Search results for: real time data.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12975

Search results for: real time data.

10155 Space Time Processing with Adaptive STBC-OFDM Systems

Authors: F. Sarabchi, M. E. Kalantari

Abstract:

In this paper, Optimum adaptive loading algorithms are applied to multicarrier system with Space-Time Block Coding (STBC) scheme associated with space-time processing based on singular-value decomposition (SVD) of the channel matrix over Rayleigh fading channels. SVD method has been employed in MIMO-OFDM system in order to overcome subchannel interference. Chaw-s and Compello-s algorithms have been implemented to obtain a bit and power allocation for each subcarrier assuming instantaneous channel knowledge. The adaptive loaded SVD-STBC scheme is capable of providing both full-rate and full-diversity for any number of transmit antennas. The effectiveness of these techniques has demonstrated through the simulation of an Adaptive loaded SVDSTBC system, and the comparison shown that the proposed algorithms ensure better performance in the case of MIMO.

Keywords: OFDM, MIMO, SVD, STBC, Adaptive Loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
10154 Analyzing the Factors that Cause Parallel Performance Degradation in Parallel Graph-Based Computations Using Graph500

Authors: Mustafa Elfituri, Jonathan Cook

Abstract:

Recently, graph-based computations have become more important in large-scale scientific computing as they can provide a methodology to model many types of relations between independent objects. They are being actively used in fields as varied as biology, social networks, cybersecurity, and computer networks. At the same time, graph problems have some properties such as irregularity and poor locality that make their performance different than regular applications performance. Therefore, parallelizing graph algorithms is a hard and challenging task. Initial evidence is that standard computer architectures do not perform very well on graph algorithms. Little is known exactly what causes this. The Graph500 benchmark is a representative application for parallel graph-based computations, which have highly irregular data access and are driven more by traversing connected data than by computation. In this paper, we present results from analyzing the performance of various example implementations of Graph500, including a shared memory (OpenMP) version, a distributed (MPI) version, and a hybrid version. We measured and analyzed all the factors that affect its performance in order to identify possible changes that would improve its performance. Results are discussed in relation to what factors contribute to performance degradation.

Keywords: Graph computation, Graph500 benchmark, parallel architectures, parallel programming, workload characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 548
10153 Danger Theory and Intelligent Data Processing

Authors: Anjum Iqbal, Mohd Aizaini Maarof

Abstract:

Artificial Immune System (AIS) is relatively naive paradigm for intelligent computations. The inspiration for AIS is derived from natural Immune System (IS). Classically it is believed that IS strives to discriminate between self and non-self. Most of the existing AIS research is based on this approach. Danger Theory (DT) argues this approach and proposes that IS fights against danger producing elements and tolerates others. We, the computational researchers, are not concerned with the arguments among immunologists but try to extract from it novel abstractions for intelligent computation. This paper aims to follow DT inspiration for intelligent data processing. The approach may introduce new avenue in intelligent processing. The data used is system calls data that is potentially significant in intrusion detection applications.

Keywords: artificial immune system, danger theory, intelligent processing, system calls

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
10152 Controller Design for Active Suspension System of ¼ Car with Unknown Mass and Time-Delay

Authors: Ali Al-Zughaibi, Huw Davies

Abstract:

The purpose of this paper is to present a modeling and control of a quarter-car active suspension system with unknown mass, unknown time-delay and road disturbance. The objective of designing the controller is to derive a control law to achieve stability of the system and convergence that can considerably improve ride comfort and road disturbance handling. This is accomplished by using Routh-Hurwitz criterion based on defined parameters. Mathematical proof is given to show the ability of the designed controller to ensure the target of design, implementation with the active suspension system and enhancement dispersion oscillation of the system despite these problems. Simulations were also performed to control quarter car suspension, where the results obtained from these simulations verify the validity of the proposed design.

Keywords: Active suspension system, disturbance rejection, dynamic uncertainty, time-delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5230
10151 Low-Cost Monitoring System for Hydroponic Urban Vertical Farms

Authors: Francesco Ruscio, Paolo Paoletti, Jens Thomas, Paul Myers, Sebastiano Fichera

Abstract:

This paper presents the development of a low-cost monitoring system for a hydroponic urban vertical farm, enabling its automation and a quantitative assessment of the farm performance. Urban farming has seen increasing interest in the last decade thanks to the development of energy efficient and affordable LED lights; however, the optimal configuration of such systems (i.e. amount of nutrients, light-on time, ambient temperature etc.) is mostly based on the farmers’ experience and empirical guidelines. Moreover, even if simple, the maintenance of such systems is labor intensive as it requires water to be topped-up periodically, mixing of the nutrients etc. To unlock the full potential of urban farming, a quantitative understanding of the role that each variable plays in the growth of the plants is needed, together with a higher degree of automation. The low-cost monitoring system proposed in this paper is a step toward filling this knowledge and technological gap, as it enables collection of sensor data related to water and air temperature, water level, humidity, pressure, light intensity, pH and electric conductivity without requiring any human intervention. More sensors and actuators can also easily be added thanks to the modular design of the proposed platform. Data can be accessed remotely via a simple web interface. The proposed platform can be used both for quantitatively optimizing the setup of the farms and for automating some of the most labor-intensive maintenance activities. Moreover, such monitoring system can also potentially be used for high-level decision making, once enough data are collected.

Keywords: Automation, hydroponics, internet of things, monitoring system, urban farming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
10150 Why We Are Taller in the Morning than Going to Bed at Night – An in vivo and in vitro Study

Authors: Harcharan Singh Ranu

Abstract:

Intradiscal and intervertebral pressure transducers were developed. They were used to map the pressures in the nucleus and within the annulus of the human spinal segments. Their stressrelaxation were recorded over a period of time for nucleus pressure, applied load, and peripherial strain against time. The results show that for normal discs, pressures in the nucleus are viscoelastic in nature with the applied compressive load. Mechanical strains which develop around the periphery of the vertebral body are also viscoelastic with the applied compressive load. Applied compressive load against time also shows viscoelastic behavior. However, annulus does not respond viscoelastically with the applied load. It showed a linear response to compressive loading.

Keywords: Intradiscal pressure transducer (IDPT), intervertebral pressure transducer (IVPT), mechanical strains of vertebral bone, viscoelasticity of human spinal disc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3272
10149 Organizational Data Security in Perspective of Ownership of Mobile Devices Used by Employees for Works

Authors: B. Ferdousi, J. Bari

Abstract:

With advancement of mobile computing, employees are increasingly doing their job-related works using personally owned mobile devices or organization owned devices. The Bring Your Own Device (BYOD) model allows employees to use their own mobile devices for job-related works, while Corporate Owned, Personally Enabled (COPE) model allows both organizations and employees to install applications onto organization-owned mobile devices used for job-related works. While there are many benefits of using mobile computing for job-related works, there are also serious concerns of different levels of threats to the organizational data security. Consequently, it is crucial to know the level of threat to the organizational data security in the BOYD and COPE models. It is also important to ensure that employees comply with the organizational data security policy. This paper discusses the organizational data security issues in perspective of ownership of mobile devices used by employees, especially in BYOD and COPE models. It appears that while the BYOD model has many benefits, there are relatively more data security risks in this model than in the COPE model. The findings also showed that in both BYOD and COPE environments, a more practical approach towards achieving secure mobile computing in organizational setting is through the development of comprehensive cybersecurity policies balancing employees’ need for convenience with organizational data security. The study helps to figure out the compliance and the risks of security breach in BYOD and COPE models.

Keywords: Data security, mobile computing, BYOD, COPE, cybersecurity policy, cybersecurity compliance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 373
10148 An Improved Scheduling Strategy in Cloud Using Trust Based Mechanism

Authors: D. Sumathi, P. Poongodi

Abstract:

Cloud Computing refers to applications delivered as services over the internet, and the datacenters that provide those services with hardware and systems software. These were earlier referred to as Software as a Service (SaaS). Scheduling is justified by job components (called tasks), lack of information. In fact, in a large fraction of jobs from machine learning, bio-computing, and image processing domains, it is possible to estimate the maximum time required for a task in the job. This study focuses on Trust based scheduling to improve cloud security by modifying Heterogeneous Earliest Finish Time (HEFT) algorithm. It also proposes TR-HEFT (Trust Reputation HEFT) which is then compared to Dynamic Load Scheduling.

Keywords: Software as a Service (SaaS), Trust, Heterogeneous Earliest Finish Time (HEFT) algorithm, Dynamic Load Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
10147 A Comprehensive Key Performance Indicators Dashboard for Emergency Medical Services

Authors: G. Feletti, D. Tedesco, P. Trucco

Abstract:

The present study aims to develop a dashboard of Key Performance Indicators (KPI) to enhance information and predictive capabilities in Emergency Medical Services (EMS) systems, supporting both operational and strategic decisions of different actors. The employed research methodology consists of a first phase of revision of the technical-scientific literature concerning the indicators currently in use for the performance measurement of EMS. It emerges that current studies focus on two distinct areas and independent objectives: the ambulance service, a fundamental component of pre-hospital health treatment, and the patient care in the Emergency Department (ED). Conversely, the perspective proposed by this study is to consider an integrated view of the ambulance service process and the ED process, both essential to ensure high quality of care and patient safety. Thus, the proposal covers the end-to-end healthcare service process and, as such, allows considering the interconnection between the two EMS processes, the pre-hospital and hospital ones, connected by the assignment of the patient to a specific ED. In this way, it is possible to optimize the entire patient management. Therefore, attention is paid even to EMS aspects that in current literature tend to be neglected or underestimated. In particular, the integration of the two processes enables to evaluate the advantage of an ED selection decision having visibility on EDs’ saturation status and therefore considering, besides the distance, the available resources and the expected waiting times. Starting from a critical review of the KPIs proposed in extant literature, the design of the dashboard was carried out: the high number of analyzed KPIs was reduced by eliminating firstly the ones not in line with the aim of the study and then the ones supporting a similar functionality. The KPIs finally selected were tested on a realistic dataset, which draw us to exclude additional indicators due to unavailability of data required for their computation. The final dashboard, that was discussed and validated by experts in the field, includes a variety of KPIs able to support operational and planning decisions, early warning, and citizens’ awareness on EDs accessibility in real time. The association of each KPI to the EMS phase it refers to enabled the design of a well-balanced dashboard, covering both efficiency and effectiveness performance objectives of the entire EMS process. Indeed, just the initial phases related to the interconnection between ambulance service and patient care are covered by traditional KPIs. Future developments could be directed to building a hierarchical dashboard, composed by a high-level minimal set of KPIs for measuring the basic performance of the EMS system, at an aggregate level, and lower levels of KPIs that bring additional and more detailed information on specific performance dimensions or EMS phases.

Keywords: Emergency Medical Services, Key Performance Indicators, Dashboard, Decision Support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 472
10146 A Novel Web Metric for the Evaluation of Internet Trends

Authors: Radek Malinský, Ivan Jelínek

Abstract:

Web 2.0 (social networking, blogging and online forums) can serve as a data source for social science research because it contains vast amount of information from many different users. The volume of that information has been growing at a very high rate and becoming a network of heterogeneous data; this makes things difficult to find and is therefore not almost useful. We have proposed a novel theoretical model for gathering and processing data from Web 2.0, which would reflect semantic content of web pages in better way. This article deals with the analysis part of the model and its usage for content analysis of blogs. The introductory part of the article describes methodology for the gathering and processing data from blogs. The next part of the article is focused on the evaluation and content analysis of blogs, which write about specific trend.

Keywords: Blog, Sentiment Analysis, Web 2.0, Webometrics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3544
10145 Smartphone-Based Human Activity Recognition by Machine Learning Methods

Authors: Yanting Cao, Kazumitsu Nawata

Abstract:

As smartphones are continually upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described more refined, complex and detailed. In this context, we analyzed a set of experimental data, obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model become extremely challenging. After a series of feature selection and parameters adjustments, a well-performed SVM classifier has been trained. 

Keywords: smart sensors, human activity recognition, artificial intelligence, SVM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
10144 A Design and Implementation Model for Web Caching Using Server “URL Rewriting“

Authors: Mostafa E. Saleh, A. Abdel Nabi, A. Baith Mohamed

Abstract:

In order to make surfing the internet faster, and to save redundant processing load with each request for the same web page, many caching techniques have been developed to reduce latency of retrieving data on World Wide Web. In this paper we will give a quick overview of existing web caching techniques used for dynamic web pages then we will introduce a design and implementation model that take advantage of “URL Rewriting" feature in some popular web servers, e.g. Apache, to provide an effective approach of caching dynamic web pages.

Keywords: Web Caching, URL Rewriting, Optimizing Web Performance, Dynamic Web Pages Loading Time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
10143 A Simplified Analytical Approach for Coupled Injection Method of Colloidal Silica with Time Dependent Properties

Authors: M. A. Nozari, R. Ziaie Moayed

Abstract:

Electro-osmosis in clayey soils and sediments, for purposes of clay consolidation, dewatering, or cleanup, and electro injection in porous media is widespread recent decades. It is experimentally found that the chemical properties of porous media especially PH change the characteristics of media. Electro-osmotic conductivity is a function of soil and grout material chemistry, altering with time. Many numerical approaches exist to simulate the of electro kinetic flow rate considering chemical changes. This paper presents a simplified analytical solution for constant flow rate based on varying electro osmotic conductivity and time dependent viscosity for injection of colloidal silica.

Keywords: Colloidal silica, electro-osmosis, pH, viscosity, zeta potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
10142 Design and Application of NFC-Based Identity and Access Management in Cloud Services

Authors: Shin-Jer Yang, Kai-Tai Yang

Abstract:

In response to a changing world and the fast growth of the Internet, more and more enterprises are replacing web-based services with cloud-based ones. Multi-tenancy technology is becoming more important especially with Software as a Service (SaaS). This in turn leads to a greater focus on the application of Identity and Access Management (IAM). Conventional Near-Field Communication (NFC) based verification relies on a computer browser and a card reader to access an NFC tag. This type of verification does not support mobile device login and user-based access management functions. This study designs an NFC-based third-party cloud identity and access management scheme (NFC-IAM) addressing this shortcoming. Data from simulation tests analyzed with Key Performance Indicators (KPIs) suggest that the NFC-IAM not only takes less time in identity identification but also cuts time by 80% in terms of two-factor authentication and improves verification accuracy to 99.9% or better. In functional performance analyses, NFC-IAM performed better in salability and portability. The NFC-IAM App (Application Software) and back-end system to be developed and deployed in mobile device are to support IAM features and also offers users a more user-friendly experience and stronger security protection. In the future, our NFC-IAM can be employed to different environments including identification for mobile payment systems, permission management for remote equipment monitoring, among other applications.

Keywords: Cloud service, multi-tenancy, NFC, IAM, mobile device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1118
10141 Electronic Markets has Weakened the “Tradeoff between Reach and Richness“ in the Internet

Authors: Haroon Altarawneh, Sattam Allahawiah

Abstract:

This paper has two main ideas. Firstly, it describes Evans and Wurster-s concepts “the trade-off between reach and richness", and relates them to the impact of technology on the virtual markets. Authors Evans and Wurster see the transfer of information as a 'trade'off between richness and reach-. Reach refers to the number of people who share particular information, with Richness ['Rich'] being a more complex concept combining: bandwidth, customization, interactivity, reliability, security and currency. Traditional shopping limits the number of shops the shopper is able to visit due to time and other cost constraints; the time spent traveling consequently leaves the shopper with less time to evaluate the product. The paper concludes that although the Web provides Reach, offering Richness and the sense of community required for creating and sustaining relationships with potential clients could be difficult.

Keywords: Internet, Web sites, Richness and Reach, Ecommerce, virtual markets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3766
10140 Simulated Annealing Algorithm for Data Aggregation Trees in Wireless Sensor Networks and Comparison with Genetic Algorithm

Authors: Ladan Darougaran, Hossein Shahinzadeh, Hajar Ghotb, Leila Ramezanpour

Abstract:

In ad hoc networks, the main issue about designing of protocols is quality of service, so that in wireless sensor networks the main constraint in designing protocols is limited energy of sensors. In fact, protocols which minimize the power consumption in sensors are more considered in wireless sensor networks. One approach of reducing energy consumption in wireless sensor networks is to reduce the number of packages that are transmitted in network. The technique of collecting data that combines related data and prevent transmission of additional packages in network can be effective in the reducing of transmitted packages- number. According to this fact that information processing consumes less power than information transmitting, Data Aggregation has great importance and because of this fact this technique is used in many protocols [5]. One of the Data Aggregation techniques is to use Data Aggregation tree. But finding one optimum Data Aggregation tree to collect data in networks with one sink is a NP-hard problem. In the Data Aggregation technique, related information packages are combined in intermediate nodes and form one package. So the number of packages which are transmitted in network reduces and therefore, less energy will be consumed that at last results in improvement of longevity of network. Heuristic methods are used in order to solve the NP-hard problem that one of these optimization methods is to solve Simulated Annealing problems. In this article, we will propose new method in order to build data collection tree in wireless sensor networks by using Simulated Annealing algorithm and we will evaluate its efficiency whit Genetic Algorithm.

Keywords: Data aggregation, wireless sensor networks, energy efficiency, simulated annealing algorithm, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
10139 Encoding and Compressing Data for Decreasing Number of Switches in Baseline Networks

Authors: Mohammad Ali Jabraeil Jamali, Ahmad Khademzadeh, Hasan Asil, Amir Asil

Abstract:

This method decrease usage power (expenditure) in networks on chips (NOC). This method data coding for data transferring in order to reduces expenditure. This method uses data compression reduces the size. Expenditure calculation in NOC occurs inside of NOC based on grown models and transitive activities in entry ports. The goal of simulating is to weigh expenditure for encoding, decoding and compressing in Baseline networks and reduction of switches in this type of networks. KeywordsNetworks on chip, Compression, Encoding, Baseline networks, Banyan networks.

Keywords: Networks on chip, Compression, Encoding, Baseline networks, Banyan networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
10138 Noninvasive Disease Diagnosis through Breath Analysis Using DNA-Functionalized SWNT Sensor Array

Authors: Wenjun Zhang, Yunqing Du, Ming L. Wang

Abstract:

Noninvasive diagnostics of diseases via breath analysis has attracted considerable scientific and clinical interest for many years and become more and more promising with the rapid advancements in nanotechnology and biotechnology. The volatile organic compounds (VOCs) in exhaled breath, which are mainly blood borne, particularly provide highly valuable information about individuals’ physiological and pathophysiological conditions. Additionally, breath analysis is noninvasive, real-time, painless, and agreeable to patients. We have developed a wireless sensor array based on single-stranded DNA (ssDNA)-functionalized single-walled carbon nanotubes (SWNT) for the detection of a number of physiological indicators in breath. Seven DNA sequences were used to functionalize SWNT sensors to detect trace amount of methanol, benzene, dimethyl sulfide, hydrogen sulfide, acetone, and ethanol, which are indicators of heavy smoking, excessive drinking, and diseases such as lung cancer, breast cancer, and diabetes. Our test results indicated that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, and repeatability; and different molecules can be distinguished through pattern recognition enabled by this sensor array. Furthermore, the experimental sensing results are consistent with the Molecular Dynamics simulated ssDNAmolecular target interaction rankings. Thus, the DNA-SWNT sensor array has great potential to be applied in chemical or biomolecular detection for the noninvasive diagnostics of diseases and personal health monitoring.

Keywords: Breath analysis, DNA-SWNT sensor array, diagnosis, noninvasive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2837
10137 An Empirical Mode Decomposition Based Method for Action Potential Detection in Neural Raw Data

Authors: Sajjad Farashi, Mohammadjavad Abolhassani, Mostafa Taghavi Kani

Abstract:

Information in the nervous system is coded as firing patterns of electrical signals called action potential or spike so an essential step in analysis of neural mechanism is detection of action potentials embedded in the neural data. There are several methods proposed in the literature for such a purpose. In this paper a novel method based on empirical mode decomposition (EMD) has been developed. EMD is a decomposition method that extracts oscillations with different frequency range in a waveform. The method is adaptive and no a-priori knowledge about data or parameter adjusting is needed in it. The results for simulated data indicate that proposed method is comparable with wavelet based methods for spike detection. For neural signals with signal-to-noise ratio near 3 proposed methods is capable to detect more than 95% of action potentials accurately.

Keywords: EMD, neural data processing, spike detection, wavelet decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
10136 Seismic Analysis of Structurally Hybrid Wind Mill Tower

Authors: Atul K. Desai, Hemal J. Shah

Abstract:

The tall windmill towers are designed as monopole tower or lattice tower. In the present research, a 125-meter high hybrid tower which is a combination of lattice and monopole type is proposed. The response of hybrid tower is compared with conventional monopole tower. The towers were analyzed in finite element method software considering nonlinear seismic time history load. The synthetic seismic time history for different soil is derived using the SeismoARTIF software. From the present research, it is concluded that, in the hybrid tower, we are not getting resonance condition. The base shear is less in hybrid tower compared to monopole tower for different soil conditions.

Keywords: Dynamic analysis, hybrid wind mill tower, resonance condition, synthetic time history.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
10135 Physical Activity and Cognitive Functioning Relationship in Children

Authors: Comfort Mokgothu

Abstract:

This study investigated the relation between processing information and fitness level of active (fit) and sedentary (unfit) children drawn from rural and urban areas in Botswana. It was hypothesized that fit children would display faster simple reaction time (SRT), choice reaction times (CRT) and movement times (SMT). 60, third grade children (7.0 – 9.0 years) were initially selected and based upon fitness testing, 45 participated in the study (15 each of fit urban, unfit urban, fit rural). All children completed anthropometric measures, skinfold testing and submaximal cycle ergometer testing. The cognitive testing included SRT, CRT, SMT and Choice Movement Time (CMT) and memory sequence length. Results indicated that the rural fit group exhibited faster SMT than the urban fit and unfit groups. For CRT, both fit groups were faster than the unfit group. Collectively, the study shows that the relationship that exists between physical fitness and cognitive function amongst the elderly can tentatively be extended to the pediatric population. Physical fitness could be a factor in the speed at which we process information, including decision making, even in children.

Keywords: Decision making, fitness, information processing, reaction time, cognition movement time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 794
10134 DIFFER: A Propositionalization approach for Learning from Structured Data

Authors: Thashmee Karunaratne, Henrik Böstrom

Abstract:

Logic based methods for learning from structured data is limited w.r.t. handling large search spaces, preventing large-sized substructures from being considered by the resulting classifiers. A novel approach to learning from structured data is introduced that employs a structure transformation method, called finger printing, for addressing these limitations. The method, which generates features corresponding to arbitrarily complex substructures, is implemented in a system, called DIFFER. The method is demonstrated to perform comparably to an existing state-of-art method on some benchmark data sets without requiring restrictions on the search space. Furthermore, learning from the union of features generated by finger printing and the previous method outperforms learning from each individual set of features on all benchmark data sets, demonstrating the benefit of developing complementary, rather than competing, methods for structure classification.

Keywords: Machine learning, Structure classification, Propositionalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
10133 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force

Authors: L. Parisi

Abstract:

In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.

Keywords: Kinemic gait data, Neural networks, Hip joint implant, Hip arthroplasty, Rehabilitation Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
10132 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: Communication signal, feature extraction, holder coefficient, improved cloud model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
10131 Application of a Time-Frequency-Based Blind Source Separation to an Instantaneous Mixture of Secondary Radar Sources

Authors: M. Tria, M. Benidir, E. Chaumette

Abstract:

In Secondary Surveillance Radar (SSR) systems, it is more difficult to locate and recognise aircrafts in the neighbourhood of civil airports since aerial traffic becomes greater. Here, we propose to apply a recent Blind Source Separation (BSS) algorithm based on Time-Frequency Analysis, in order to separate messages sent by different aircrafts and falling in the same radar beam in reception. The above source separation method involves joint-diagonalization of a set of smoothed version of spatial Wigner-Ville distributions. The technique makes use of the difference in the t-f signatures of the nonstationary sources to be separated. Consequently, as the SSR sources emit different messages at different frequencies, the above fitted to this new application. We applied the technique in simulation to separate SSR replies. Results are provided at the end of the paper.

Keywords: Blind Source Separation, Time-Frequency Analysis, Secondary Radar

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
10130 Performance Analysis of the Subgroup Method for Collective I/O

Authors: Kwangho Cha, Hyeyoung Cho, Sungho Kim

Abstract:

As many scientific applications require large data processing, the importance of parallel I/O has been increasingly recognized. Collective I/O is one of the considerable features of parallel I/O and enables application programmers to easily handle their large data volume. In this paper we measured and analyzed the performance of original collective I/O and the subgroup method, the way of using collective I/O of MPI effectively. From the experimental results, we found that the subgroup method showed good performance with small data size.

Keywords: Collective I/O, MPI, parallel file system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
10129 The Expression of Lipoprotein Lipase Gene with Fat Accumulations and Serum Biochemical Levels in Betong (KU Line) and Broiler Chickens

Authors: W. Loongyai, N. Saengsawang, W. Danvilai, C. Kridtayopas, P. Sopannarath, C. Bunchasak

Abstract:

Betong chicken is a slow growing and a lean strain of chicken, while the rapid growth of broiler is accompanied by increased fat. We investigated the growth performance, fat accumulations, lipid serum biochemical levels and lipoprotein lipase (LPL) gene expression of female Betong (KU line) at the age of 4 and 6 weeks. A total of 80 female Betong chickens (KU line) and 80 female broiler chickens were reared under open system (each group had 4 replicates of 20 chicks per pen). The results showed that feed intake and average daily gain (ADG) of broiler chicken were significantly higher than Betong (KU line) (P < 0.01), while feed conversion ratio (FCR) of Betong (KU line) at week 6 were significantly lower than broiler chicken (P < 0.01) at 6 weeks. At 4 and 6 weeks, two birds per replicate were randomly selected and slaughtered. Carcass weight did not significantly differ between treatments; the percentage of abdominal fat and subcutaneous fat yield was higher in the broiler (P < 0.01) at 4 and 6 week. Total cholesterol and LDL level of broiler were higher than Betong (KU line) at 4 and 6 weeks (P < 0.05). Abdominal fat samples were collected for total RNA extraction. The cDNA was amplified using primers specific for LPL gene expression and analysed using real-time PCR. The results showed that the expression of LPL gene was not different when compared between Betong (KU line) and broiler chickens at the age of 4 and 6 weeks (P > 0.05). Our results indicated that broiler chickens had high growth rate and fat accumulation when compared with Betong (KU line) chickens, whereas LPL gene expression did not differ between breeds.

Keywords: Lipoprotein lipase gene, Betong (KU line), broiler, abdominal fat, gene expression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 959
10128 Study of Integrated Vehicle Image System Including LDW, FCW, and AFS

Authors: Yi-Feng Su, Chia-Tseng Chen, Hsueh-Lung Liao

Abstract:

The objective of this research is to develop an advanced driver assistance system characterized with the functions of lane departure warning (LDW), forward collision warning (FCW) and adaptive front-lighting system (AFS). The system is mainly configured a CCD/CMOS camera to acquire the images of roadway ahead in association with the analysis made by an image-processing unit concerning the lane ahead and the preceding vehicles. The input image captured by a camera is used to recognize the lane and the preceding vehicle positions by image detection and DROI (Dynamic Range of Interesting) algorithms. Therefore, the system is able to issue real-time auditory and visual outputs of warning when a driver is departing the lane or driving too close to approach the preceding vehicle unwittingly so that the danger could be prevented from occurring. During the nighttime, in addition to the foregoing warning functions, the system is able to control the bending light of headlamp to provide an immediate light illumination when making a turn at a curved lane and adjust the level automatically to reduce the lighting interference against the oncoming vehicles driving in the opposite direction by the curvature of lane and the vanishing point estimations. The experimental results show that the integrated vehicle image system is robust to most environments such as the lane detection and preceding vehicle detection average accuracy performances are both above 90 %.

Keywords: Lane mark detection, lane departure warning (LDW), dynamic range of interesting (DROI), forward collision warning (FCW), adaptive front-lighting system (AFS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
10127 On-line Recognition of Isolated Gestures of Flight Deck Officers (FDO)

Authors: Deniz T. Sodiri, Venkat V S S Sastry

Abstract:

The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.

Keywords: On-line Recognition Algorithm, IsolatedDynamic/Static Gesture Recognition, On-line Markovian/DynamicProgramming, Training in Virtual Environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
10126 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard

Abstract:

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Keywords: Activities of daily living, classification, internet of things, machine learning, smart home.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770