jeff A. Tysinger, Dawn P. Tysinger
Abstract:
There has been considerable growth in online learning. Researchers continue to explore the impact various methods of delivery. Podcasting is a popular method for sharing information. The purpose of this study was to examine the impact of student motivation and the perception of the acquisition of knowledge in an online environment of a skill-based class. 25 students in a school psychology graduate class completed a pretest and posttest examining podcast use and familiarity. In addition, at the completion of the course they were administered a modified version of the Instructional Materials Motivation Survey. The four subscales were examined (attention, relevance, confidence, and satisfaction). Results indicated that students are motivated, they perceive podcasts as positive instructional tools, and students are successful in acquiring the needed information. Additional benefits of using podcasts and recommendations in school psychology training are discussed.Keywords: Motivation, online learning, pedagogy, podcast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7631739 A Comparison between Heuristic and Meta-Heuristic Methods for Solving the Multiple Traveling Salesman Problem
Authors: San Nah Sze, Wei King Tiong
Abstract:
The multiple traveling salesman problem (mTSP) can be used to model many practical problems. The mTSP is more complicated than the traveling salesman problem (TSP) because it requires determining which cities to assign to each salesman, as well as the optimal ordering of the cities within each salesman's tour. Previous studies proposed that Genetic Algorithm (GA), Integer Programming (IP) and several neural network (NN) approaches could be used to solve mTSP. This paper compared the results for mTSP, solved with Genetic Algorithm (GA) and Nearest Neighbor Algorithm (NNA). The number of cities is clustered into a few groups using k-means clustering technique. The number of groups depends on the number of salesman. Then, each group is solved with NNA and GA as an independent TSP. It is found that k-means clustering and NNA are superior to GA in terms of performance (evaluated by fitness function) and computing time.Keywords: Multiple Traveling Salesman Problem, GeneticAlgorithm, Nearest Neighbor Algorithm, k-Means Clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32301738 Automation of Fishhooks Objective Measures
Authors: S. Chabrier, G. Molle, E. Conte, C. Carlier
Abstract:
Fishing has always been an essential component of the Polynesians- life. Fishhooks, mostly in pearl shell, found during archaeological excavations are the artifacts related to this activity the most numerous. Thanks to them, we try to reconstruct the ancient techniques of resources exploitation, inside the lagoons and offshore. They can also be used as chronological and cultural indicators. The shapes and dimensions of these artifacts allow comparisons and classifications used in both functional approach and chrono-cultural perspective. Hence it is very important for the ethno-archaeologists to dispose of reliable methods and standardized measurement of these artifacts. Such a reliable objective and standardized method have been previously proposed. But this method cannot be envisaged manually because of the very important time required to measure each fishhook manually and the quantity of fishhooks to measure (many hundreds). We propose in this paper a detailed acquisition protocol of fishhooks and an automation of every step of this method. We also provide some experimental results obtained on the fishhooks coming from three archaeological excavations sites.Keywords: Automated measures, extraction, fishhook, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16001737 Estimation of Tensile Strength for Granitic Rocks by Using Discrete Element Approach
Authors: Aliakbar Golshani, Armin Ramezanzad
Abstract:
Tensile strength which is an important parameter of the rock for engineering applications is difficult to measure directly through physical experiment (i.e. uniaxial tensile test). Therefore, indirect experimental methods such as Brazilian test have been taken into consideration and some relations have been proposed in order to obtain the tensile strength for rocks indirectly. In this research, to calculate numerically the tensile strength for granitic rocks, Particle Flow Code in three-dimension (PFC3D) software were used. First, uniaxial compression tests were simulated and the tensile strength was determined for Inada granite (from a quarry in Kasama, Ibaraki, Japan). Then, by simulating Brazilian test condition for Inada granite, the tensile strength was indirectly calculated again. Results show that the tensile strength calculated numerically agrees well with the experimental results obtained from uniaxial tensile tests on Inada granite samples.
Keywords: Numerical Simulation, PFC, Tensile Strength, Brazilian Test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7191736 Optimal Power Allocation to Diversity Branches of Cooperative MISO Sensor Networks
Authors: Rooholah Hasanizadeh, Saadan Zokaei
Abstract:
In the context of sensor networks, where every few dB saving counts, the novel node cooperation schemes are reviewed where MIMO techniques play a leading role. These methods could be treated as joint approach for designing physical layer of their communication scenarios. Then we analyzed the BER performance of transmission diversity schemes under a general fading channel model and proposed a power allocation strategy to the transmitting sensor nodes. This approach is then compared to an equal-power assignment method and its performance enhancement is verified by the simulation. Another key point of the contribution lies in the combination of optimal power allocation and sensor nodes- cooperation in a transmission diversity regime (MISO). Numerical results are given through figures to demonstrate the optimality and efficiency of proposed combined approach.Keywords: Optimal power allocation, cooperative MISO scheme, sensor networks, diversity branch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14101735 Enhancement of Low Contrast Satellite Images using Discrete Cosine Transform and Singular Value Decomposition
Authors: A. K. Bhandari, A. Kumar, P. K. Padhy
Abstract:
In this paper, a novel contrast enhancement technique for contrast enhancement of a low-contrast satellite image has been proposed based on the singular value decomposition (SVD) and discrete cosine transform (DCT). The singular value matrix represents the intensity information of the given image and any change on the singular values change the intensity of the input image. The proposed technique converts the image into the SVD-DCT domain and after normalizing the singular value matrix; the enhanced image is reconstructed by using inverse DCT. The visual and quantitative results suggest that the proposed SVD-DCT method clearly shows the increased efficiency and flexibility of the proposed method over the exiting methods such as Linear Contrast Stretching technique, GHE technique, DWT-SVD technique, DWT technique, Decorrelation Stretching technique, Gamma Correction method based techniques.Keywords: Singular Value Decomposition (SVD), discretecosine transforms (DCT), image equalization and satellite imagecontrast enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38371734 Signal and Harmonic Analysis of a Compressor Blade for Identification of the Nonlinear Frequency Vibration
Authors: Farhad Asadi, Gholamhasan Payganeh
Abstract:
High-speed turbomachine can experience significant centrifugal and gas bending loads. As a result, the compressor blades must be able to resist high-frequency oscillations due to surge or stall condition in flow field dynamics. In this paper, vibration characteristics of the 6th stage blade compressor have been examined in detail with, using 3-D finite element (FE) methods. The primary aim of this article is to gain an understanding of nonlinear vibration induced in the blade against different loading conditions. The results indicate the nonlinear behavior of the blade as a result of the amplitude of resonances or material properties. Since one of the leading causes of turbine blade failure is high cycle fatigue, simulations were started by specifying the stress distribution in the blade due to the centrifugal rotation. Next, resonant frequencies and critical speeds of the blade were defined by modal analysis. Finally, the harmonic analysis was simulated on the blades.
Keywords: Nonlinear vibration, modal analysis, resonance, frequency response, compressor blade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6121733 H.264 Video Privacy Protection Method Using Regions of Interest Encryption
Authors: Taekyun Doo, Cheongmin Ji, Manpyo Hong
Abstract:
Like a closed-circuit television (CCTV), video surveillance system is widely placed for gathering video from unspecified people to prevent crime, surveillance, or many other purposes. However, abuse of CCTV brings about concerns of personal privacy invasions. In this paper, we propose an encryption method to protect personal privacy system in H.264 compressed video bitstream with encrypting only regions of interest (ROI). There is no need to change the existing video surveillance system. In addition, encrypting ROI in compressed video bitstream is a challenging work due to spatial and temporal drift errors. For this reason, we propose a novel drift mitigation method when ROI is encrypted. The proposed method was implemented by using JM reference software based on the H.264 compressed videos, and experimental results show the verification of our proposed methods and its effectiveness.
Keywords: H.264/AVC, video encryption, privacy protection, post compression, region of interest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15671732 Two DEA Based Ant Algorithms for CMS Problems
Authors: Hossein Ali Akbarpour, Fatemeh Dadkhah
Abstract:
This paper considers a multi criteria cell formation problem in Cellular Manufacturing System (CMS). Minimizing the number of voids and exceptional elements in cells simultaneously are two proposed objective functions. This problem is an Np-hard problem according to the literature, and therefore, we can-t find the optimal solution by an exact method. In this paper we developed two ant algorithms, Ant Colony Optimization (ACO) and Max-Min Ant System (MMAS), based on Data Envelopment Analysis (DEA). Both of them try to find the efficient solutions based on efficiency concept in DEA. Each artificial ant is considered as a Decision Making Unit (DMU). For each DMU we considered two inputs, the values of objective functions, and one output, the value of one for all of them. In order to evaluate performance of proposed methods we provided an experimental design with some empirical problem in three different sizes, small, medium and large. We defined three different criteria that show which algorithm has the best performance.Keywords: Ant algorithm, Cellular manufacturing system, Data envelopment analysis, Efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16521731 Reinforced Concrete, Problems and Solutions: A Literature Review
Authors: Omar Alhamad, Waleed Eid
Abstract:
Reinforced concrete is a concrete lined with steel so that the materials work together in the resistance forces. Reinforcement rods or mesh are used for tensile, shear, and sometimes intense pressure in a concrete structure. Reinforced concrete is subject to many natural problems or industrial errors. The result of these problems is that it reduces the efficiency of the reinforced concrete or its usefulness. Some of these problems are cracks, earthquakes, high temperatures or fires, as well as corrosion of reinforced iron inside reinforced concrete. There are also factors of ancient buildings or monuments that require some techniques to preserve them. This research presents some general information about reinforced concrete, the pros and cons of reinforced concrete, and then presents a series of literary studies of some of the late published researches on the subject of reinforced concrete and how to preserve it, propose solutions or treatments for the treatment of reinforced concrete problems, raise efficiency and quality for a longer period. These studies have provided advanced and modern methods and techniques in the field of reinforced concrete.
Keywords: Reinforced concrete, treatment, concrete, corrosion, seismic, cracks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24501730 Multi-objective Optimization of Graph Partitioning using Genetic Algorithm
Authors: M. Farshbaf, M. R. Feizi-Derakhshi
Abstract:
Graph partitioning is a NP-hard problem with multiple conflicting objectives. The graph partitioning should minimize the inter-partition relationship while maximizing the intra-partition relationship. Furthermore, the partition load should be evenly distributed over the respective partitions. Therefore this is a multiobjective optimization problem (MOO). One of the approaches to MOO is Pareto optimization which has been used in this paper. The proposed methods of this paper used to improve the performance are injecting best solutions of previous runs into the first generation of next runs and also storing the non-dominated set of previous generations to combine with later generation's non-dominated set. These improvements prevent the GA from getting stuck in the local optima and increase the probability of finding more optimal solutions. Finally, a simulation research is carried out to investigate the effectiveness of the proposed algorithm. The simulation results confirm the effectiveness of the proposed method.Keywords: Graph partitioning, Genetic algorithm, Multiobjective optimization, Pareto front.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19671729 The Content of Acrylamide in Deep-fat Fried, Shallow Fried and Roasted Potatoes
Authors: Irisa Murniece, Daina Karklina, Ruta Galoburda
Abstract:
Potato is one of the main components of warm meals in Latvia. Consumption of fried potatoes in Latvia is the highest comparing to Nordic and other Baltic countries. Therefore acrylamide (AA) intake coming from fried potatoes in population might be high as well. The aim of the research was to determine AA content in traditionally cooked potatoes bred and cultivated in Latvia. Five common Latvian potato varieties were selected: Lenora, Brasla, Imanta, Zile and Madara. A two-year research was conducted during two periods: just after harvesting and after six months of storage. The following cooking methods were used: shallow frying (150 ± 5 °C); deep-fat frying (180 ± 5 °C) and roasting (210 ± 5 °C). Time and temperature was recorded during frying. AA was extracted from potatoes by solid phase extraction and AA content was determined by LC-MS/MS. AA content significantly differs (p<0.05) in potatoes per variety, per each frying method and per time.
Keywords: potato, frying, roasting, variety, acrylamide, Latvia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17871728 The Application of Adaptive Tabu Search Algorithm and Averaging Model to the Optimal Controller Design of Buck Converters
Authors: T. Sopapirm, K-N. Areerak, K-L. Areerak, A. Srikaew
Abstract:
The paper presents the applications of artificial intelligence technique called adaptive tabu search to design the controller of a buck converter. The averaging model derived from the DQ and generalized state-space averaging methods is applied to simulate the system during a searching process. The simulations using such averaging model require the faster computational time compared with that of the full topology model from the software packages. The reported model is suitable for the work in the paper in which the repeating calculation is needed for searching the best solution. The results will show that the proposed design technique can provide the better output waveforms compared with those designed from the classical method.Keywords: Buck converter, adaptive tabu search, DQ method, generalized state-space averaging method, modeling and simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840