Search results for: gait identification
754 Experimental Study on Damping Ratios of in-situ Buildings
Authors: Zhiying Zhang, Chongdu Cho
Abstract:
Accurate evaluation of damping ratios involving soilstructure interaction (SSI) effects is the prerequisite for seismic design of in-situ buildings. This study proposes a combined approach to identify damping ratios of SSI systems based on ambient excitation technique. The proposed approach is illustrated with main test process, sampling principle and algorithm steps through an engineering example, as along with its feasibility and validity. The proposed approach is employed for damping ratio identification of 82 buildings in Xi-an, China. Based on the experimental data, the variation range and tendency of damping ratios of these SSI systems, along with the preliminary influence factor, are shown and discussed. In addition, a fitting curve indicates the relation between the damping ratio and fundamental natural period of SSI system.
Keywords: Damping ratio, seismic design, soil-structure interaction, system parameter identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395753 White Blood Cells Identification and Counting from Microscopic Blood Image
Authors: Lorenzo Putzu, Cecilia Di Ruberto
Abstract:
The counting and analysis of blood cells allows the evaluation and diagnosis of a vast number of diseases. In particular, the analysis of white blood cells (WBCs) is a topic of great interest to hematologists. Nowadays the morphological analysis of blood cells is performed manually by skilled operators. This involves numerous drawbacks, such as slowness of the analysis and a nonstandard accuracy, dependent on the operator skills. In literature there are only few examples of automated systems in order to analyze the white blood cells, most of which only partial. This paper presents a complete and fully automatic method for white blood cells identification from microscopic images. The proposed method firstly individuates white blood cells from which, subsequently, nucleus and cytoplasm are extracted. The whole work has been developed using MATLAB environment, in particular the Image Processing Toolbox.Keywords: Automatic detection, Biomedical image processing, Segmentation, White blood cell analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8904752 Hand Gestures Based Emotion Identification Using Flex Sensors
Authors: S. Ali, R. Yunus, A. Arif, Y. Ayaz, M. Baber Sial, R. Asif, N. Naseer, M. Jawad Khan
Abstract:
In this study, we have proposed a gesture to emotion recognition method using flex sensors mounted on metacarpophalangeal joints. The flex sensors are fixed in a wearable glove. The data from the glove are sent to PC using Wi-Fi. Four gestures: finger pointing, thumbs up, fist open and fist close are performed by five subjects. Each gesture is categorized into sad, happy, and excited class based on the velocity and acceleration of the hand gesture. Seventeen inspectors observed the emotions and hand gestures of the five subjects. The emotional state based on the investigators assessment and acquired movement speed data is compared. Overall, we achieved 77% accurate results. Therefore, the proposed design can be used for emotional state detection applications.
Keywords: Emotion identification, emotion models, gesture recognition, user perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940751 Impact of VARK Learning Model at Tertiary Level Education
Authors: Munazza A. Mirza, Khawar Khurshid
Abstract:
Individuals are generally associated with different learning styles, which have been explored extensively in recent past. The learning styles refer to the potential of an individual by which s/he can easily comprehend and retain information. Among various learning style models, VARK is the most accepted model which categorizes the learners with respect to their sensory characteristics. Based on the number of preferred learning modes, the learners can be categorized as uni-modal, bi-modal, tri-modal, or quad/multi-modal. Although there is a prevalent belief in the learning styles, however, the model is not being frequently and effectively utilized in the higher education. This research describes the identification model to validate teacher’s didactic practice and student’s performance linkage with the learning styles. The identification model is recommended to check the effective application and evaluation of the various learning styles. The proposed model is a guideline to effectively implement learning styles inventory in order to ensure that it will validate performance linkage with learning styles. If performance is linked with learning styles, this may help eradicate the distrust on learning style theory. For this purpose, a comprehensive study was conducted to compare and understand how VARK inventory model is being used to identify learning preferences and their correlation with learner’s performance. A comparative analysis of the findings of these studies is presented to understand the learning styles of tertiary students in various disciplines. It is concluded with confidence that the learning styles of students cannot be associated with any specific discipline. Furthermore, there is not enough empirical proof to link performance with learning styles.
Keywords: Learning style, VARK, sensory preferences, identification model, didactic practices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5419750 Design and Implementation of Active Radio Frequency Identification on Wireless Sensor Network-Based System
Authors: Che Z. Zulkifli, Nursyahida M. Noor, Siti N. Semunab, Shafawati A. Malek
Abstract:
Wireless sensors, also known as wireless sensor nodes, have been making a significant impact on human daily life. The Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two complementary technologies; hence, an integrated implementation of these technologies expands the overall functionality in obtaining long-range and real-time information on the location and properties of objects and people. An approach for integrating ZigBee and RFID networks is proposed in this paper, to create an energy-efficient network improved by the benefits of combining ZigBee and RFID architecture. Furthermore, the compatibility and requirements of the ZigBee device and communication links in the typical RFID system which is presented with the real world experiment on the capabilities of the proposed RFID system.Keywords: Mesh network, RFID, wireless sensor network, zigbee.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641749 System Identification and Control the Azimuth Angle of the Platform of MLRS by PID Controller
Authors: Parkpoom Ch., Narongkorn D.
Abstract:
This paper presents the system identification by physical-s law method and designs the controller for the Azimuth Angle Control of the Platform of the Multi-Launcher Rocket System (MLRS) by Root Locus technique. The plant mathematical model was approximated using MATLAB for simulation and analyze the system. The controller proposes the implementation of PID Controller using Programmable Logic Control (PLC) for control the plant. PID Controllers are widely applicable in industrial sectors and can be set up easily and operate optimally for enhanced productivity, improved quality and reduce maintenance requirement. The results from simulation and experiments show that the proposed a PID Controller to control the elevation angle that has superior control performance by the setting time less than 12 sec, the rise time less than 1.6 sec., and zero steady state. Furthermore, the system has a high over shoot that will be continue development.Keywords: Azimuth angle control, PID Controller, The platform of Multi-Launcher Rocket System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489748 Cross Signal Identification for PSG Applications
Authors: Carmen Grigoraş, Victor Grigoraş, Daniela Boişteanu
Abstract:
The standard investigational method for obstructive sleep apnea syndrome (OSAS) diagnosis is polysomnography (PSG), which consists of a simultaneous, usually overnight recording of multiple electro-physiological signals related to sleep and wakefulness. This is an expensive, encumbering and not a readily repeated protocol, and therefore there is need for simpler and easily implemented screening and detection techniques. Identification of apnea/hypopnea events in the screening recordings is the key factor for the diagnosis of OSAS. The analysis of a solely single-lead electrocardiographic (ECG) signal for OSAS diagnosis, which may be done with portable devices, at patient-s home, is the challenge of the last years. A novel artificial neural network (ANN) based approach for feature extraction and automatic identification of respiratory events in ECG signals is presented in this paper. A nonlinear principal component analysis (NLPCA) method was considered for feature extraction and support vector machine for classification/recognition. An alternative representation of the respiratory events by means of Kohonen type neural network is discussed. Our prospective study was based on OSAS patients of the Clinical Hospital of Pneumology from Iaşi, Romania, males and females, as well as on non-OSAS investigated human subjects. Our computed analysis includes a learning phase based on cross signal PSG annotation.Keywords: Artificial neural networks, feature extraction, obstructive sleep apnea syndrome, pattern recognition, signalprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541747 Evolutionary Program Based Approach for Manipulator Grasping Color Objects
Authors: Y. Harold Robinson, M. Rajaram, Honey Raju
Abstract:
Image segmentation and color identification is an important process used in various emerging fields like intelligent robotics. A method is proposed for the manipulator to grasp and place the color object into correct location. The existing methods such as PSO, has problems like accelerating the convergence speed and converging to a local minimum leading to sub optimal performance. To improve the performance, we are using watershed algorithm and for color identification, we are using EPSO. EPSO method is used to reduce the probability of being stuck in the local minimum. The proposed method offers the particles a more powerful global exploration capability. EPSO methods can determine the particles stuck in the local minimum and can also enhance learning speed as the particle movement will be faster.Keywords: Color information, EPSO, hue, saturation, value (HSV), image segmentation, particle swarm optimization (PSO). Active Contour, GMM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581746 Orthosis and Finite Elements: A Study for Development of New Designs through Additive Manufacturing
Authors: M. Volpini, D. Alves, A. Horta, M. Borges, P. Reis
Abstract:
The gait pattern in people that present motor limitations foment the demand for auxiliary locomotion devices. These artifacts for movement assistance vary according to its shape, size and functional features, following the clinical applications desired. Among the ortheses of lower limbs, the ankle-foot orthesis aims to improve the ability to walk in people with different neuromuscular limitations, although they do not always answer patients' expectations for their aesthetic and functional characteristics. The purpose of this study is to explore the possibility of using new design in additive manufacturer to reproduce the shape and functional features of a ankle-foot orthesis in an efficient and modern way. Therefore, this work presents a study about the performance of the mechanical forces through the analysis of finite elements in an ankle-foot orthesis. It will be demonstrated a study of distribution of the stress on the orthopedic device in orthostatism and during the movement in the course of patient's walk.
Keywords: Additive manufacture, new designs, orthoses, finite elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137745 Fault Detection and Identification of COSMED K4b2 Based On PCA and Neural Network
Authors: Jing Zhou, Steven Su, Aihuang Guo
Abstract:
COSMED K4b2 is a portable electrical device designed to test pulmonary functions. It is ideal for many applications that need the measurement of the cardio-respiratory response either in the field or in the lab is capable with the capability to delivery real time data to a sink node or a PC base station with storing data in the memory at the same time. But the actual sensor outputs and data received may contain some errors, such as impulsive noise which can be related to sensors, low batteries, environment or disturbance in data acquisition process. These abnormal outputs might cause misinterpretations of exercise or living activities to persons being monitored. In our paper we propose an effective and feasible method to detect and identify errors in applications by principal component analysis (PCA) and a back propagation (BP) neural network.
Keywords: BP Neural Network, Exercising Testing, Fault Detection and Identification, Principal Component Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3075744 Utilizing the Principal Component Analysis on Multispectral Aerial Imagery for Identification of Underlying Structures
Authors: M. Bosques-Perez, W. Izquierdo, H. Martin, L. Deng, J. Rodriguez, T. Yan, M. Cabrerizo, A. Barreto, N. Rishe, M. Adjouadi
Abstract:
Aerial imagery is a powerful tool when it comes to analyzing temporal changes in ecosystems and extracting valuable information from the observed scene. It allows us to identify and assess various elements such as objects, structures, textures, waterways, and shadows. To extract meaningful information, multispectral cameras capture data across different wavelength bands of the electromagnetic spectrum. In this study, the collected multispectral aerial images were subjected to principal component analysis (PCA) to identify independent and uncorrelated components or features that extend beyond the visible spectrum captured in standard RGB images. The results demonstrate that these principal components contain unique characteristics specific to certain wavebands, enabling effective object identification and image segmentation.
Keywords: Big data, image processing, multispectral, principal component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94743 Gravitino Dark Matter in (nearly) SLagy D3/D7 m-Split SUSY
Authors: Mansi Dhuria, Aalok Misra
Abstract:
In the context of large volume Big Divisor (nearly) SLagy D3/D7 μ-Split SUSY [1], after an explicit identification of first generation of SM leptons and quarks with fermionic superpartners of four Wilson line moduli, we discuss the identification of gravitino as a potential dark matter candidate by explicitly calculating the decay life times of gravitino (LSP) to be greater than age of universe and lifetimes of decays of the co-NLSPs (the first generation squark/slepton and a neutralino) to the LSP (the gravitino) to be very small to respect BBN constraints. Interested in non-thermal production mechanism of gravitino, we evaluate the relic abundance of gravitino LSP in terms of that of the co-NLSP-s by evaluating their (co-)annihilation cross sections and hence show that the former satisfies the requirement for a potential Dark Matter candidate. We also show that it is possible to obtain a 125 GeV light Higgs in our setup.Keywords: Split Supersymmetry, Large Volume Swiss-Cheese Calabi-Yau's, Dark Matter, (N)LSP decays, relic abundance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584742 Isolation and Molecular Identification of Two Fungal Strains Capable of Degrading Hydrocarbon Contaminants on Saudi Arabian Environment
Authors: Amr A. El Hanafy, Yasir Anwar, Saleh A. Mohamed, Saleh Mohamed Saleh Al-Garni, Jamal S. M. Sabir, Osama A. H. Abu Zinadah, Mohamed Morsi Ahmed
Abstract:
In the vicinity of red sea about 15 fungi species were isolated from oil contaminated sites. On the basis of aptitude to degrade the crude oil and DCPIP assay, two fungal isolates were selected amongst 15 oil degrading strains. Analysis of ITS-1, ITS-2 and amplicon pyrosequencing studies of fungal diversity revealed that these strains belong to Penicillium and Aspergillus species. Two strains that proved to be the most efficient in degrading crude oil was Aspergillus niger (54%) and Penicillium commune (48%) Subsequent to two weeks of cultivation in BHS medium the degradation rate were recorded by using spectrophotometer and GC-MS. Hence, it is cleared that these fungal strains has capability of degradation and can be utilize for cleaning the Saudi Arabian environment.
Keywords: Fungal strains, hydrocarbon contaminants, molecular identification, biodegradation, GC-MS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2926741 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: D. Hişam, S. İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three ML models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest (RF) Classifier was the most accurate model.
Keywords: Vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167740 A Study of the Costs and Benefits of Smart City Projects Including the Scenario of Public-Private Partnerships
Authors: Patrick T. I. Lam, Wenjing Yang
Abstract:
A smart city project embraces benefits and costs which can be classified under direct and indirect categories. Externalities come into the picture, but they are often difficult to quantify. Despite this barrier, policy makers need to carry out cost-benefit analysis to justify the huge investments needed to make a city smart. The recent trend is towards the engagement of the private sector to utilize their resources and expertise, especially in the Information and Communication Technology (ICT) areas, where innovations blossom. This study focuses on the identification of costs (on a life cycle basis) and benefits associated with smart city project developments based on a comprehensive literature review and case studies, where public-private partnerships would warrant consideration, the related costs and benefits are highlighted. The findings will be useful for policy makers of cities.
Keywords: Costs and benefits, identification, public-private partnerships, smart city projects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695739 Performance Indicators for Benchmarking of Internal Supply Chain Management
Authors: Kailash, Rajeev Kumar Saha, Sanjeev Goyal
Abstract:
Each and every manufacturing industry has a goal that describes its purpose and destination. The goal of any industry may be achieved by team work and managerial skills of all departments. However, achieving goals and objectives is not enough to improve the internal supply chain management performance of manufacturing industries therefore proper identification of performance indicators for benchmarking of internal supply chain management is essential for the growth of manufacturing industry. The identification of benchmarking performance indicators and their impact on internal supply chain management performance is vital for productivity and performance improvement. This study identifies the benchmarking performance indicators to improve internal supply chain performance of Indian manufacturing industries through literature review.
Keywords: Benchmarking, Internal supply chain management, performance indicators, scenario of Indian manufacturing industries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576738 Route Training in Mobile Robotics through System Identification
Authors: Roberto Iglesias, Theocharis Kyriacou, Ulrich Nehmzow, Steve Billings
Abstract:
Fundamental sensor-motor couplings form the backbone of most mobile robot control tasks, and often need to be implemented fast, efficiently and nevertheless reliably. Machine learning techniques are therefore often used to obtain the desired sensor-motor competences. In this paper we present an alternative to established machine learning methods such as artificial neural networks, that is very fast, easy to implement, and has the distinct advantage that it generates transparent, analysable sensor-motor couplings: system identification through nonlinear polynomial mapping. This work, which is part of the RobotMODIC project at the universities of Essex and Sheffield, aims to develop a theoretical understanding of the interaction between the robot and its environment. One of the purposes of this research is to enable the principled design of robot control programs. As a first step towards this aim we model the behaviour of the robot, as this emerges from its interaction with the environment, with the NARMAX modelling method (Nonlinear, Auto-Regressive, Moving Average models with eXogenous inputs). This method produces explicit polynomial functions that can be subsequently analysed using established mathematical methods. In this paper we demonstrate the fidelity of the obtained NARMAX models in the challenging task of robot route learning; we present a set of experiments in which a Magellan Pro mobile robot was taught to follow four different routes, always using the same mechanism to obtain the required control law.Keywords: Mobile robotics, system identification, non-linear modelling, NARMAX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721737 A Brain Inspired Approach for Multi-View Patterns Identification
Authors: Yee Ling Boo, Damminda Alahakoon
Abstract:
Biologically human brain processes information in both unimodal and multimodal approaches. In fact, information is progressively abstracted and seamlessly fused. Subsequently, the fusion of multimodal inputs allows a holistic understanding of a problem. The proliferation of technology has exponentially produced various sources of data, which could be likened to being the state of multimodality in human brain. Therefore, this is an inspiration to develop a methodology for exploring multimodal data and further identifying multi-view patterns. Specifically, we propose a brain inspired conceptual model that allows exploration and identification of patterns at different levels of granularity, different types of hierarchies and different types of modalities. A structurally adaptive neural network is deployed to implement the proposed model. Furthermore, the acquisition of multi-view patterns with the proposed model is demonstrated and discussed with some experimental results.
Keywords: Multimodal, Granularity, Hierarchical Clustering, Growing Self Organising Maps, Data Mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544736 Screening and Identification of Microorganisms – Potential Producers of Arachidonic Acid
Authors: A. V. Goncharova, T. A. Karpenyuk, Y. S. Tsurkan, R. U. Beisembaeva, A. M. Kalbaeva, T. D. Mukasheva, L. V. Ignatova
Abstract:
Microorganisms isolated from water and soil of Kazakhstan to identify potential high-effective producers of the arachidonic acid, exhibiting a wide range of physiological activity and having practical applications were screened. Based on the results of two independent tests (the test on the sensitivity of the growth processes of microorganisms to acetylsalicylic acid - an irreversible inhibitor of PGH-synthase involved in the metabolism of arachidonic acid and its derivatives, the test for inhibition of peroxidase activity of membrane-bounding fraction of PGH - synthase by acetylsalicylic acid) were selected microbial cultures which are potential highproducer of arachidonic acid. They are characterized by a stable strong growth in the laboratory conditions. Identification of microorganism cultures based on morphological, physiological, biochemical and molecular genetic characteristics was performed.
Keywords: Arachidonic acid, aspirin-sensitive culture, bacteria, producers, screening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103735 Identification of an Appropriate Alternative Waste Technology for Energy Recovery from Waste through Multi-Criteria Analysis
Authors: Sharmina Begum, M. G. Rasul, Delwar Akbar
Abstract:
Waste management is now a global concern due to its high environmental impact on climate change. Because of generating huge amount of waste through our daily activities, managing waste in an efficient way has become more important than ever. Alternative Waste Technology (AWT), a new category of waste treatment technology has been developed for energy recovery in recent years to address this issue. AWT describes a technology that redirects waste away from landfill, recovers more useable resources from the waste flow and reduces the impact on the surroundings. Australia is one of the largest producers of waste per-capita. A number of AWTs are using in Australia to produce energy from waste. Presently, it is vital to identify an appropriate AWT to establish a sustainable waste management system in Australia. Identification of an appropriate AWT through Multi-criteria analysis (MCA) of four AWTs by using five key decision making criteria is presented and discussed in this paper.Keywords: Alternative waste technology (AWT), Energy fromwaste, Gasification, Multi-criteria Analysis (MCA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611734 Global Security Using Human Face Understanding under Vision Ubiquitous Architecture System
Abstract:
Different methods containing biometric algorithms are presented for the representation of eigenfaces detection including face recognition, are identification and verification. Our theme of this research is to manage the critical processing stages (accuracy, speed, security and monitoring) of face activities with the flexibility of searching and edit the secure authorized database. In this paper we implement different techniques such as eigenfaces vector reduction by using texture and shape vector phenomenon for complexity removal, while density matching score with Face Boundary Fixation (FBF) extracted the most likelihood characteristics in this media processing contents. We examine the development and performance efficiency of the database by applying our creative algorithms in both recognition and detection phenomenon. Our results show the performance accuracy and security gain with better achievement than a number of previous approaches in all the above processes in an encouraging mode.Keywords: Ubiquitous architecture, verification, Identification, recognition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336733 Gasifier System Identification for Biomass Power Plants using Neural Network
Authors: Jittarat Satonsaowapak, Thanatchai. Kulworawanichpong., Ratchadaporn Oonsivilai, Anant Oonsivilai
Abstract:
The use of renewable energy sources becomes more necessary and interesting. As wider applications of renewable energy devices at domestic, commercial and industrial levels has not only resulted in greater awareness, but also significantly installed capacities. In addition, biomass principally is in the form of woods, which is a form of energy by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasifier models have various operating conditions; the parameters kept in each model are different. This study applied experimental data, which has three inputs, which are; biomass consumption, temperature at combustion zone and ash discharge rate. One output is gas flow rate. For this paper, neural network was used to identify the gasifier system suitable for the experimental data. In the result,neural networkis usable to attain the answer.Keywords: Gasifier System, Identification, Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443732 A Method for Identifying Physical Parameters with Linear Fractional Transformation
Authors: Ryosuke Ito, Goro Obinata, Chikara Nagai, Youngwoo Kim
Abstract:
This paper proposes a new parameter identification method based on Linear Fractional Transformation (LFT). It is assumed that the target linear system includes unknown parameters. The parameter deviations are separated from a nominal system via LFT, and identified by organizing I/O signals around the separated deviations of the real system. The purpose of this paper is to apply LFT to simultaneously identify the parameter deviations in systems with fewer outputs than unknown parameters. As a fundamental example, this method is implemented to one degree of freedom vibratory system. Via LFT, all physical parameters were simultaneously identified in this system. Then, numerical simulations were conducted for this system to verify the results. This study shows that all the physical parameters of a system with fewer outputs than unknown parameters can be effectively identified simultaneously using LFT.Keywords: Identification, Linear Fractional Transformation, Right inverse system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317731 Using the Technology-Organization-Environment Framework and Zuboff’s Concepts for Understanding Environmental Sustainability and RFID: Two Case Studies
Authors: Rebecca Angeles
Abstract:
Radio frequency identification (RFID) has been recognized as a key enabler of efficient and effective supply chains. Recently, with increasing concern for environmental sustainability, researchers and practitioners have been exploring the role of RFID in supporting “green supply chains.” This qualitative study uses the technology-organization-environment framework of Tornatzky and Fleischer, and Zuboff’s concepts of automating-informating-transformating in analyzing two case studies involving RFID use: the recycling of Hewlett Packard inkjet printers and the garbage and recycling program of the City of Grand Rapids, Michigan.
Keywords: Environmental sustainability, green supply chain management, radio frequency identification, technology-organization-environment framework, Zuboff’automate-informate-transformate concepts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5698730 Craniometric Analysis of Foramen Magnum for Estimation of Sex
Authors: Tanuj Kanchan, Anadi Gupta, Kewal Krishan
Abstract:
Human skull is shown to exhibit numerous sexually dimorphic traits. Estimation of sex is a challenging task especially when a part of skull is brought for medicolegal investigation. The present research was planned to evaluate the sexing potential of the dimensions of foramen magnum in forensic identification by craniometric analysis. Length and breadth of the foramen magnum was measured using Vernier calipers and the area of foramen magnum was calculated. The length, breadth, and area of foramen magnum were found to be larger in males than females. Sexual dimorphism index was calculated to estimate the sexing potential of each variable. The study observations are suggestive of the limited utility of the craniometric analysis of foramen magnum during the examination of skull and its parts in estimation of sex.
Keywords: Forensic Anthropology, Skeletal remains, Identification, Sex estimation, Foramen magnum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3285729 Identification of PIP Aquaporin Genes from Wheat
Authors: Sh. A. Yousif, M. Bhave
Abstract:
There is strong evidence that water channel proteins 'aquaporins (AQPs)' are central components in plant-water relations as well as a number of other physiological parameters. We had previously reported the isolation of 24 plasma membrane intrinsic protein (PIP) type AQPs. However, the gene numbers in rice and the polyploid nature of bread wheat indicated a high probability of further genes in the latter. The present work focused on identification of further AQP isoforms in bread wheat. With the use of altered primer design, we identified five genes homologous, designated PIP1;5b, PIP2;9b, TaPIP2;2, TaPIP2;2a, TaPIP2;2b. Sequence alignments indicate PIP1;5b, PIP2;9b are likely to be homeologues of two previously reported genes while the other three are new genes and could be homeologs of each other. The results indicate further AQP diversity in wheat and the sequence data will enable physical mapping of these genes to identify their genomes as well as genetic to determine their association with any quantitative trait loci (QTLs) associated with plant-water relation such as salinity or drought tolerance.Keywords: Aquaporins, homeologues, PIP, wheat
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036728 A Data Mining Model for Detecting Financial and Operational Risk Indicators of SMEs
Authors: Ali Serhan Koyuncugil, Nermin Ozgulbas
Abstract:
In this paper, a data mining model to SMEs for detecting financial and operational risk indicators by data mining is presenting. The identification of the risk factors by clarifying the relationship between the variables defines the discovery of knowledge from the financial and operational variables. Automatic and estimation oriented information discovery process coincides the definition of data mining. During the formation of model; an easy to understand, easy to interpret and easy to apply utilitarian model that is far from the requirement of theoretical background is targeted by the discovery of the implicit relationships between the data and the identification of effect level of every factor. In addition, this paper is based on a project which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK).
Keywords: Risk Management, Financial Risk, Operational Risk, Financial Early Warning System, Data Mining, CHAID Decision Tree Algorithm, SMEs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3123727 Identification of Ductile Damage Parameters for Austenitic Steel
Authors: J. Dzugan, M. Spaniel, P. Konopík, J. Ruzicka, J. Kuzelka
Abstract:
The modeling of inelastic behavior of plastic materials requires measurements providing information on material response to different multiaxial loading conditions. Different triaxiality conditions and values of Lode parameters have to be covered for complex description of the material plastic behavior. Samples geometries providing material plastic behavoiur over the range of interest are proposed with the use of FEM analysis. Round samples with 3 different notches and smooth surface are used together with butterfly type of samples tested at angle ranging for 0 to 90°. Identification of ductile damage parameters is carried out on the basis of obtained experimental data for austenitic stainless steel. The obtained material plastic damage parameters are subsequently applied to FEM simulation of notched CT normally samples used for fracture mechanics testing and results from the simulation are compared with real tests.Keywords: baqus, austenitic steel, computer simulation, ductile damage, triaxiality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3736726 Isolation and Identification Fibrinolytic Protease Endophytic Fungi from Hibiscus Leaves in Shah Alam
Authors: Mohd Sidek Ahmad, Zainon Mohd Noor, Zaidah Zainal Ariffin
Abstract:
Fibrin degradation is an important part in prevention or treatment of intravascular thrombosis and cardiovascular diseases. Plasmin like fibrinolytic enzymes has given new hope to patient with cardiovascular diseases by treating fibrin aggregation related diseases with traditional plasminogen activator which have many side effects. Various researches involving wide range of sources for production of fibrinolytic proteases, from bacteria, fungi, insects and fermented foods. But few have looked into endophytic fungi as a potential source. Sixteen (16) endophytic fungi were isolated from Hibiscus sp. leaves from six different locations in Shah Alam, Selangor. Only two endophytic fungi, FH3 and S13 showed positive fibrinolytic protease activities. FH3 produced 5.78cm and S13 produced 4.48cm on Skim Milk Agar after 4 days of incubation at 27°C. Fibrinolytic activity was observed; 3.87cm and 1.82cm diameter clear zone on fibrin plate of FH3 and S13 respectively. 18srRNA was done for identification of the isolated fungi with positive fibrinolytic protease. S13 had the highest similarity (100%) to that of Penicillium citrinum strain TG2 and FH3 had the highest similarity (99%) to that of Fusarium sp. FW2PhC1, Fusarium sp. 13002, Fusarium sp. 08006, Fusarium equiseti strain Salicorn 8 and Fungal sp. FCASAn-2. Media composition variation showed the effects of carbon nitrogen on protein concentration, where the decrement of 50% of media composition caused drastic decrease in protease of FH3 from 1.081 to 0.056 and also S13 from 2.946 to 0.198.
Keywords: Isolation, identification, fibrinolytic protease, endophytic fungi, Hibiscus leaves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3208725 Blind Impulse Response Identification of Frequency Radio Channels: Application to Bran A Channel
Authors: S. Safi, M. Frikel, M. M'Saad, A. Zeroual
Abstract:
This paper describes a blind algorithm for estimating a time varying and frequency selective fading channel. In order to identify blindly the impulse response of these channels, we have used Higher Order Statistics (HOS) to build our algorithm. In this paper, we have selected two theoretical frequency selective channels as the Proakis-s 'B' channel and the Macchi-s channel, and one practical frequency selective fading channel called Broadband Radio Access Network (BRAN A). The simulation results in noisy environment and for different data input channel, demonstrate that the proposed method could estimate the phase and magnitude of these channels blindly and without any information about the input, except that the input excitation is i.i.d (Identically and Independent Distributed) and non-Gaussian.
Keywords: Frequency response, system identification, higher order statistics, communication channels, phase estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832