Search results for: Selection of risk measures
2525 Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults
Authors: L. Lindsay, S. A. Coleman, D. Kerr, B. J. Taylor, A. Moorhead
Abstract:
Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.
Keywords: Classification, falls, health risk factors, machine learning, older adults.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10552524 Decision Support for the Selection of Electric Power Plants Generated from Renewable Sources
Authors: Aumnad Phdungsilp, Teeradej Wuttipornpun
Abstract:
Decision support based upon risk analysis into comparison of the electricity generation from different renewable energy technologies can provide information about their effects on the environment and society. The aim of this paper is to develop the assessment framework regarding risks to health and environment, and the society-s benefits of the electric power plant generation from different renewable sources. The multicriteria framework to multiattribute risk analysis technique and the decision analysis interview technique are applied in order to support the decisionmaking process for the implementing renewable energy projects to the Bangkok case study. Having analyses the local conditions and appropriate technologies, five renewable power plants are postulated as options. As this work demonstrates, the analysis can provide a tool to aid decision-makers for achieving targets related to promote sustainable energy system.Keywords: Analytic Hierarchy Process, Bangkok, MultiattributeRisk Analysis, Renewable Energy Technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19482523 sEMG Interface Design for Locomotion Identification
Authors: Rohit Gupta, Ravinder Agarwal
Abstract:
Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.Keywords: Classifiers, feature selection, locomotion, sEMG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14932522 Selection of Strategic Suppliers for Partnership: A Model with Two Stages Approach
Authors: Safak Isik, Ozalp Vayvay
Abstract:
Strategic partnerships with suppliers play a vital role for the long-term value-based supply chain. This strategic collaboration keeps still being one of the top priority of many business organizations in order to create more additional value; benefiting mainly from supplier’s specialization, capacity and innovative power, securing supply and better managing costs and quality. However, many organizations encounter difficulties in initiating, developing and managing those partnerships and many attempts result in failures. One of the reasons for such failure is the incompatibility of members of this partnership or in other words wrong supplier selection which emphasize the significance of the selection process since it is the beginning stage. An effective selection process of strategic suppliers is critical to the success of the partnership. Although there are several research studies to select the suppliers in literature, only a few of them is related to strategic supplier selection for long-term partnership. The purpose of this study is to propose a conceptual model for the selection of strategic partnership suppliers. A two-stage approach has been used in proposed model incorporating first segmentation and second selection. In the first stage; considering the fact that not all suppliers are strategically equal and instead of a long list of potential suppliers, Kraljic’s purchasing portfolio matrix can be used for segmentation. This supplier segmentation is the process of categorizing suppliers based on a defined set of criteria in order to identify types of suppliers and determine potential suppliers for strategic partnership. In the second stage, from a pool of potential suppliers defined at first phase, a comprehensive evaluation and selection can be performed to finally define strategic suppliers considering various tangible and intangible criteria. Since a long-term relationship with strategic suppliers is anticipated, criteria should consider both current and future status of the supplier. Based on an extensive literature review; strategical, operational and organizational criteria have been determined and elaborated. The result of the selection can also be used to determine suppliers who are not ready for a partnership but to be developed for strategic partnership. Since the model is based on multiple criteria for both stages, it provides a framework for further utilization of Multi-Criteria Decision Making (MCDM) techniques. The model may also be applied to a wide range of industries and involve managerial features in business organizations.
Keywords: Kraljic’s matrix, purchasing portfolio, strategic supplier selection, supplier collaboration, supplier partnership, supplier segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11602521 Military Combat Aircraft Selection Using Trapezoidal Fuzzy Numbers with the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
Authors: C. Ardil
Abstract:
This article presents a new approach to uncertainty, vagueness, and imprecision analysis for ranking alternatives with fuzzy data for decision making using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). In the proposed approach, fuzzy decision information related to the aircraft selection problem is taken into account in ranking the alternatives and selecting the best one. The basic procedural step is to transform the fuzzy decision matrices into matrices of alternatives evaluated according to all decision criteria. A numerical example illustrates the proposed approach for the military combat aircraft selection problem.
Keywords: trapezoidal fuzzy numbers, multiple criteria decision making analysis, decision making, aircraft selection, MCDMA, fuzzy TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4732520 A Combined Fuzzy Decision Making Approach to Supply Chain Risk Assessment
Authors: P. Moeinzadeh, A. Hajfathaliha
Abstract:
Many firms implemented various initiatives such as outsourced manufacturing which could make a supply chain (SC) more vulnerable to various types of disruptions. So managing risk has become a critical component of SC management. Different types of SC vulnerability management methodologies have been proposed for managing SC risk, most offer only point-based solutions that deal with a limited set of risks. This research aims to reinforce SC risk management by proposing an integrated approach. SC risks are identified and a risk index classification structure is created. Then we develop a SC risk assessment approach based on the analytic network process (ANP) and the VIKOR methods under the fuzzy environment where the vagueness and subjectivity are handled with linguistic terms parameterized by triangular fuzzy numbers. By using FANP, risks weights are calculated and then inserted to the FVIKOR to rank the SC members and find the most risky partner.
Keywords: Analytic network process (ANP), Fuzzy sets, Supply chain risk management (SCRM), VIšekriterijumsko KOmpromisno Rangiranje (VIKOR)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29282519 Material Handling Equipment Selection using Hybrid Monte Carlo Simulation and Analytic Hierarchy Process
Authors: Amer M. Momani, Abdulaziz A. Ahmed
Abstract:
The many feasible alternatives and conflicting objectives make equipment selection in materials handling a complicated task. This paper presents utilizing Monte Carlo (MC) simulation combined with the Analytic Hierarchy Process (AHP) to evaluate and select the most appropriate Material Handling Equipment (MHE). The proposed hybrid model was built on the base of material handling equation to identify main and sub criteria critical to MHE selection. The criteria illustrate the properties of the material to be moved, characteristics of the move, and the means by which the materials will be moved. The use of MC simulation beside the AHP is very powerful where it allows the decision maker to represent his/her possible preference judgments as random variables. This will reduce the uncertainty of single point judgment at conventional AHP, and provide more confidence in the decision problem results. A small business pharmaceutical company is used as an example to illustrate the development and application of the proposed model.Keywords: Analytic Hierarchy Process (AHP), Materialhandling equipment selection, Monte Carlo simulation, Multi-criteriadecision making
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31382518 Project Risk Management Techniques in Resource Allocation, Scheduling and Planning
Authors: Hossein Amoozad Khalili, Anahita Maleki
Abstract:
Normally business changes are made in order to change a level of activity in some way, whether it is sales, cash flow, productivity, or product portfolio. When attempts are made to make such changes, too often the business reverts to the old levels of activity as soon as management attention is diverted. Risk management is a field of growing interest to project managers as well as in general business and organizational management. There are several approaches used to manage risk in projects and this paper is a brief outline of some that you might encounter, with an indication of their strengths and weaknesses.Keywords: Risk Management, Project Management, Scheduling, Planning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34162517 Feature Selection with Kohonen Self Organizing Classification Algorithm
Authors: Francesco Maiorana
Abstract:
In this paper a one-dimension Self Organizing Map algorithm (SOM) to perform feature selection is presented. The algorithm is based on a first classification of the input dataset on a similarity space. From this classification for each class a set of positive and negative features is computed. This set of features is selected as result of the procedure. The procedure is evaluated on an in-house dataset from a Knowledge Discovery from Text (KDT) application and on a set of publicly available datasets used in international feature selection competitions. These datasets come from KDT applications, drug discovery as well as other applications. The knowledge of the correct classification available for the training and validation datasets is used to optimize the parameters for positive and negative feature extractions. The process becomes feasible for large and sparse datasets, as the ones obtained in KDT applications, by using both compression techniques to store the similarity matrix and speed up techniques of the Kohonen algorithm that take advantage of the sparsity of the input matrix. These improvements make it feasible, by using the grid, the application of the methodology to massive datasets.Keywords: Clustering algorithm, Data mining, Feature selection, Grid, Kohonen Self Organizing Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30522516 A New Hybrid K-Mean-Quick Reduct Algorithm for Gene Selection
Authors: E. N. Sathishkumar, K. Thangavel, T. Chandrasekhar
Abstract:
Feature selection is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that all genes are not important in gene expression data. Some of the genes may be redundant, and others may be irrelevant and noisy. Here a novel approach is proposed Hybrid K-Mean-Quick Reduct (KMQR) algorithm for gene selection from gene expression data. In this study, the entire dataset is divided into clusters by applying K-Means algorithm. Each cluster contains similar genes. The high class discriminated genes has been selected based on their degree of dependence by applying Quick Reduct algorithm to all the clusters. Average Correlation Value (ACV) is calculated for the high class discriminated genes. The clusters which have the ACV value as 1 is determined as significant clusters, whose classification accuracy will be equal or high when comparing to the accuracy of the entire dataset. The proposed algorithm is evaluated using WEKA classifiers and compared. The proposed work shows that the high classification accuracy.
Keywords: Clustering, Gene Selection, K-Mean-Quick Reduct, Rough Sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22982515 Attribute Selection for Preference Functions in Engineering Design
Authors: Ali E. Abbas
Abstract:
Industrial Engineering is a broad multidisciplinary field with intersections and applications in numerous areas. When designing a product, it is important to determine the appropriate attributes of value and the preference function for which the product is optimized. This paper provides some guidelines on appropriate selection of attributes for preference and value functions for engineering design.
Keywords: Decision analysis, engineering design, direct vs. indirect values.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9102514 Risk Assessment Results in Biogas Production from Agriculture Biomass
Authors: Sandija Zeverte-Rivza, Irina Pilvere, Baiba Rivza
Abstract:
The use of renewable energy sources incl. biogas has become topical in accordance with the increasing demand for energy, decrease of fossil energy resources and the efforts to reduce greenhouse gas emissions as well as to increase energy independence from the territories where fossil energy resources are available.
As the technologies of biogas production from agricultural biomass develop, risk assessment and risk management become necessary for farms producing such a renewable energy. The need for risk assessments has become particularly topical when discussions on changing the biogas policy in the EU take place, which may influence the development of the sector in the future, as well as the operation of existing biogas facilities and their income level.
The current article describes results of the risk assessment for farms producing biomass from agriculture biomass in Latvia, the risk assessment system included 24 risks, that affect the whole biogas production process and the obtained results showed the high significance of political and production risks.
Keywords: Biogas production, risks, risk assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32652513 Ranking of the Main Criteria for Contractor Selection Procedures on Major Construction Projects in Libya Using the Delphi Method
Authors: Othoman Elsayah, Naren Gupta, Binsheng Zhang
Abstract:
The construction sector constitutes one of the most important sectors in the economy of any country. Contractor selection is a critical decision that is undertaken by client organizations and is central to the success of any construction project. Contractor selection (CS) is a process which involves investigating, screening and determining whether candidate contractors have the technical and financial capability to be accepted to formally tender for construction work. The process should be conducted prior to the award of contract, characterized by many factors such as: contactor’s skills, experience on similar projects, track- record in the industry, and financial stability. However, this paper evaluates the current state of knowledge in relation to contractor selection process and demonstrates the findings from the analysis of the data collected from the Delphi questionnaire survey. The survey was conducted with a group of 12 experts working in the Libyan construction industry (LCI). The paper starts by briefly explaining the general outline of the questionnaire including the survey participation rate, the different fields the experts came from, and the business titles of the participants. Then the paper describes the tests used to determine when the experts had reached consensus. The paper is based on research which aims to develop rank contractor selection criteria with specific application to make construction projects in the Libyan context. The findings of this study will be utilized to establish the scope of work that will be used as part of a PhD research.
Keywords: Contractor selection, Libyan construction industry, Decision experts and Delphi technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29522512 Critical Psychosocial Risk Treatment for Engineers and Technicians
Authors: R. Berglund, T. Backström, M. Bellgran
Abstract:
This study explores how management addresses psychosocial risks in seven teams of engineers and technicians in the midst of the fourth industrial revolution. The sample is from an ongoing quasi-experiment about psychosocial risk management in a manufacturing company in Sweden. Each of the seven teams belongs to one of two clusters: a positive cluster or a negative cluster. The positive cluster reports a significantly positive change in psychosocial risk levels between two time-points and the negative cluster reports a significantly negative change. The data are collected using semi-structured interviews. The results of the computer aided thematic analysis show that there are more differences than similarities when comparing the risk treatment actions taken between the two clusters. Findings show that the managers in the positive cluster use more enabling actions that foster and support formal and informal relationship building. In contrast, managers that use less enabling actions hinder the development of positive group processes and contribute negative changes in psychosocial risk levels. This exploratory study sheds some light on how management can influence significant positive and negative changes in psychosocial risk levels during a risk management process.
Keywords: Group process model, risk treatment, risk management, psychosocial.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10272511 Links between Landscape Management and Environmental Risk Assessment: Considerations from the Italian Context
Authors: M. Balestrieri, C. Pusceddu
Abstract:
Issues relating to the destructive phenomena that can damage people and goods have returned to the centre of debate in Italy with the increase in catastrophic episodes in recent years in a country which is highly vulnerable to hydrological risk. Environmental factors and geological and geomorphological territorial characteristics play an important role in determining the level of vulnerability and the natural tendency to risk. However, a territory has also been subjected to the requirements of and transformations of society and this brings other relevant factors. The reasons for the increase in destructive phenomena are often to be found in the territorial development models adopted. Stewardship of the landscape and management of risk are related issues. This study aims to summarize the most relevant elements about this connection and at the same time to clarify the role of environmental risk assessment as a tool to aid in the sustainable management of landscape. Finally, the study reflects on how regional and urban planners deal with environmental risk and which aspects should be monitored in order to adopt responsible and useful interventions.Keywords: Assessment, landscape, risk, planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18272510 Multiple Criteria Decision Making for Turkish Air Force Stealth Fighter Aircraft Selection
Authors: C. Ardil
Abstract:
Neutrosophic logic decision analysis is proposed as a method of stealth fighter aircraft selection for Turkish Air Force. The opinion of experts is employed to rank the alternatives across a set of criteria. The analyst uses neutrosophic logic numbers to describe the experts' preferences. This approach can handle the situation in the case of unavailability of precise data, which is most commonly the case in stealth fighter aircraft selection. Neutrosophic logic numbers can consider the imprecision of the factors affecting decision making such as stealth analysis, survivability analysis, and performance analysis. Neutrosophic logic ranking is achieved using weighted arithmetic operator and weighted geometric operator and the alternatives are ranked from best to worst. An example is also presented to illustrate the applicability and effectiveness of the proposed method.
Keywords: Neutrosophic set theory, stealth fighter aircraft selection, multiple criteria decision-making, neutrosophic logic decision making, Turkish Air Force, MCDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4982509 Identifying Corruption in Legislation using Risk Analysis Methods
Authors: Chvalkovska, J., Jansky, P., Mejstrik, M.
Abstract:
The objective of this article is to discuss the potential of economic analysis as a tool for identification and evaluation of corruption in legislative acts. We propose that corruption be perceived as a risk variable within the legislative process. Therefore we find it appropriate to employ risk analysis methods, used in various fields of economics, for the evaluation of corruption in legislation. Furthermore we propose the incorporation of these methods into the so called corruption impact assessment (CIA), the general framework for detection of corruption in legislative acts. The applications of the risk analysis methods are demonstrated on examples of implementation of proposed CIA in the Czech Republic. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24682508 Bed Site Selection by Wild Boar (Sus scrofa) in Baghshadi Protected Area, Yazd Province, Iran
Authors: S. Aghainajafizadeh, F. Heydari, H. Abbasian
Abstract:
Populations of wild boar present in semi-arid of central Iran. We studied features influencing bed site selection by this species in semi-arid central steppe of Iran. Habitat features of the detected bed site were compared with randomly selected by quantifying number of habitat variables in semi- arid area in Iran. The results revealed that the most important influencing factors in bed site selection were vegetation cover, number of Artemisia sieberi, percentage cover and height of Acer cinerascens, percentage cover and height of Amygdalus scoparia. This is the first ecological study of the wild boar in a protected area of the semi desert biome of Iran. Sustainability of wild boar populations in this area dependent to shrubs of Amygdalus scoparia and Acer cinerascens for thermal and camouflage cover.
Keywords: Wild boar, Bed site selection, Yazd, Iran
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13002507 Debts and Debt-Based Sukuk Related to Risk Shifting Behavior
Authors: Siti Raihana Hamzah
Abstract:
This paper elaborates risk shifting in debt financing system as the ultimate cause of the global financial crisis. In contrast, risk sharing in equity financing like sukuk helps the economic system to be better sustained. Nevertheless, some types of sukuk are haunted by the issue of imitation with bonds. The critics on the imitation issue not only have raised doubt on the ability of sukuk to diminish risk shifting behavior but also the ability of this Islamic financial instrument to ensure better future financial stability. Through that, this paper provides discussion on the possibility of sukuk to induce risk shifting and how equity financing may help sukuk to be free from risk shifting. This paper is important in the sense that sukuk receives a significant demand from investors throughout the world. For this instrument to be supportive in the future economic stability, the issue of imitation needs to be identified and addressed. Furthermore, critics cannot be focused on debts and its ability to gauge the financial flux but also to sukuk due to their structures similarity.
Keywords: Global financial crisis, debt, risk-shifting, risk sharing, equity, sukuk, bonds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25582506 Determinate Fuzzy Set Ranking Analysis for Combat Aircraft Selection with Multiple Criteria Group Decision Making
Authors: C. Ardil
Abstract:
Using the aid of Hausdorff distance function and Minkowski distance function, this study proposes a novel method for selecting combat aircraft for Air Force. In order to do this, the proximity measure method was developed with determinate fuzzy degrees based on the relationship between attributes and combat aircraft alternatives. The combat aircraft selection attributes were identified as payloadability, maneuverability, speedability, stealthability, and survivability. Determinate fuzzy data from the combat aircraft attributes was then aggregated using the determinate fuzzy weighted arithmetic average operator. For the selection of combat aircraft, correlation analysis of the ranking order patterns of options was also examined. A numerical example from military aviation is used to demonstrate the applicability and effectiveness of the proposed method.
Keywords: Combat aircraft selection, multiple criteria decision making, fuzzy sets, determinate fuzzy sets, intuitionistic fuzzy sets, proximity measure method, Hausdorff distance function, Minkowski distance function, PMM, MCDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3552505 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.
Keywords: Corporate credit rating prediction, feature selection, genetic algorithms, instance selection, multiclass support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14112504 Evaluation of Risk Attributes Driven by Periodically Changing System Functionality
Authors: Dariusz Dymek, Leszek Kotulski
Abstract:
Modeling of the distributed systems allows us to represent the whole its functionality. The working system instance rarely fulfils the whole functionality represented by model; usually some parts of this functionality should be accessible periodically. The reporting system based on the Data Warehouse concept seams to be an intuitive example of the system that some of its functionality is required only from time to time. Analyzing an enterprise risk associated with the periodical change of the system functionality, we should consider not only the inaccessibility of the components (object) but also their functions (methods), and the impact of such a situation on the system functionality from the business point of view. In the paper we suggest that the risk attributes should be estimated from risk attributes specified at the requirements level (Use Case in the UML model) on the base of the information about the structure of the model (presented at other levels of the UML model). We argue that it is desirable to consider the influence of periodical changes in requirements on the enterprise risk estimation. Finally, the proposition of such a solution basing on the UML system model is presented.Keywords: Risk assessing, software maintenance, UML, graph grammars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13852503 Examining Corporate Tax Evaders: Evidence from the Finalized Audit Cases
Authors: Ming Ling Lai, Zalilawati Yaacob, Normah Omar, Norashikin Abdul Aziz, Bee Wah Yap
Abstract:
This paper aims to (1) analyze the profiles of transgressors (detected evaders); (2) examine reason(s) that triggered a tax audit, causes of tax evasion, audit timeframe and tax penalty charged; and (3) to assess if tax auditors followed the guidelines as stated in the 'Tax Audit Framework' when conducting tax audits. In 2011, the Inland Revenue Board Malaysia (IRBM) had audited and finalized 557 company cases. With official permission, data of all the 557 cases were obtained from the IRBM. Of these, a total of 421 cases with complete information were analyzed. About 58.1% was small and medium corporations and from the construction industry (32.8%). The selection for tax audit was based on risk analysis (66.8%), information from third party (11.1%), and firm with low profitability or fluctuating profit pattern (7.8%). The three persistent causes of tax evasion by firms were over claimed expenses (46.8%), fraudulent reporting of income (38.5%) and overstating purchases (10.5%). These findings are consistent with past literature. Results showed that tax auditors took six to 18 months to close audit cases. More than half of tax evaders were fined 45% on additional tax raised during audit for the first offence. The study found tax auditors did follow the guidelines in the 'Tax Audit Framework' in audit selection, settlement and penalty imposition.Keywords: Corporate tax fraud, tax non-compliance, tax evasion, tax audit, fraudulent reporting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34302502 Automatic Musical Genre Classification Using Divergence and Average Information Measures
Authors: Hassan Ezzaidi, Jean Rouat
Abstract:
Recently many research has been conducted to retrieve pertinent parameters and adequate models for automatic music genre classification. In this paper, two measures based upon information theory concepts are investigated for mapping the features space to decision space. A Gaussian Mixture Model (GMM) is used as a baseline and reference system. Various strategies are proposed for training and testing sessions with matched or mismatched conditions, long training and long testing, long training and short testing. For all experiments, the file sections used for testing are never been used during training. With matched conditions all examined measures yield the best and similar scores (almost 100%). With mismatched conditions, the proposed measures yield better scores than the GMM baseline system, especially for the short testing case. It is also observed that the average discrimination information measure is most appropriate for music category classifications and on the other hand the divergence measure is more suitable for music subcategory classifications.Keywords: Audio feature, information measures, music genre.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15772501 Multidimensional and Data Mining Analysis for Property Investment Risk Analysis
Authors: Nur Atiqah Rochin Demong, Jie Lu, Farookh Khadeer Hussain
Abstract:
Property investment in the real estate industry has a high risk due to the uncertainty factors that will affect the decisions made and high cost. Analytic hierarchy process has existed for some time in which referred to an expert-s opinion to measure the uncertainty of the risk factors for the risk analysis. Therefore, different level of experts- experiences will create different opinion and lead to the conflict among the experts in the field. The objective of this paper is to propose a new technique to measure the uncertainty of the risk factors based on multidimensional data model and data mining techniques as deterministic approach. The propose technique consist of a basic framework which includes four modules: user, technology, end-user access tools and applications. The property investment risk analysis defines as a micro level analysis as the features of the property will be considered in the analysis in this paper.Keywords: Uncertainty factors, data mining, multidimensional data model, risk analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29232500 Optimized Weight Vector for QoS Aware Web Service Selection Algorithm Using Particle Swarm Optimization
Authors: N. Arulanand, P. M. Ananth
Abstract:
Quality of Service (QoS) attributes as part of the service description is an important factor for service attribute. It is not easy to exactly quantify the weight of each QoS conditions since human judgments based on their preference causes vagueness. As web services selection requires optimization, evolutionary computing based on heuristics to select an optimal solution is adopted. In this work, the evolutionary computing technique Particle Swarm Optimization (PSO) is used for selecting a suitable web services based on the user’s weightage of each QoS values by optimizing the QoS weight vector and thereby finding the best weight vectors for best services that is being selected. Finally the results are compared and analyzed using static inertia weight and deterministic inertia weight of PSO.Keywords: QoS, Optimization, Particle Swarm Optimization (PSO), weight vector, web services, web service selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20152499 Novel Hybrid Method for Gene Selection and Cancer Prediction
Authors: Liping Jing, Michael K. Ng, Tieyong Zeng
Abstract:
Microarray data profiles gene expression on a whole genome scale, therefore, it provides a good way to study associations between gene expression and occurrence or progression of cancer. More and more researchers realized that microarray data is helpful to predict cancer sample. However, the high dimension of gene expressions is much larger than the sample size, which makes this task very difficult. Therefore, how to identify the significant genes causing cancer becomes emergency and also a hot and hard research topic. Many feature selection algorithms have been proposed in the past focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for stable gene selection and efficient cancer prediction . The proposed framework first performs clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects the significant genes in each group with Bayesian Lasso and important gene groups with group Lasso, and finally builds prediction model based on the shrinkage gene space with efficient classification algorithm (such as, SVM, 1NN, Regression and etc.). Experiment results on real world data show that the proposed framework often outperforms the existing feature selection and prediction methods, say SAM, IG and Lasso-type prediction model.Keywords: Gene Selection, Cancer Prediction, Lasso, Clustering, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20442498 Underlying Cognitive Complexity Measure Computation with Combinatorial Rules
Authors: Benjapol Auprasert, Yachai Limpiyakorn
Abstract:
Measuring the complexity of software has been an insoluble problem in software engineering. Complexity measures can be used to predict critical information about testability, reliability, and maintainability of software systems from automatic analysis of the source code. During the past few years, many complexity measures have been invented based on the emerging Cognitive Informatics discipline. These software complexity measures, including cognitive functional size, lend themselves to the approach of the total cognitive weights of basic control structures such as loops and branches. This paper shows that the current existing calculation method can generate different results that are algebraically equivalence. However, analysis of the combinatorial meanings of this calculation method shows significant flaw of the measure, which also explains why it does not satisfy Weyuker's properties. Based on the findings, improvement directions, such as measures fusion, and cumulative variable counting scheme are suggested to enhance the effectiveness of cognitive complexity measures.Keywords: Cognitive Complexity Measure, Cognitive Weight of Basic Control Structure, Counting Rules, Cumulative Variable Counting Scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18932497 A Comparison of SVM-based Criteria in Evolutionary Method for Gene Selection and Classification of Microarray Data
Authors: Rameswar Debnath, Haruhisa Takahashi
Abstract:
An evolutionary method whose selection and recombination operations are based on generalization error-bounds of support vector machine (SVM) can select a subset of potentially informative genes for SVM classifier very efficiently [7]. In this paper, we will use the derivative of error-bound (first-order criteria) to select and recombine gene features in the evolutionary process, and compare the performance of the derivative of error-bound with the error-bound itself (zero-order) in the evolutionary process. We also investigate several error-bounds and their derivatives to compare the performance, and find the best criteria for gene selection and classification. We use 7 cancer-related human gene expression datasets to evaluate the performance of the zero-order and first-order criteria of error-bounds. Though both criteria have the same strategy in theoretically, experimental results demonstrate the best criterion for microarray gene expression data.Keywords: support vector machine, generalization error-bound, feature selection, evolutionary algorithm, microarray data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15372496 Empirical Exploration for the Correlation between Class Object-Oriented Connectivity-Based Cohesion and Coupling
Authors: Jehad Al Dallal
Abstract:
Attributes and methods are the basic contents of an object-oriented class. The connectivity among these class members and the relationship between the class and other classes play an important role in determining the quality of an object-oriented system. Class cohesion evaluates the degree of relatedness of class attributes and methods, whereas class coupling refers to the degree to which a class is related to other classes. Researchers have proposed several class cohesion and class coupling measures. However, the correlation between class coupling and class cohesion measures has not been thoroughly studied. In this paper, using classes of three open-source Java systems, we empirically investigate the correlation between several measures of connectivity-based class cohesion and coupling. Four connectivity-based cohesion measures and eight coupling measures are considered in the empirical study. The empirical study results show that class connectivity-based cohesion and coupling internal quality attributes are inversely correlated. The strength of the correlation depends highly on the cohesion and coupling measurement approaches.
Keywords: Object-oriented class, software quality, class cohesion measure, class coupling measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390