Search results for: face recognition
1057 Classification Algorithms in Human Activity Recognition using Smartphones
Authors: Mohd Fikri Azli bin Abdullah, Ali Fahmi Perwira Negara, Md. Shohel Sayeed, Deok-Jai Choi, Kalaiarasi Sonai Muthu
Abstract:
Rapid advancement in computing technology brings computers and humans to be seamlessly integrated in future. The emergence of smartphone has driven computing era towards ubiquitous and pervasive computing. Recognizing human activity has garnered a lot of interest and has raised significant researches- concerns in identifying contextual information useful to human activity recognition. Not only unobtrusive to users in daily life, smartphone has embedded built-in sensors that capable to sense contextual information of its users supported with wide range capability of network connections. In this paper, we will discuss the classification algorithms used in smartphone-based human activity. Existing technologies pertaining to smartphone-based researches in human activity recognition will be highlighted and discussed. Our paper will also present our findings and opinions to formulate improvement ideas in current researches- trends. Understanding research trends will enable researchers to have clearer research direction and common vision on latest smartphone-based human activity recognition area.Keywords: Classification algorithms, Human Activity Recognition (HAR), Smartphones
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63001056 Recognition of Tifinagh Characters with Missing Parts Using Neural Network
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.
Keywords: Tifinagh character recognition, Neural networks, Local cost computation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12861055 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition
Authors: Jong Han Joo, Jeong Hun Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi
Abstract:
In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. However, the effects of echo path changes should be considered for eliminating the undesired echoes. We describe a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.
Keywords: Acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23171054 Finding Sparse Features in Face Detection Using Genetic Algorithms
Authors: H. Sagha, S. Kasaei, E. Enayati, M. Dehghani
Abstract:
Although Face detection is not a recent activity in the field of image processing, it is still an open area for research. The greatest step in this field is the work reported by Viola and its recent analogous is Huang et al. Both of them use similar features and also similar training process. The former is just for detecting upright faces, but the latter can detect multi-view faces in still grayscale images using new features called 'sparse feature'. Finding these features is very time consuming and inefficient by proposed methods. Here, we propose a new approach for finding sparse features using a genetic algorithm system. This method requires less computational cost and gets more effective features in learning process for face detection that causes more accuracy.Keywords: Face Detection, Genetic Algorithms, Sparse Feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15821053 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network
Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu
Abstract:
The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than Optical Character Recognition (OCR) results.
Keywords: Biological pathway, image understanding, gene name recognition, object detection, Siamese network, Visual Geometry Group.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6791052 Pattern Recognition as an Internalized Motor Programme
Authors: M. Jändel
Abstract:
A new conceptual architecture for low-level neural pattern recognition is presented. The key ideas are that the brain implements support vector machines and that support vectors are represented as memory patterns in competitive queuing memories. A binary classifier is built from two competitive queuing memories holding positive and negative valence training examples respectively. The support vector machine classification function is calculated in synchronized evaluation cycles. The kernel is computed by bisymmetric feed-forward networks feed by sensory input and by competitive queuing memories traversing the complete sequence of support vectors. Temporary summation generates the output classification. It is speculated that perception apparatus in the brain reuses structures that have evolved for enabling fluent execution of prepared action sequences so that pattern recognition is built on internalized motor programmes.Keywords: Competitive queuing model, Olfactory system, Pattern recognition, Support vector machine, Thalamus
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13691051 Morphological Description of Cervical Cell Images for the Pathological Recognition
Authors: N. Lassouaoui, L. Hamami, N. Nouali
Abstract:
The tracking allows to detect the tumor affections of cervical cancer, it is particularly complex and consuming time, because it consists in seeking some abnormal cells among a cluster of normal cells. In this paper, we present our proposed computer system for helping the doctors in tracking the cervical cancer. Knowing that the diagnosis of the malignancy is based in the set of atypical morphological details of all cells, herein, we present an unsupervised genetic algorithm for the separation of cell components since the diagnosis is doing by analysis of the core and the cytoplasm. We give also the various algorithms used for computing the morphological characteristics of cells (Ratio core/cytoplasm, cellular deformity, ...) necessary for the recognition of illness.
Keywords: Cervical cell, morphological analysis, recognition, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19411050 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform
Abstract:
Image recognition enables machine-like robotics to understand a scene and plays an important role in computer vision applications. Computer vision platforms as physical infrastructure, supporting Neural Networks for image recognition, are deterministic to leverage the performance of different Neural Networks. In this paper, three different computer vision platforms – edge AI (Jetson Nano, with 4GB), a standalone laptop (with RTX 3000s, using CUDA), and a web-based device (Google Colab, using GPU) are investigated. In the case study, four prominent neural network architectures (including AlexNet, VGG16, GoogleNet, and ResNet (34/50)), are deployed. By using public ImageNets (Cifar-10), our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.
Keywords: AlexNet, VGG, GoogleNet, ResNet, ImageNet, Cifar-10, Edge AI, Jetson Nano, CUDA, GPU.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241049 Efficient and Effective Gabor Feature Representation for Face Detection
Authors: Yasuomi D. Sato, Yasutaka Kuriya
Abstract:
We here propose improved version of elastic graph matching (EGM) as a face detector, called the multi-scale EGM (MS-EGM). In this improvement, Gabor wavelet-based pyramid reduces computational complexity for the feature representation often used in the conventional EGM, but preserving a critical amount of information about an image. The MS-EGM gives us higher detection performance than Viola-Jones object detection algorithm of the AdaBoost Haar-like feature cascade. We also show rapid detection speeds of the MS-EGM, comparable to the Viola-Jones method. We find fruitful benefits in the MS-EGM, in terms of topological feature representation for a face.
Keywords: Face detection, Gabor wavelet based pyramid, elastic graph matching, topological preservation, redundancy of computational complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18751048 A Human Activity Recognition System Based On Sensory Data Related to Object Usage
Authors: M. Abdullah-Al-Wadud
Abstract:
Sensor-based Activity Recognition systems usually accounts which sensors have been activated to perform an activity. The system then combines the conditional probabilities of those sensors to represent different activities and takes the decision based on that. However, the information about the sensors which are not activated may also be of great help in deciding which activity has been performed. This paper proposes an approach where the sensory data related to both usage and non-usage of objects are utilized to make the classification of activities. Experimental results also show the promising performance of the proposed method.
Keywords: Naïve Bayesian-based classification, Activity recognition, sensor data, object-usage model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18261047 Player Number Localization and Recognition in Soccer Video using HSV Color Space and Internal Contours
Authors: Matko Šaric, Hrvoje Dujmic, Vladan Papic, Nikola Rožic
Abstract:
Detection of player identity is challenging task in sport video content analysis. In case of soccer video player number recognition is effective and precise solution. Jersey numbers can be considered as scene text and difficulties in localization and recognition appear due to variations in orientation, size, illumination, motion etc. This paper proposed new method for player number localization and recognition. By observing hue, saturation and value for 50 different jersey examples we noticed that most often combination of low and high saturated pixels is used to separate number and jersey region. Image segmentation method based on this observation is introduced. Then, novel method for player number localization based on internal contours is proposed. False number candidates are filtered using area and aspect ratio. Before OCR processing extracted numbers are enhanced using image smoothing and rotation normalization.
Keywords: player number, soccer video, HSV color space
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19881046 A Robust Eyelashes and Eyelid Detection in Transformation Invariant Iris Recognition: In Application with LRC Security System
Authors: R. Bremananth
Abstract:
Biometric authentication is an essential task for any kind of real-life applications. In this paper, we contribute two primary paradigms to Iris recognition such as Robust Eyelash Detection (RED) using pathway kernels and hair curve fitting synthesized model. Based on these two paradigms, rotation invariant iris recognition is enhanced. In addition, the presented framework is tested with real-life iris data to provide the authentication for LRC (Learning Resource Center) users. Recognition performance is significantly improved based on the contributed schemes by evaluating real-life irises. Furthermore, the framework has been implemented using Java programming language. Experiments are performed based on 1250 diverse subjects in different angles of variations on the authentication process. The results revealed that the methodology can deploy in the process on LRC management system and other security required applications.Keywords: Authentication, biometric, eye lashes detection, iris scanning, LRC security, secure access.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10351045 Printed Arabic Sub-Word Recognition Using Moments
Authors: Ibrahim A. El rube, Mohamed T. El Sonni, Soha S. Saleh
Abstract:
the cursive nature of the Arabic writing makes it difficult to accurately segment characters or even deal with the whole word efficiently. Therefore, in this paper, a printed Arabic sub-word recognition system is proposed. The suggested algorithm utilizes geometrical moments as descriptors for the separated sub-words. Three types of moments are investigated and applied to the printed sub-word images after dividing each image into multiple parts using windowing. Since moments are global descriptors, the windowing mechanism allows the moments to be applied to local regions of the sub-word. The local-global mixture of the proposed scheme increases the discrimination power of the moments while keeping the simplicity and ease of use of moments.Keywords: Arabic sub-word recognition, windowing, aspectratio, moments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15651044 A Self Configuring System for Object Recognition in Color Images
Authors: Michela Lecca
Abstract:
System MEMORI automatically detects and recognizes rotated and/or rescaled versions of the objects of a database within digital color images with cluttered background. This task is accomplished by means of a region grouping algorithm guided by heuristic rules, whose parameters concern some geometrical properties and the recognition score of the database objects. This paper focuses on the strategies implemented in MEMORI for the estimation of the heuristic rule parameters. This estimation, being automatic, makes the system a highly user-friendly tool.
Keywords: Automatic object recognition, clustering, content based image retrieval system, image segmentation, region adjacency graph, region grouping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14091043 Automatic Number Plate Recognition System Based on Deep Learning
Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi
Abstract:
In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.
Keywords: Automatic number plate recognition, character segmentation, convolutional neural network, CNN, deep learning, number plate localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12871042 Pareidolia and Perception of Anger in Vehicle Styles: Survey Results
Authors: Alan S. Hoback
Abstract:
Most people see human faces in car front and back ends because of the process of pareidolia. 96 people were surveyed to see how many of them saw a face in the vehicle styling. Participants were aged 18 to 72 years. 94% of the participants saw faces in the front-end design of production models. All participants that recognized faces indicated that most styles showed some degree of an angry expression. It was found that women were more likely to see faces in inanimate objects. However, with respect to whether women were more likely to perceive anger in the vehicle design, the results need further clarification. Survey responses were correlated to the design features of vehicles to determine what cues the respondents were likely looking at when responding. Whether the features looked anthropomorphic was key to anger perception. Features such as the headlights which could represent eyes and the air intake that could represent a mouth had high correlations to trends in scores. Results are compared among models, makers, by groupings of body styles classifications for the top 12 brands sold in the US, and by year for the top 20 models sold in the US in 2016. All of the top models sold increased in perception of an angry expression over the last 20 years or since the model was introduced, but the relative change varied by body style grouping.
Keywords: Aggressive driving, face recognition, road rage, vehicle styling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8021041 Automatic Recognition of an Unknown and Time-Varying Number of Simultaneous Environmental Sound Sources
Authors: S. Ntalampiras, I. Potamitis, N. Fakotakis, S. Kouzoupis
Abstract:
The present work faces the problem of automatic enumeration and recognition of an unknown and time-varying number of environmental sound sources while using a single microphone. The assumption that is made is that the sound recorded is a realization of sound sources belonging to a group of audio classes which is known a-priori. We describe two variations of the same principle which is to calculate the distance between the current unknown audio frame and all possible combinations of the classes that are assumed to span the soundscene. We concentrate on categorizing environmental sound sources, such as birds, insects etc. in the task of monitoring the biodiversity of a specific habitat.
Keywords: automatic recognition of multiple sound sources, enumeration of sound sources, computational ecology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15591040 From F2F to Online Sessions: Changing Pattern of Instructions in Open and Distance Learning in India
Authors: Subramaniam Chandran
Abstract:
This paper presents an assessment study conducted among the distance learners in India. Open and distance learning systems have traveled a long way since its inception and its journey has witnessed the evolution and adoption of different generations of technology. This study focuses on the distant learners in India. Sampling for this study has been derived from the mass enrollment from Tamil Nadu area, a southern state of India. Learners were chosen from dual mode universities, private universities, Tamil Nadu Open University and IGNOU. The main focus of the study is to examine the coverage and appropriation of students support services and learning aids. It explores two aspects: the facilities available and the awareness and use of such services. It includes, self-learning materials, face-to-face counseling, multimedia learning materials, website, e-learning, radio and television services etc. While exploring the student-s perspective on these learning aspects, it is important to understand the perspectives of the teachers. Two different interests are visible among the teachers. Majority of the teachers support faceto- face counseling. However, the young teachers are in favour of online learning and multimedia supports in teaching. Through the awareness is somewhat high, the actual participation in online is very low. This is due to the inadequate infrastructure as well as the traditional attitudes of the teachers. Still the face-to-face sessions remain popular than online.Keywords: Face-to-face session, online session, distance learning, multimedia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14921039 A Face-to-Face Education Support System Capable of Lecture Adaptation and Q&A Assistance Based On Probabilistic Inference
Authors: Yoshitaka Fujiwara, Jun-ichirou Fukushima, Yasunari Maeda
Abstract:
Keys to high-quality face-to-face education are ensuring flexibility in the way lectures are given, and providing care and responsiveness to learners. This paper describes a face-to-face education support system that is designed to raise the satisfaction of learners and reduce the workload on instructors. This system consists of a lecture adaptation assistance part, which assists instructors in adapting teaching content and strategy, and a Q&A assistance part, which provides learners with answers to their questions. The core component of the former part is a “learning achievement map", which is composed of a Bayesian network (BN). From learners- performance in exercises on relevant past lectures, the lecture adaptation assistance part obtains information required to adapt appropriately the presentation of the next lecture. The core component of the Q&A assistance part is a case base, which accumulates cases consisting of questions expected from learners and answers to them. The Q&A assistance part is a case-based search system equipped with a search index which performs probabilistic inference. A prototype face-to-face education support system has been built, which is intended for the teaching of Java programming, and this approach was evaluated using this system. The expected degree of understanding of each learner for a future lecture was derived from his or her performance in exercises on past lectures, and this expected degree of understanding was used to select one of three adaptation levels. A model for determining the adaptation level most suitable for the individual learner has been identified. An experimental case base was built to examine the search performance of the Q&A assistance part, and it was found that the rate of successfully finding an appropriate case was 56%.
Keywords: Bayesian network, face-to-face education, lecture adaptation, Q&A assistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13591038 Gender Differences in Spatial Navigation
Authors: Bia Kim, Sewon Lee, Jaesik Lee
Abstract:
This study aims to investigate the gender differences in spatial navigation using the tasks of 2-D matrix navigation and recognition of real driving scene. The results can be summarized as followings. First, female subjects responded faster in 2-D matrix navigation task than male subjects when landmark instructions were provided. Second, in recognition task, male subjects recognized the key elements involved in the past driving scene more accurately than female subjects. In particular, female subjects tended to miss peripheral information. These results suggest the possibility of gender differences in spatial navigation.Keywords: Gender differences, Spatial navigation, 2-D matrixnavigation, Recognition of driving scene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27391037 Parametric Primitives for Hand Gesture Recognition
Authors: Sanmohan Krüger, Volker Krüger
Abstract:
Imitation learning is considered to be an effective way of teaching humanoid robots and action recognition is the key step to imitation learning. In this paper an online algorithm to recognize parametric actions with object context is presented. Objects are key instruments in understanding an action when there is uncertainty. Ambiguities arising in similar actions can be resolved with objectn context. We classify actions according to the changes they make to the object space. Actions that produce the same state change in the object movement space are classified to belong to the same class. This allow us to define several classes of actions where members of each class are connected with a semantic interpretation.Keywords: Parametric actions, Action primitives, Hand gesture recognition, Imitation learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14871036 Improved Dynamic Bayesian Networks Applied to Arabic on Line Characters Recognition
Authors: Redouane Tlemsani, Abdelkader Benyettou
Abstract:
Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology.
This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data.
Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables.
In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization.
The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.
Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17811035 Behavioral Experiments of Small Societies in Social Media: Facebook Expressions of Anchored Relationships
Authors: Nuran Öze
Abstract:
Communities and societies have been changing towards computer mediated communication. This paper explores online and offline identities and how relationships are formed and negotiated within internet environments which offer opportunities for people who know each other offline and move into relationships online. The expectations and norms of behavior within everyday life cause people to be embodied self. According to the age categories of Turkish Cypriots, their measurements of attitudes in Facebook will be investigated. Face-to-face field research and semi-structured interview methods are used in the study. Face-to-face interview has been done with Turkish Cypriots who are using Facebook already. According to the study, in constructing a linkage between real and virtual identities mostly affected from societal relations serves as a societal grooming tool for Turkish Cypriots.Keywords: Facebook, identity, social media, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11041034 A Talking Head System for Korean Text
Authors: Sang-Wan Kim, Hoon Lee, Kyung-Ho Choi, Soon-Young Park
Abstract:
A talking head system (THS) is presented to animate the face of a speaking 3D avatar in such a way that it realistically pronounces the given Korean text. The proposed system consists of SAPI compliant text-to-speech (TTS) engine and MPEG-4 compliant face animation generator. The input to the THS is a unicode text that is to be spoken with synchronized lip shape. The TTS engine generates a phoneme sequence with their duration and audio data. The TTS applies the coarticulation rules to the phoneme sequence and sends a mouth animation sequence to the face modeler. The proposed THS can make more natural lip sync and facial expression by using the face animation generator than those using the conventional visemes only. The experimental results show that our system has great potential for the implementation of talking head for Korean text.Keywords: Talking head, Lip sync, TTS, MPEG4.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14921033 Component-based Segmentation of Words from Handwritten Arabic Text
Authors: Jawad H AlKhateeb, Jianmin Jiang, Jinchang Ren, Stan S Ipson
Abstract:
Efficient preprocessing is very essential for automatic recognition of handwritten documents. In this paper, techniques on segmenting words in handwritten Arabic text are presented. Firstly, connected components (ccs) are extracted, and distances among different components are analyzed. The statistical distribution of this distance is then obtained to determine an optimal threshold for words segmentation. Meanwhile, an improved projection based method is also employed for baseline detection. The proposed method has been successfully tested on IFN/ENIT database consisting of 26459 Arabic words handwritten by 411 different writers, and the results were promising and very encouraging in more accurate detection of the baseline and segmentation of words for further recognition.Keywords: Arabic OCR, off-line recognition, Baseline estimation, Word segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22071032 Indian License Plate Detection and Recognition Using Morphological Operation and Template Matching
Authors: W. Devapriya, C. Nelson Kennedy Babu, T. Srihari
Abstract:
Automatic License plate recognition (ALPR) is a technology which recognizes the registration plate or number plate or License plate of a vehicle. In this paper, an Indian vehicle number plate is mined and the characters are predicted in efficient manner. ALPR involves four major technique i) Pre-processing ii) License Plate Location Identification iii) Individual Character Segmentation iv) Character Recognition. The opening phase, named pre-processing helps to remove noises and enhances the quality of the image using the conception of Morphological Operation and Image subtraction. The second phase, the most puzzling stage ascertain the location of license plate using the protocol Canny Edge detection, dilation and erosion. In the third phase, each characters characterized by Connected Component Approach (CCA) and in the ending phase, each segmented characters are conceptualized using cross correlation template matching- a scheme specifically appropriate for fixed format. Major application of ALPR is Tolling collection, Border Control, Parking, Stolen cars, Enforcement, Access Control, Traffic control. The database consists of 500 car images taken under dissimilar lighting condition is used. The efficiency of the system is 97%. Our future focus is Indian Vehicle License Plate Validation (Whether License plate of a vehicle is as per Road transport and highway standard).
Keywords: Automatic License plate recognition, Character recognition, Number plate Recognition, Template matching, morphological operation, canny edge detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24061031 Interactive Shadow Play Animation System
Authors: Bo Wan, Xiu Wen, Lingling An, Xiaoling Ding
Abstract:
The paper describes a Chinese shadow play animation system based on Kinect. Users, without any professional training, can personally manipulate the shadow characters to finish a shadow play performance by their body actions and get a shadow play video through giving the record command to our system if they want. In our system, Kinect is responsible for capturing human movement and voice commands data. Gesture recognition module is used to control the change of the shadow play scenes. After packaging the data from Kinect and the recognition result from gesture recognition module, VRPN transmits them to the server-side. At last, the server-side uses the information to control the motion of shadow characters and video recording. This system not only achieves human-computer interaction, but also realizes the interaction between people. It brings an entertaining experience to users and easy to operate for all ages. Even more important is that the application background of Chinese shadow play embodies the protection of the art of shadow play animation.
Keywords: Gesture recognition, Kinect, shadow play animation, VRPN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27071030 SIFT Accordion: A Space-Time Descriptor Applied to Human Action Recognition
Authors: Olfa.Ben Ahmed, Mahmoud. Mejdoub, Chokri. Ben Amar
Abstract:
Recognizing human action from videos is an active field of research in computer vision and pattern recognition. Human activity recognition has many potential applications such as video surveillance, human machine interaction, sport videos retrieval and robot navigation. Actually, local descriptors and bag of visuals words models achieve state-of-the-art performance for human action recognition. The main challenge in features description is how to represent efficiently the local motion information. Most of the previous works focus on the extension of 2D local descriptors on 3D ones to describe local information around every interest point. In this paper, we propose a new spatio-temporal descriptor based on a spacetime description of moving points. Our description is focused on an Accordion representation of video which is well-suited to recognize human action from 2D local descriptors without the need to 3D extensions. We use the bag of words approach to represent videos. We quantify 2D local descriptor describing both temporal and spatial features with a good compromise between computational complexity and action recognition rates. We have reached impressive results on publicly available action data setKeywords: Accordion, Bag of Features, Human action, Motion, Moving point, Space-Time Descriptor, SIFT, Video.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21081029 Comparison of MFCC and Cepstral Coefficients as a Feature Set for PCG Biometric Systems
Authors: Justin Leo Cheang Loong, Khazaimatol S Subari, Muhammad Kamil Abdullah, Nurul Nadia Ahmad, RosliBesar
Abstract:
Heart sound is an acoustic signal and many techniques used nowadays for human recognition tasks borrow speech recognition techniques. One popular choice for feature extraction of accoustic signals is the Mel Frequency Cepstral Coefficients (MFCC) which maps the signal onto a non-linear Mel-Scale that mimics the human hearing. However the Mel-Scale is almost linear in the frequency region of heart sounds and thus should produce similar results with the standard cepstral coefficients (CC). In this paper, MFCC is investigated to see if it produces superior results for PCG based human identification system compared to CC. Results show that the MFCC system is still superior to CC despite linear filter-banks in the lower frequency range, giving up to 95% correct recognition rate for MFCC and 90% for CC. Further experiments show that the high recognition rate is due to the implementation of filter-banks and not from Mel-Scaling.Keywords: Biometric, Phonocardiogram, Cepstral Coefficients, Mel Frequency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35531028 ADABeV: Automatic Detection of Abnormal Behavior in Video-surveillance
Authors: Nour Charara, Iman Jarkass, Maria Sokhn, Elena Mugellini, Omar Abou Khaled
Abstract:
Intelligent Video-Surveillance (IVS) systems are being more and more popular in security applications. The analysis and recognition of abnormal behaviours in a video sequence has gradually drawn the attention in the field of IVS, since it allows filtering out a large number of useless information, which guarantees the high efficiency in the security protection, and save a lot of human and material resources. We present in this paper ADABeV, an intelligent video-surveillance framework for event recognition in crowded scene to detect the abnormal human behaviour. This framework is attended to be able to achieve real-time alarming, reducing the lags in traditional monitoring systems. This architecture proposal addresses four main challenges: behaviour understanding in crowded scenes, hard lighting conditions, multiple input kinds of sensors and contextual-based adaptability to recognize the active context of the scene.Keywords: Behavior recognition, Crowded scene, Data fusion, Pattern recognition, Video-surveillance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3636