Search results for: Werner Reichenfelser
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: Werner Reichenfelser

4 Effect of FES Cycling Training on Spasticity in Spinal Cord Injured Subjects

Authors: Werner Reichenfelser, Harald Hackl, Josef Hufgard, Karin Gstaltner, Margit Gfoehler

Abstract:

Training with Functional Electrical Stimulation (FES) has both physiological and psychological benefits for spinal cord injured subjects. Commonly used methods for quantification of spasticity have shown controversial reliability. In this study we propose a method for quick determination of spasticity in spinal cord injured subjects on a cycling and measurement system. 23 patients did training sessions on an instrumented mobile FES cycle three times a week over two months as part of their clinical rehabilitation program. Spasticity (MAS) and the legs resistance to the pedaling motion were assessed before and after the FES training and measurements were done on the subjects ability to pedal with our without motor assistance. Measurements with test persons with incomplete spastic paraplegia have shown that spasticity is decreased after a 30 min cycling training with functional electrical stimulation (FES).

Keywords: Spasticity, paraplegia, spinal cord injury, functional electrical stimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
3 Central Pattern Generator Incorporating the Actuator Dynamics for a Hexapod Robot

Authors: Valeri A. Makarov, Ezequiel Del Rio, Manuel G. Bedia, Manuel G. Velarde, Werner Ebeling

Abstract:

We proposed the use of a Toda-Rayleigh ring as a central pattern generator (CPG) for controlling hexapodal robots. We show that the ring composed of six Toda-Rayleigh units coupled to the limb actuators reproduces the most common hexapodal gaits. We provide an electrical circuit implementation of the CPG and test our theoretical results obtaining fixed gaits. Then we propose a method of incorporation of the actuator (motor) dynamics in the CPG. With this approach we close the loop CPG – environment – CPG, thus obtaining a decentralized model for the leg control that does not require higher level intervention to the CPG during locomotion in a nonhomogeneous environments. The gaits generated by the novel CPG are not fixed, but adapt to the current robot bahvior.

Keywords: Central pattern generator, electrical circuit, hexapod robot

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
2 Lung Parasites in Stone Martens (Martes foina L.) from Bulgaria

Authors: Vassilena Dakova, Mariana Panayotova-Pencheva

Abstract:

The present work focused on the study of pulmonary helminth-fauna of the stone marten in Bulgaria in terms of which the data are little. For the purpose, four stone martens were helminthologically necropsied according to the common technique. In addition, some of the injured lung parts were investigated after their boiling in lactic acid and subsequent compression. Four nematode species from different families of order Strongylida and Trichocephalida were found in the lungs. These were Crenosoma petrowi Morosov, 1939; Eucoleus aerophilus Creplin, 1839; Filaroides martis Werner, 1782 and Sobolevingylus petrowi Romanov, 1952. Some of the parasite structures with taxonomic importance were measured and described. According to our best knowledge, the species F. martis and S. petrowi are recorded for the first time as a part of the helminth-fauna of Southeast Europe and Bulgaria in particular.

Keywords: Bulgaria, Crenosoma petrowi, Eucoleus aerophilus, Filaroides martis, lung parasites, Sobolevingylus petrowi, stone martens.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754
1 A Computational Stochastic Modeling Formalism for Biological Networks

Authors: Werner Sandmann, Verena Wolf

Abstract:

Stochastic models of biological networks are well established in systems biology, where the computational treatment of such models is often focused on the solution of the so-called chemical master equation via stochastic simulation algorithms. In contrast to this, the development of storage-efficient model representations that are directly suitable for computer implementation has received significantly less attention. Instead, a model is usually described in terms of a stochastic process or a "higher-level paradigm" with graphical representation such as e.g. a stochastic Petri net. A serious problem then arises due to the exponential growth of the model-s state space which is in fact a main reason for the popularity of stochastic simulation since simulation suffers less from the state space explosion than non-simulative numerical solution techniques. In this paper we present transition class models for the representation of biological network models, a compact mathematical formalism that circumvents state space explosion. Transition class models can also serve as an interface between different higher level modeling paradigms, stochastic processes and the implementation coded in a programming language. Besides, the compact model representation provides the opportunity to apply non-simulative solution techniques thereby preserving the possible use of stochastic simulation. Illustrative examples of transition class representations are given for an enzyme-catalyzed substrate conversion and a part of the bacteriophage λ lysis/lysogeny pathway.

Keywords: Computational Modeling, Biological Networks, Stochastic Models, Markov Chains, Transition Class Models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535