Search results for: knowledge management practices
1935 The Implementation of Anti-Circumvention Legislations in Thai Copyright System
Authors: Chuencheewin Yimfuang
Abstract:
The WIPO copyright treaty (WCT) was established by the World Intellectual Property Organisation (WIPO). This agreement required the contracting nations to provide adequate protection to technological measures to prevent massive copyright infringement in the internet system. Thailand had to implement the anti-circumvention rules into domestic legislation to comply with this international obligation. The purpose of this paper is to critically discuss the legislative standard under the WCT. It also aims to examine the legal development of technological protection measures in Thailand and demonstrate that the scope of prohibitions under the copyright Act 2022 (NO.5) is similar to the Digital Millennium Copyright Act 1998 (DMCA) of the United States (US). It could be found that the anti-circumvention laws of Thailand prohibit the circumvention of access-control technologies, and the regulation on trafficking circumvention devices has been added to the latest version of the Thai Copyright Act. These legislative evolutions have revealed the attempt to reinforce the legal protection of technological measures and copyright holders in order to be in line with global practices. However, the amendment has problems concerning the legal definitions of effective technological measure and the prohibited act of circumvention. The vagueness might affect the scope of protection and the boundary of prohibition. With this aspect, the DMCA will be evaluated and compared to gain guidelines for interpretation and enforcement in Thailand. The lessons and experiences learned from this study might be useful to correct the flaws or at least clarify the ambiguities embodied in Thai copyright legislation.
Keywords: Legal Development Technological Protection Measure, prohibition, circumvention, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811934 Undergraduates Learning Preferences: A Comparison of Science, Technology and Social Science Academic Disciplines in Relations to Teaching Designs and Strategies
Authors: Salina Budin, Shaira Ismail
Abstract:
Students learn effectively in a learning environment with a suitable teaching approach that matches their learning preferences. The main objective of the study is to examine the learning preferences amongst the students in the Science and Technology (S&T), and Social Science (SS) fields of study at the Universiti Teknologi Mara (UiTM), Pulau Pinang. The measurement instrument is based on the Dunn and Dunn Learning Styles which measure five elements of learning styles; environmental, sociological, emotional, physiological and psychological. Questionnaires are distributed amongst undergraduates in the Faculty of Mechanical Engineering and Faculty of Business Management. The respondents comprise of 131 diploma students of the Faculty of Mechanical Engineering and 111 degree students of the Faculty of Business Management. The results indicate that, both S&T and SS students share a similar learning preferences on the environmental aspect, emotional preferences, motivational level, learning responsibility, persistent level in learning and learning structure. Most of the S&T students are concluded as analytical learners and the majority of SS students are global learners. Both S&T and SS students are concluded as visual learners, preferred to be in an active mobility in a relaxing and enjoying mode with some light of refreshments during the learning process and exhibited reflective characteristics in learning. Obviously, the S&T students are considered as left brain dominant, whereas the SS students are right brain dominant. The findings highlighted that both categories of students exhibited similar learning preferences except on psychological preferences.Keywords: Learning preferences, Dunn and Dunn learning style, teaching approach, science and technology, social science.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13881933 Connectionist Approach to Generic Text Summarization
Authors: Rajesh S.Prasad, U. V. Kulkarni, Jayashree.R.Prasad
Abstract:
As the enormous amount of on-line text grows on the World-Wide Web, the development of methods for automatically summarizing this text becomes more important. The primary goal of this research is to create an efficient tool that is able to summarize large documents automatically. We propose an Evolving connectionist System that is adaptive, incremental learning and knowledge representation system that evolves its structure and functionality. In this paper, we propose a novel approach for Part of Speech disambiguation using a recurrent neural network, a paradigm capable of dealing with sequential data. We observed that connectionist approach to text summarization has a natural way of learning grammatical structures through experience. Experimental results show that our approach achieves acceptable performance. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15911932 A Relationship Extraction Method from Literary Fiction Considering Korean Linguistic Features
Authors: Hee-Jeong Ahn, Kee-Won Kim, Seung-Hoon Kim
Abstract:
The knowledge of the relationship between characters can help readers to understand the overall story or plot of the literary fiction. In this paper, we present a method for extracting the specific relationship between characters from a Korean literary fiction. Generally, methods for extracting relationships between characters in text are statistical or computational methods based on the sentence distance between characters without considering Korean linguistic features. Furthermore, it is difficult to extract the relationship with direction from text, such as one-sided love, because they consider only the weight of relationship, without considering the direction of the relationship. Therefore, in order to identify specific relationships between characters, we propose a statistical method considering linguistic features, such as syntactic patterns and speech verbs in Korean. The result of our method is represented by a weighted directed graph of the relationship between the characters. Furthermore, we expect that proposed method could be applied to the relationship analysis between characters of other content like movie or TV drama.
Keywords: Data mining, Korean linguistic feature, literary fiction, relationship extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17951931 Calcium Silicate Bricks – Ultrasonic Pulse Method: Effects of Natural Frequency of Transducers on Measurement Results
Authors: Jiri Brozovsky
Abstract:
Modulus of elasticity is one of the important parameters of construction materials, which considerably influence their deformation properties and which can also be determined by means of non-destructive test methods like ultrasonic pulse method. However, measurement results of ultrasonic pulse methods are influenced by various factors, one of which is the natural frequency of the transducers. The paper states knowledge about influence of natural frequency of the transducers (54; 82 and 150kHz) on ultrasonic pulse velocity and dynamic modulus of elasticity (Young's Dynamic modulus of elasticity). Differences between ultrasonic pulse velocity and dynamic modulus of elasticity were found with the same smallest dimension of test specimen in the direction of sounding and density their value decreases as the natural frequency of transducers grew.
Keywords: Calcium silicate brick, ultrasonic pulse method, ultrasonic pulse velocity, dynamic modulus of elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22441930 Knowledge Discovery and Data Mining Techniques in Textile Industry
Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler
Abstract:
This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.Keywords: Data mining, textile production, decision trees, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15391929 Teacher Training Course: Conflict Resolution through Mediation
Authors: Csilla M. Szabó
Abstract:
In Hungary, the society has changed a lot for the past 25 years, and these changes could be detected in educational situations as well. The number and the intensity of conflicts have been increased in most fields of life, as well as at schools. Teachers have difficulties to be able to handle school conflicts. What is more, the new net generation, generation Z has values and behavioural patterns different from those of the previous one, which might generate more serious conflicts at school, especially with teachers who were mainly socialising in a traditional teacher – student relationship. In Hungary, the bill CCIV of 2011 declared the foundation of Institutes of Teacher Training in higher education institutes. One of the tasks of the Institutes is to survey the competences and needs of teachers working in public education and to provide further trainings and services for them according to their needs and requirements. This job is supported by the Social Renewal Operative Programs 4.1.2.B. The professors of a college carried out a questionnaire and surveyed the needs and the requirements of teachers working in the region. Based on the results, the professors of the Institute of Teacher Training decided to meet the requirements of teachers and to launch short teacher further training courses in spring 2015. One of the courses is going to focus on school conflict management through mediation. The aim of the pilot course is to provide conflict management techniques for teachers and to present different mediation techniques to them. The theoretical part of the course (5 hours) will enable participants to understand the main points and the advantages of mediation, while the practical part (10 hours) will involve teachers in role plays to learn how to cope with conflict situations applying mediation. We hope if conflicts could be reduced, it would influence school atmosphere in a positive way and the teaching – learning process could be more successful and effective.Keywords: Conflict resolution, generation Z, mediation, teacher training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17351928 An Empirical Mode Decomposition Based Method for Action Potential Detection in Neural Raw Data
Authors: Sajjad Farashi, Mohammadjavad Abolhassani, Mostafa Taghavi Kani
Abstract:
Information in the nervous system is coded as firing patterns of electrical signals called action potential or spike so an essential step in analysis of neural mechanism is detection of action potentials embedded in the neural data. There are several methods proposed in the literature for such a purpose. In this paper a novel method based on empirical mode decomposition (EMD) has been developed. EMD is a decomposition method that extracts oscillations with different frequency range in a waveform. The method is adaptive and no a-priori knowledge about data or parameter adjusting is needed in it. The results for simulated data indicate that proposed method is comparable with wavelet based methods for spike detection. For neural signals with signal-to-noise ratio near 3 proposed methods is capable to detect more than 95% of action potentials accurately.
Keywords: EMD, neural data processing, spike detection, wavelet decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23741927 Statistical Models of Network Traffic
Authors: Barath Kumar, Oliver Niggemann, Juergen Jasperneite
Abstract:
Model-based approaches have been applied successfully to a wide range of tasks such as specification, simulation, testing, and diagnosis. But one bottleneck often prevents the introduction of these ideas: Manual modeling is a non-trivial, time-consuming task. Automatically deriving models by observing and analyzing running systems is one possible way to amend this bottleneck. To derive a model automatically, some a-priori knowledge about the model structure–i.e. about the system–must exist. Such a model formalism would be used as follows: (i) By observing the network traffic, a model of the long-term system behavior could be generated automatically, (ii) Test vectors can be generated from the model, (iii) While the system is running, the model could be used to diagnose non-normal system behavior. The main contribution of this paper is the introduction of a model formalism called 'probabilistic regression automaton' suitable for the tasks mentioned above.Keywords: Model-based approach, Probabilistic regression automata, Statistical models and Timed automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15401926 Speed Control of Permanent Magnet Synchronous Motor Using Evolutionary Fuzzy PID Controller
Authors: M. Umabharathi, S. Vijayabaskar
Abstract:
Evolutionary Fuzzy PID Speed Controller for Permanent Magnet Synchronous Motor (PMSM) is developed to achieve the Speed control of PMSM in Closed Loop operation and to deal with the existence of transients. Consider a Fuzzy PID control design problem, based on common control Engineering Knowledge. If the transient error is big, that Good transient performance can be obtained by increasing the P and I gains and decreasing the D gains. To autotune the control parameters of the Fuzzy PID controller, the Evolutionary Algorithms (EA) are developed. EA based Fuzzy PID controller provides better speed control and guarantees the closed loop stability. The Evolutionary Fuzzy PID controller can be implemented in real time Applications without any concern about instabilities that leads to system failure or damage.
Keywords: Evolutionary Algorithm (EA), Fuzzy system, Genetic Algorithm (GA), Membership, Permanent Magnet Synchronous Motor (PMSM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29591925 Ontologies for Social Media Digital Evidence
Authors: Edlira Kalemi, Sule Yildirim-Yayilgan
Abstract:
Online Social Networks (OSNs) are nowadays being used widely and intensively for crime investigation and prevention activities. As they provide a lot of information they are used by the law enforcement and intelligence. An extensive review on existing solutions and models for collecting intelligence from this source of information and making use of it for solving crimes has been presented in this article. The main focus is on smart solutions and models where ontologies have been used as the main approach for representing criminal domain knowledge. A framework for a prototype ontology named SC-Ont will be described. This defines terms of the criminal domain ontology and the relations between them. The terms and the relations are extracted during both this review and the discussions carried out with domain experts. The development of SC-Ont is still ongoing work, where in this paper, we report mainly on the motivation for using smart ontology models and the possible benefits of using them for solving crimes.
Keywords: Criminal digital evidence, social media, ontologies, reasoning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23781924 E-health in Rural Areas: Case of Developing Countries
Authors: Stella Ouma, M. E. Herselman
Abstract:
The Application of e-health solutions has brought superb advancements in the health care industry. E-health solutions have already been embraced in the industrialized countries. In an effort to catch up with the growth, the developing countries have strived to revolutionize the healthcare industry by use of Information technology in different ways. Based on a technology assessment carried out in Kenya – one of the developing countries – and using multiple case studies in Nyanza Province, this work focuses on an investigation on how five rural hospitals are adapting to the technology shift. The issues examined include the ICT infrastructure and e-health technologies in place, the knowledge of participants in terms of benefits gained through the use of ICT and the challenges posing barriers to the use of ICT technologies in these hospitals. The results reveal that the ICT infrastructure in place is inadequate for e-health implementations as a result to various challenges that exist. Consequently, suggestions on how to tackle the various challenges have been addressed in this paper.
Keywords: Challenges, e-health, healthcare, information communication technology, rural areas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35511923 Efficient Supplies to Assembly Areas from Storage Stages
Authors: Matthias Schmidt, Steffen C. Eickemeyer, Prof. Peter Nyhuis
Abstract:
Guaranteeing the availability of the required parts at the scheduled time represents a key logistical challenge. This is especially important when several parts are required together. This article describes a tool that supports the positioning in the area of conflict between low stock costs and a high service level for a consumer.Keywords: Systems Modeling, Manufacturing Systems, Simulation & Control, logistics and supply chain management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16491922 Epistemological Functions of Emotions and Their Relevance to the Formation of Citizens and Scientists
Authors: Dení Stincer Gómez, Zuraya Monroy Nasr
Abstract:
Pedagogy of science historically has given priority to teaching strategies that mobilize the cognitive mechanisms leaving out emotional mechanisms. Modern epistemology, cognitive psychology and psychoanalysis begin to argue and prove that emotions are relevant epistemological functions. They are 1) the selection function: that allows the perception and reason choose, to multiple alternative explanation of a particular fact, those are relevant and discard those that are not, 2) heuristic function: that is related to the activation cognitive processes that are effective in the process of knowing; and 3) the so-called content-bearing function: it argues that emotions provide the material reasoning that is subsequently transformed into linguistic propositions. According to these hypotheses, scientific knowledge seems to come from emotions that meet these functions. This paper argues that science education must start from the presence of certain emotions in the learner if we want to form citizens with a scientific or cultural future.
Keywords: Epistemic emotions, science education, formation of citizens and scientists, epistemic functions of emotions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4771921 Impact of VARK Learning Model at Tertiary Level Education
Authors: Munazza A. Mirza, Khawar Khurshid
Abstract:
Individuals are generally associated with different learning styles, which have been explored extensively in recent past. The learning styles refer to the potential of an individual by which s/he can easily comprehend and retain information. Among various learning style models, VARK is the most accepted model which categorizes the learners with respect to their sensory characteristics. Based on the number of preferred learning modes, the learners can be categorized as uni-modal, bi-modal, tri-modal, or quad/multi-modal. Although there is a prevalent belief in the learning styles, however, the model is not being frequently and effectively utilized in the higher education. This research describes the identification model to validate teacher’s didactic practice and student’s performance linkage with the learning styles. The identification model is recommended to check the effective application and evaluation of the various learning styles. The proposed model is a guideline to effectively implement learning styles inventory in order to ensure that it will validate performance linkage with learning styles. If performance is linked with learning styles, this may help eradicate the distrust on learning style theory. For this purpose, a comprehensive study was conducted to compare and understand how VARK inventory model is being used to identify learning preferences and their correlation with learner’s performance. A comparative analysis of the findings of these studies is presented to understand the learning styles of tertiary students in various disciplines. It is concluded with confidence that the learning styles of students cannot be associated with any specific discipline. Furthermore, there is not enough empirical proof to link performance with learning styles.
Keywords: Learning style, VARK, sensory preferences, identification model, didactic practices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54211920 User Acceptance of Educational Games: A Revised Unified Theory of Acceptance and Use of Technology (UTAUT)
Authors: Roslina Ibrahim, Azizah Jaafar
Abstract:
Educational games (EG) seem to have lots of potential due to digital games popularity and preferences of our younger generations of learners. However, most studies focus on game design and its effectiveness while little has been known about the factors that can affect users to accept or to reject EG for their learning. User acceptance research try to understand the determinants of information systems (IS) adoption among users by investigating both systems factors and users factors. Upon the lack of knowledge on acceptance factors for educational games, we seek to understand the issue. This study proposed a model of acceptance factors based on Unified Theory of Acceptance and Use of Technology (UTAUT). We use original model (performance expectancy, effort expectancy and social influence) together with two new determinants (learning opportunities and enjoyment). We will also investigate the effect of gender and gaming experience that moderate the proposed factors.
Keywords: educational games, games acceptance, user acceptance model, UTAUT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37081919 Service-Oriented Enterprise Architecture (SoEA) Adoption and Maturity Measurement Model: A Systematic Literature Review
Authors: Nur Azaliah Abu Bakar, Harihodin Selamat, Mohd Nazri Kama
Abstract:
This article provides a systematic review of existing research related to the Service-oriented Enterprise Architecture (SoEA) adoption and maturity measurement model. The review’s main goals are to support research; to facilitate other researchers’ search for relevant studies; and to propose areas for future studies within this area. In addition, this article provides useful information on SoEA adoption issues and its related maturity model, based on research-based knowledge. The review results suggest that motives, critical success factors (CSFs), implementation status, and benefits are the most frequently studied areas, and that each of these areas would benefit from further exposure.
Keywords: Systematic Literature Review, Service-oriented Architecture, Adoption, Maturity Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29521918 A Video-Based Observation and Analysis Method to Assess Human Movement and Behaviour in Crowded Areas
Authors: Shahrol Mohamaddan, Keith Case, Ana Sakura Zainal Abidin
Abstract:
Human movement in the real world provides important information for developing human behaviour models and simulations. However, it is difficult to assess ‘real’ human behaviour since there is no established method available. As part of the AUNTSUE (Accessibility and User Needs in Transport – Sustainable Urban Environments) project, this research aimed to propose a method to assess human movement and behaviour in crowded areas. The method is based on the three major steps of video recording, conceptual behavior modelling and video analysis. The focus is on individual human movement and behaviour in normal situations (panic situations are not considered) and the interactions between individuals in localized areas. Emphasis is placed on gaining knowledge of characteristics of human movement and behaviour in the real world that can be modelled in the virtual environment.
Keywords: Video observation, Human movement, Behaviour, Crowds, Ergonomics, AUNT-SUE
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22451917 Multi-View Neural Network Based Gait Recognition
Authors: Saeid Fazli, Hadis Askarifar, Maryam Sheikh Shoaie
Abstract:
Human identification at a distance has recently gained growing interest from computer vision researchers. Gait recognition aims essentially to address this problem by identifying people based on the way they walk [1]. Gait recognition has 3 steps. The first step is preprocessing, the second step is feature extraction and the third one is classification. This paper focuses on the classification step that is essential to increase the CCR (Correct Classification Rate). Multilayer Perceptron (MLP) is used in this work. Neural Networks imitate the human brain to perform intelligent tasks [3].They can represent complicated relationships between input and output and acquire knowledge about these relationships directly from the data [2]. In this paper we apply MLP NN for 11 views in our database and compare the CCR values for these views. Experiments are performed with the NLPR databases, and the effectiveness of the proposed method for gait recognition is demonstrated.Keywords: Human motion analysis, biometrics, gait recognition, principal component analysis, MLP neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21051916 Unpacking Chilean Preservice Teachers’ Beliefs on Practicum Experiences through Digital Stories
Authors: Claudio Díaz, Mabel Ortiz
Abstract:
An EFL teacher education programme in Chile takes five years to train a future teacher of English. Preservice teachers are prepared to learn an advanced level of English and teach the language from 5th to 12th grade in the Chilean educational system. In the context of their first EFL Methodology course in year four, preservice teachers have to create a five-minute digital story that starts from a critical incident they have experienced as teachers-to-be during their observations or interventions in the schools. A critical incident can be defined as a happening, a specific incident or event either observed by them or involving them. The happening sparks their thinking and may make them subsequently think differently about the particular event. When they create their digital stories, preservice teachers put technology, teaching practice and theory together to narrate a story that is complemented by still images, moving images, text, sound effects and music. The story should be told as a personal narrative, which explains the critical incident. This presentation will focus on the creation process of 50 Chilean preservice teachers’ digital stories highlighting the critical incidents they started their stories. It will also unpack preservice teachers’ beliefs and reflections when approaching their teaching practices in schools. These beliefs will be coded and categorized through content analysis to evidence preservice teachers’ most rooted conceptions about English teaching and learning in Chilean schools. The findings seem to indicate that preservice teachers’ beliefs are strongly mediated by contextual and affective factors.Keywords: Beliefs, Digital stories, Preservice teachers, Practicum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14431915 Rank-Based Chain-Mode Ensemble for Binary Classification
Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu
Abstract:
In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.
Keywords: Consensus, curse of correlation, imbalanced classification, rank-based chain-mode ensemble.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7341914 A Discrete Event Simulation Model to Manage Bed Usage for Non-Elective Admissions in a Geriatric Medicine Speciality
Authors: Muhammed Ordu, Eren Demir, Chris Tofallis
Abstract:
Over the past decade, the non-elective admissions in the UK have increased significantly. Taking into account limited resources (i.e. beds), the related service managers are obliged to manage their resources effectively due to the non-elective admissions which are mostly admitted to inpatient specialities via A&E departments. Geriatric medicine is one of specialities that have long length of stay for the non-elective admissions. This study aims to develop a discrete event simulation model to understand how possible increases on non-elective demand over the next 12 months affect the bed occupancy rate and to determine required number of beds in a geriatric medicine speciality in a UK hospital. In our validated simulation model, we take into account observed frequency distributions which are derived from a big data covering the period April, 2009 to January, 2013, for the non-elective admission and the length of stay. An experimental analysis, which consists of 16 experiments, is carried out to better understand possible effects of case studies and scenarios related to increase on demand and number of bed. As a result, the speciality does not achieve the target level in the base model although the bed occupancy rate decreases from 125.94% to 96.41% by increasing the number of beds by 30%. In addition, the number of required beds is more than the number of beds considered in the scenario analysis in order to meet the bed requirement. This paper sheds light on bed management for service managers in geriatric medicine specialities.
Keywords: Bed management, bed occupancy rate, discrete event simulation, geriatric medicine, non-elective admission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19091913 A Sequential Pattern Mining Method Based On Sequential Interestingness
Authors: Shigeaki Sakurai, Youichi Kitahara, Ryohei Orihara
Abstract:
Sequential mining methods efficiently discover all frequent sequential patterns included in sequential data. These methods use the support, which is the previous criterion that satisfies the Apriori property, to evaluate the frequency. However, the discovered patterns do not always correspond to the interests of analysts, because the patterns are common and the analysts cannot get new knowledge from the patterns. The paper proposes a new criterion, namely, the sequential interestingness, to discover sequential patterns that are more attractive for the analysts. The paper shows that the criterion satisfies the Apriori property and how the criterion is related to the support. Also, the paper proposes an efficient sequential mining method based on the proposed criterion. Lastly, the paper shows the effectiveness of the proposed method by applying the method to two kinds of sequential data.
Keywords: Sequential mining, Support, Confidence, Apriori property
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12761912 Analysis of a Population of Diabetic Patients Databases with Classifiers
Authors: Murat Koklu, Yavuz Unal
Abstract:
Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.
Keywords: Artificial Intelligence, Classifiers, Data Mining, Diabetic Patients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54311911 When Scientific Laws and Findings Encounter Life: A Traditional Chinese Medicine Perspective
Authors: Eric Y. Zhang, L. Acu
Abstract:
This paper is to point out the limitations of modern medical research and why the Traditional Chinese Medicine (TCM) can help address the limitations. Many of the modern medical research results are based on the findings in fundamental research disciplines, such as physics, and chemistry. However, this foundation is not as solid as it seems. The theory proposed in this paper, the Law of Chasm, or the Chasm Theory, states that there are two categories of objects to be studied. One is non-life objects, or lifeless objects; the other is living beings, or the objects that are alive. The laws and findings obtained by studying non-life objects may not all be extended to living beings, and vice versa. TCM is the study of medicine based on living beings. Therefore, TCM findings may not exist in the body of the knowledge obtained from studying non-life objects.
Keywords: TCM, Traditional Chinese Medicine, Law of Chasm, Chasm Theory, living-beings, non-life.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311910 Effects of Human Capital and Openness on Economic Growth of Developed and Developing Countries: A Panel Data Analysis
Authors: Fatma Didin Sonmez, Pinar Sener
Abstract:
Technology transfer by international trade and foreign direct investment is the most important positive outcome of open economy. It is widely accepted that new technology and knowledge have an important role in enhancing economic growth. Human capital is the other important factor assisting economic growth. In this study, the role of human capital in the growth process is examined in a view of new endogenous growth theory emphasizing on the technology transfer resulting from international trade. Using the panel data of 10 developed and 10 developing countries, impact of human capital and openness on the rate of economic growth of different countries is analysed. Evidence suggests the view that human capital and openness contribute to the economic growth in both developing and developed countries, but with different rates.Keywords: economic growth, human capital, openness, technology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20801909 Generation of Artificial Earthquake Accelerogram Compatible with Spectrum using the Wavelet Packet Transform and Nero-Fuzzy Networks
Authors: Peyman Shadman Heidari, Mohammad Khorasani
Abstract:
The principal purpose of this article is to present a new method based on Adaptive Neural Network Fuzzy Inference System (ANFIS) to generate additional artificial earthquake accelerograms from presented data, which are compatible with specified response spectra. The proposed method uses the learning abilities of ANFIS to develop the knowledge of the inverse mapping from response spectrum to earthquake records. In addition, wavelet packet transform is used to decompose specified earthquake records and then ANFISs are trained to relate the response spectrum of records to their wavelet packet coefficients. Finally, an interpretive example is presented which uses an ensemble of recorded accelerograms to demonstrate the effectiveness of the proposed method.
Keywords: Adaptive Neural Network Fuzzy Inference System, Wavelet Packet Transform, Response Spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28321908 Using Ontology Search in the Design of Class Diagram from Business Process Model
Authors: Wararat Rungworawut, Twittie Senivongse
Abstract:
Business process model describes process flow of a business and can be seen as the requirement for developing a software application. This paper discusses a BPM2CD guideline which complements the Model Driven Architecture concept by suggesting how to create a platform-independent software model in the form of a UML class diagram from a business process model. An important step is the identification of UML classes from the business process model. A technique for object-oriented analysis called domain analysis is borrowed and key concepts in the business process model will be discovered and proposed as candidate classes for the class diagram. The paper enhances this step by using ontology search to help identify important classes for the business domain. As ontology is a source of knowledge for a particular domain which itself can link to ontologies of related domains, the search can give a refined set of candidate classes for the resulting class diagram.Keywords: Business Process Model, Model DrivenArchitecture, Ontology, UML Class Diagram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24711907 The Requirements of Developing a Framework for Successful Adoption of Quality Management Systems in the Construction Industry
Authors: Mohammed Ali Ahmed, Vaughan Coffey, Bo Xia
Abstract:
Quality management systems (QMSs) in the construction industry are often implemented to ensure that sufficient effort is made by companies to achieve the required levels of quality for clients. Attainment of these quality levels can result in greater customer satisfaction, which is fundamental to ensure long-term competitiveness for construction companies. However, the construction sector is still lagging behind other industries in terms of its successful adoption of QMSs, due to the relative lack of acceptance of the benefits of these systems among industry stakeholders, as well as from other barriers related to implementing them. Thus, there is a critical need to undertake a detailed and comprehensive exploration of adoption of QMSs in the construction sector. This paper comprehensively investigates in the construction sector setting, the impacts of all the salient factors surrounding successful implementation of QMSs in building organizations, especially those of external factors. This study is part of an ongoing PhD project, which aims to develop a new framework that integrates both internal and external factors affecting QMS implementation. To achieve the paper aim and objectives, interviews will be conducted to define the external factors influencing the adoption of QMSs, and to obtain holistic critical success factors (CSFs) for implementing these systems. In the next stage of data collection, a questionnaire survey will be developed to investigate the prime barriers facing the adoption of QMSs, the CSFs for their implementation, and the external factors affecting the adoption of these systems. Following the survey, case studies will be undertaken to validate and explain in greater detail the real effects of these factors on QMSs adoption. Specifically, this paper evaluates the effects of the external factors in terms of their impact on implementation success within the selected case studies. Using findings drawn from analyzing the data obtained from these various approaches, specific recommendations for the successful implementation of QMSs will be presented, and an operational framework will be developed. Finally, through a focus group, the findings of the study and the new developed framework will be validated. Ultimately, this framework will be made available to the construction industry to facilitate the greater adoption and implementation of QMSs. In addition, deployment of the applicable recommendations suggested by the study will be shared with the construction industry to more effectively help construction companies to implement QMSs, and overcome the barriers experienced by businesses, thus promoting the achievement of higher levels of quality and customer satisfaction.Keywords: Barriers, critical success factors, external factors, internal factors, quality management systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20701906 A GA-Based Role Assignment Approach for Web-based Cooperative Learning Environments
Authors: Yi-Chun Chang, Jian-Wei Li
Abstract:
Web-based cooperative learning focuses on (1) the interaction and the collaboration of community members, and (2) the sharing and the distribution of knowledge and expertise by network technology to enhance learning performance. Numerous research literatures related to web-based cooperative learning have demonstrated that cooperative scripts have a positive impact to specify, sequence, and assign cooperative learning activities. Besides, literatures have indicated that role-play in web-based cooperative learning environments enhances two or more students to work together toward the completion of a common goal. Since students generally do not know each other and they lack the face-to-face contact that is necessary for the negotiation of assigning group roles in web-based cooperative learning environments, this paper intends to further extend the application of genetic algorithm (GA) and propose a GA-based algorithm to tackle the problem of role assignment in web-based cooperative learning environments, which not only saves communication costs but also reduces conflict between group members in negotiating role assignments.
Keywords: genetic algorithm (GA), role assignment, role-play; web-based cooperative learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459