Search results for: Finite element approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6731

Search results for: Finite element approach

6491 Modified Plastic-Damage Model for Fiber Reinforced Polymer-Confined Repaired Concrete Columns

Authors: I. A Tijani, Y. F Wu, C.W. Lim

Abstract:

Concrete Damaged Plasticity Model (CDPM) is capable of modeling the stress-strain behavior of confined concrete. Nevertheless, the accuracy of the model largely depends on its parameters. To date, most research works mainly focus on the identification and modification of the parameters for fiber reinforced polymer (FRP) confined concrete prior to damage. And, it has been established that the FRP-strengthened concrete behaves differently to FRP-repaired concrete. This paper presents a modified plastic damage model within the context of the CDPM in ABAQUS for modelling of a uniformly FRP-confined repaired concrete under monotonic loading. The proposed model includes infliction damage, elastic stiffness, yield criterion and strain hardening rule. The distinct feature of damaged concrete is elastic stiffness reduction; this is included in the model. Meanwhile, the test results were obtained from a physical testing of repaired concrete. The dilation model is expressed as a function of the lateral stiffness of the FRP-jacket. The finite element predictions are shown to be in close agreement with the obtained test results of the repaired concrete. It was observed from the study that with necessary modifications, finite element method is capable of modeling FRP-repaired concrete structures.

Keywords: Concrete, FRP, damage, repairing, plasticity, and finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 925
6490 Investigation of Grid Supply Harmonic Effects in Wound Rotor Induction Machines

Authors: Nur Sarma, Paul M. Tuohy, Siniša Djurović

Abstract:

This paper presents an in-depth investigation of the effects of several grid supply harmonic voltages on the stator currents of an example wound rotor induction machine. The observed effects of higher order grid supply harmonics are identified using a finite element time stepping transient model, as well as a time-stepping electromagnetic model. In addition, a number of analytical equations to calculate the spectral content of the stator currents are presented in the paper. The presented equations are validated through comparison with the obtained spectra predicted using the finite element and electromagnetic models. The presented study provides a better understanding of the origin of supply harmonic effects identified in the stator currents of the example wound rotor induction machine. Furthermore, the study helps to understand the effects of higher order supply harmonics on the harmonic emissions of the wound rotor induction machine.  

Keywords: Wound rotor induction machine, supply harmonics, current spectrum, power spectrum, power quality, harmonic emissions, finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
6489 Structural Behavior of Laterally Loaded Precast Foamed Concrete Sandwich Panel

Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali

Abstract:

Experimental and analytical studies were carried out to investigate the structural behavior of precast foamed concrete sandwich panels (PFCSP) of total number (6) as one-way action slab tested under lateral load. The details of the test setup and procedures were illustrated. The results obtained from the experimental tests were discussed which include the observation of cracking patterns and influence of aspect ratio (L/b). Analytical study of finite element analysis was implemented and degree of composite action of the test panels was also examined in both experimental and analytical studies. Result shows that crack patterns appeared in only one-direction, similar to reports on solid slabs, particularly when both concrete wythes act in a composite manner. Foamed concrete was briefly reviewed and experimental results were compared with the finite element analyses data which gives a reasonable degree of accuracy. Therefore, based on the results obtained, PFCSP slab can be used as an alternative to conventional flooring system.

Keywords: Aspect ratio (L/b), finite element analyses (FEA), foamed concrete (FC), precast foamed concrete sandwich panel (PFCSP), ultimate flexural strength capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
6488 Finite Element Method Analysis of Occluded-Ear Simulator and Natural Human Ear Canal

Authors: M. Sasajima, T. Yamaguchi, Y. Hu, Y. Koike

Abstract:

In this paper, we discuss the propagation of sound in the narrow pathways of an occluded-ear simulator typically used for the measurement of insert-type earphones. The simulator has a standardized frequency response conforming to the international standard (IEC60318-4). In narrow pathways, the speed and phase of sound waves are modified by viscous air damping. In our previous paper, we proposed a new finite element method (FEM) to consider the effects of air viscosity in this type of audio equipment. In this study, we will compare the results from the ear simulator FEM model, and those from a three dimensional human ear canal FEM model made from computed tomography images, with the measured frequency response data from the ear canals of 18 people.

Keywords: Ear simulator, FEM, viscosity, human ear canal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1128
6487 The Effect of Maximum Strain on Fatigue Life Prediction for Natural Rubber Material

Authors: Chang S. Woo, Hyun S. Park, Wan D. Kim

Abstract:

Fatigue life prediction and evaluation are the key technologies to assure the safety and reliability of automotive rubber components. The objective of this study is to develop the fatigue analysis process for vulcanized rubber components, which is applicable to predict fatigue life at initial product design step. Fatigue life prediction methodology of vulcanized natural rubber was proposed by incorporating the finite element analysis and fatigue damage parameter of maximum strain appearing at the critical location determined from fatigue test. In order to develop an appropriate fatigue damage parameter of the rubber material, a series of displacement controlled fatigue test was conducted using threedimensional dumbbell specimen with different levels of mean displacement. It was shown that the maximum strain was a proper damage parameter, taking the mean displacement effects into account. Nonlinear finite element analyses of three-dimensional dumbbell specimens were performed based on a hyper-elastic material model determined from the uni-axial tension, equi-biaxial tension and planar test. Fatigue analysis procedure employed in this study could be used approximately for the fatigue design.

Keywords: Rubber, Material test, Finite element analysis, Strain, Fatigue test, Fatigue life prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4660
6486 Analytical Estimation of Rotor Loss Due to Stator Slotting of Synchronous PM Machines

Authors: Adel Bettayeb, Robert Kaczmarek, Jean-Claude Vannier

Abstract:

In this paper, we analyze the rotor eddy currents losses provoqued by the stator slot harmonics developed in the permanent magnets or pole pieces of synchronous machines. An analytical approach is presented to evaluate the effect of slot ripples on rotor field and losses calculation. This analysis is then tested on a model by 2D/3D finite element (FE) calculation. The results show a good agreement on loss calculations when skin effect is negligible and the magnet is considered.

Keywords: Analytical modeling, Eddy-currents, Finite-elementmethods, Power losses, Slot harmonics effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560
6485 A United Nations Safety Compliant Urban Vehicle Design

Authors: Marcelo R. G. Duarte, Marcilio Alves

Abstract:

Pedestrians are the fourth group among road traffic users that most suffer accidents. Their death rate is even higher than the motorcyclists group. This gives motivation for the development of an urban vehicle capable of complying with the United Nations Economic Commission for Europe pedestrian regulations. The conceptual vehicle is capable of transporting two passengers and small parcels for 100 km at a maximum speed of 90 km/h. This paper presents the design of this vehicle using the finite element method specially in connection with frontal crash test and car to pedestrian collision. The simulation is based in a human body FE.

Keywords: Electric urban vehicle, finite element method, global human body model, pedestrian safety, road safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715
6484 Thermomechanical Damage Modeling of F114 Carbon Steel

Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi

Abstract:

The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.

Keywords: Thermomechanical fatigue, failure, numerical simulation, fracture, damages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
6483 Design and Simulation of Low Speed Axial Flux Permanent Magnet (AFPM) Machine

Authors: Ahmad Darabi, Hassan Moradi, Hossein Azarinfar

Abstract:

In this paper presented initial design of Low Speed Axial Flux Permanent Magnet (AFPM) Machine with Non-Slotted TORUS topology type by use of certain algorithm (Appendix). Validation of design algorithm studied by means of selected data of an initial prototype machine. Analytically design calculation carried out by means of design algorithm and obtained results compared with results of Finite Element Method (FEM).

Keywords: Axial Flux Permanent Magnet (AFPM) Machine, Design Algorithm, Finite Element Method (FEM), TORUS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3304
6482 Experimental and Finite Element Forming Limit Diagrams for Interstitial Free Steels

Authors: Basavaraj Vadavadagi, Satishkumar Shekhawat

Abstract:

Interstitial free steels possess better formability and have many applications in automotive industries. Forming limit diagrams (FLDs) indicate the formability of materials which can be determined by experimental and finite element (FE) simulations. FLDs were determined experimentally by LDH test, utilizing optical strain measurement system for measuring the strains in different width specimens and by FE simulations in Interstitial Free (IF) and Interstitial Free High Strength (IFHS) steels. In this study, the experimental and FE simulated FLDs are compared and also the stress based FLDs were investigated.

Keywords: Forming limit diagram, Limiting Dome Height, optical strain measurement, interstitial

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
6481 Finite Element Method for Modal Analysis of FGM

Authors: S. J. Shahidzadeh Tabatabaei, A. M. Fattahi

Abstract:

Modal analysis of a FGM plate containing the ceramic phase of Al2O3 and metal phase of stainless steel 304 was performed using ABAQUS, with the assumptions that the material has an elastic mechanical behavior and its Young modulus and density are varying in thickness direction. For this purpose, a subroutine was written in FOTRAN and linked with ABAQUS. First, a simulation was performed in accordance to other researcher’s model, and then after comparing the obtained results, the accuracy of the present study was verified. The obtained results for natural frequency and mode shapes indicate good performance of user-written subroutine as well as FEM model used in present study. After verification of obtained results, the effect of clamping condition and the material type (i.e. the parameter n) was investigated. In this respect, finite element analysis was carried out in fully clamped condition for different values of n. The results indicate that the natural frequency decreases with increase of n, since with increase of n, the amount of ceramic phase in FGM plate decreases, while the amount of metal phase increases, leading to decrease of the plate stiffness and hence, natural frequency, as the Young modulus of Al2O3 is equal to 380 GPa and the Young modulus of stainless steel 304 is equal to 207 GPa.

Keywords: FGM plates, Modal analysis, Natural frequency, Finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2714
6480 Thermal Elastic Stress Analysis of Steel Fiber Reinforced Aluminum Composites

Authors: M. R. Haboğlu, A. Kurşun, Ş. Aksoy, H. Aykul, N. B. Bektaş

Abstract:

Athermal elastic stress analysis of steel fiber reinforced aluminum laminated composite plate is investigated. Four sides of the composite plate are clamped and subjected to a uniform temperature load. The analysis is performed both analytically and numerically. Laminated composite is manufactured via hot pressing method. The investigation of the effects of the orientation angle is provided. Different orientation angles are used such as [0°/90°]s, [30°/-30°]s, [45°/-45°]s, and [60/-60]s. The analytical solution is obtained via classical laminated composite theory and the numerical solution is obtained by applying finite element method via ANSYS.

Keywords: Laminated Composites, Thermo Elastic Stress, Finite Element Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2749
6479 On Stability of Stiffened Cylindrical Shells with Varying Material Properties

Authors: M. Karami Khorramabadi, P. Khazaeinejad

Abstract:

The static stability analysis of stiffened functionally graded cylindrical shells by isotropic rings and stringers subjected to axial compression is presented in this paper. The Young's modulus of the shell is taken to be function of the thickness coordinate. The fundamental relations, the equilibrium and stability equations are derived using the Sander's assumption. Resulting equations are employed to obtain the closed-form solution for the critical axial loads. The effects of material properties, geometric size and different material coefficient on the critical axial loads are examined. The analytical results are compared and validated using the finite element model.

Keywords: Functionally graded material, Stability, Stiffened cylindrical shell, Finite element analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
6478 Forced Vibration of a Fiber Metal Laminated Beam Containing a Delamination

Authors: Sh. Mirhosseini, Y. Haghighatfar, M. Sedighi

Abstract:

Forced vibration problem of a delaminated beam made of fiber metal laminates is studied in this paper. Firstly, a delamination is considered to divide the beam into four sections. The classic beam theory is assumed to dominate each section. The layers on two sides of the delamination are constrained to have the same deflection. This hypothesis approves the conditions of compatibility as well. Consequently, dynamic response of the beam is obtained by the means of differential transform method (DTM). In order to verify the correctness of the results, a model is constructed using commercial software ABAQUS 6.14. A linear spring with constant stiffness takes the effect of contact between delaminated layers into account. The attained semi-analytical outcomes are in great agreement with finite element analysis.

Keywords: Delamination, forced vibration, finite element modelling, natural frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831
6477 A Parallel Algorithm for 2-D Cylindrical Geometry Transport Equation with Interface Corrections

Authors: Wei Jun-xia, Yuan Guang-wei, Yang Shu-lin, Shen Wei-dong

Abstract:

In order to make conventional implicit algorithm to be applicable in large scale parallel computers , an interface prediction and correction of discontinuous finite element method is presented to solve time-dependent neutron transport equations under 2-D cylindrical geometry. Domain decomposition is adopted in the computational domain.The numerical experiments show that our parallel algorithm with explicit prediction and implicit correction has good precision, parallelism and simplicity. Especially, it can reach perfect speedup even on hundreds of processors for large-scale problems.

Keywords: Transport Equation, Discontinuous Finite Element, Domain Decomposition, Interface Prediction And Correction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
6476 Effect of Hartmann Number on Free Convective Flow in a Square Cavity with Different Positions of Heated Square Block

Authors: Abdul Halim Bhuiyan, M. A. Alim, Md. Nasir Uddin

Abstract:

This paper is concerned with the effect of Hartmann number on the free convective flow in a square cavity with different positions of heated square block. The two-dimensional Physical and mathematical model have been developed, and mathematical model includes the system of governing mass, momentum and energy equations are solved by the finite element method. The calculations have been computed for Prandtl number Pr = 0.71, the Rayleigh number Ra = 1000 and the different values of Hartmann number. The results are illustrated with the streamlines, isotherms, velocity and temperature fields as well as local Nusselt number.

Keywords: Finite element method, free convection, Hartmann number, square cavity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2986
6475 Containment/Penetration Analysis for the Protection of Aircraft Engine External Configuration and Nuclear Power Plant Structures

Authors: Dong Wook Lee, Adrian Mistreanu

Abstract:

The authors have studied a method for analyzing containment and penetration using an explicit nonlinear Finite Element Analysis. This method may be used in the stage of concept design for the protection of external configurations or components of aircraft engines and nuclear power plant structures. This paper consists of the modeling method, the results obtained from the method and the comparison of the results with those calculated from simple analytical method. It shows that the containment capability obtained by proposed method matches well with analytically calculated containment capability.

Keywords: Computer Aided Engineering, CAE, containment analysis, Finite Element Analysis, FEA, impact analysis, penetration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539
6474 FEA- Aided Design, Optimization and Development of an Axial Flux Motor for Implantable Ventricular Assist Device

Authors: Neethu S., Shinoy K.S., A.S. Shajilal

Abstract:

This paper presents the optimal design and development of an axial flux motor for blood pump application. With the design objective of maximizing the motor efficiency and torque, different topologies of AFPM machine has been examined. Selection of optimal magnet fraction, Halbach arrangement of rotor magnets and the use of Soft Magnetic Composite (SMC) material for the stator core results in a novel motor with improved efficiency and torque profile. The results of the 3D Finite element analysis for the novel motor have been shown.

Keywords: Axial flux motor, Finite Element Methods, Halbach array, Left Ventricular Assist Device, Soft magnetic composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
6473 A FEM Study of Explosive Welding of Double Layer Tubes

Authors: R. Alipour, F.Najarian

Abstract:

Explosive welding is a process which uses explosive detonation to move the flyer plate material into the base material to produce a solid state joint. Experimental tests have been carried out by other researchers; have been considered to explosively welded aluminium 7039 and steel 4340 tubes in one step. The tests have been done using various stand-off distances and explosive ratios. Various interface geometries have been obtained from these experiments. In this paper, all the experiments carried out were simulated using the finite element method. The flyer plate and collision velocities obtained from the analysis were validated by the pin-measurement experiments. The numerical results showed that very high localized plastic deformation produced at the bond interface. The Ls_dyna_971 FEM has been used for all simulation process.

Keywords: Explosive Welding, Johnson-Cook Equation, Finite Element, JWL Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
6472 A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model

Authors: M. Brandt, A. Peniak, J. Makarovič, P. Rafajdus

Abstract:

This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one.

Keywords: Fault, finite element method, parametrical model of transformer, sweep frequency response analysis, transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
6471 Multivariable Control of Smart Timoshenko Beam Structures Using POF Technique

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

Active Vibration Control (AVC) is an important problem in structures. One of the ways to tackle this problem is to make the structure smart, adaptive and self-controlling. The objective of active vibration control is to reduce the vibration of a system by automatic modification of the system-s structural response. This paper features the modeling and design of a Periodic Output Feedback (POF) control technique for the active vibration control of a flexible Timoshenko cantilever beam for a multivariable case with 2 inputs and 2 outputs by retaining the first 2 dominant vibratory modes using the smart structure concept. The entire structure is modeled in state space form using the concept of piezoelectric theory, Timoshenko beam theory, Finite Element Method (FEM) and the state space techniques. Simulations are performed in MATLAB. The effect of placing the sensor / actuator at 2 finite element locations along the length of the beam is observed. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the smart system is evaluated for active vibration control.

Keywords: Smart structure, Timoshenko theory, Euler-Bernoulli theory, Periodic output feedback control, Finite Element Method, State space model, Vibration control, Multivariable system, Linear Matrix Inequality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319
6470 Study on Bending Characteristics of Square Tube Using Energy Absorption Part

Authors: Shigeyuki Haruyama, Zefry Darmawan, Ken Kaminishi

Abstract:

In the square tube subjected to the bending load, the rigidity of the entire square tube is reduced when a collapse occurs due to local stress concentration. Therefore, in this research, the influence of bending load on the square tube with attached energy absorbing part was examined and reported. The analysis was conducted by using Finite Element Method (FEM) to produced bending deflection and buckling points. Energy absorption was compared from rigidity of attached part and square tube body. Buckling point was influenced by the rigidity of attached part and the thickness rate of square tube.

Keywords: Square tube, bending stress, energy absorption, finite element analysis, rigidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
6469 The Optimization of Engine Mounting Parts Using Hot-Cold Forging Technology

Authors: D. H. Park, Y. H. Tak, H. H. Kwon, G. J. Kwon, H. G. Kim

Abstract:

The purpose of this study is to develop a forging process of automotive parts that satisfies the deformation characteristics. The analyses of temperature variation and deformation behavior of the material are important to obtain the optimal forging products. The hot compression test was carried out to know formability at high temperature. In order to define the optimum forging conditions including material temperature, strain and forging load, the commercial finite element analysis code was used to simulate the forging procedure of engine mounting parts. Experimental results were compared with the simulation results by finite element analysis. Test results were in good agreement with the simulations.

Keywords: Cold forging, hot forging, engine mounting, automotive parts, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
6468 Induction Heating Process Design Using Comsol® Multiphysics Software Version 4.2a

Authors: K. Djellabi, M. E. H. Latreche

Abstract:

Induction heating computer simulation is a powerful tool for process design and optimization, induction coil design, equipment selection, as well as education and business presentations. The authors share their vast experience in the practical use of computer simulation for different induction heating and heat treating processes. In this paper treated with mathematical modeling and numerical simulation of induction heating furnaces with axisymmetric geometries for the numerical solution, we propose finite element methods combined with boundary (FEM) for the electromagnetic model using COMSOL® Multiphysics Software. Some numerical results for an industrial furnace are shown with high frequency.

Keywords: Numerical methods, Induction furnaces, Induction Heating, Finite element method, Comsol Multiphysics software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8054
6467 Using Finite Element Analysis on Dynamic Characteristics in a Micro Stepping Mill

Authors: Bo Wun Huang, Pu Ping Yu, Jao-Hwa Kuang

Abstract:

For smaller mechatronic device, especially for micro Electronic system, a micro machining is a must. However, most investigations on vibration of a mill have been limited to the traditional type mill. In this article, vibration and dynamic characteristics of a micro mill were investigated in this study. The trend towards higher precision manufacturing technology requires producing miniaturized components. To improve micro-milled product quality, obtain a higher production rate and avoid milling breakage, the dynamic characteristics of micro milling must be studied. A stepped pre-twisted mill is used to simulate the micro mill. The finite element analysis is employed in this work. The flute length and diameter effects of the micro mill are considered. It is clear that the effects of micro mill shape parameters on vibration in a micro mill are significant.

Keywords: micro system, micro mill, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
6466 Effective Design Parameters on the End Effect in Single-Sided Linear Induction Motors

Authors: A. Zare Bazghaleh, M. R. Naghashan, H. Mahmoudimanesh, M. R. Meshkatoddini

Abstract:

Linear induction motors are used in various industries but they have some specific phenomena which are the causes for some problems. The most important phenomenon is called end effect. End effect decreases efficiency, power factor and output force and unbalances the phase currents. This phenomenon is more important in medium and high speeds machines. In this paper a factor, EEF , is obtained by an accurate equivalent circuit model, to determine the end effect intensity. In this way, all of effective design parameters on end effect is described. Accuracy of this equivalent circuit model is evaluated by two dimensional finite-element analysis using ANSYS. The results show the accuracy of the equivalent circuit model.

Keywords: Linear induction motor, end effect, equivalent circuitmodel, finite-element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2793
6465 On Finite Hjelmslev Planes of Parameters (pk−1, p)

Authors: Atilla Akpinar

Abstract:

In this paper, we study on finite projective Hjelmslev planes M(Zq) coordinatized by Hjelmslev ring Zq (where prime power q = pk). We obtain finite hyperbolic Klingenberg planes from these planes under certain conditions. Also, we give a combinatorical result on M(Zq), related by deleting a line from lines in same neighbour.

Keywords: Finite Klingenberg plane, finite hyperbolic Klingenberg plane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147
6464 Finite Element Study on Corono-Radicular Restored Premolars

Authors: Sandu L., Topală F., Porojan S.

Abstract:

Restoration of endodontically treated teeth is a common problem in dentistry, related to the fractures occurring in such teeth and to concentration of forces little information regarding variation of basic preparation guidelines in stress distribution has been available. To date, there is still no agreement in the literature about which material or technique can optimally restore endodontically treated teeth. The aim of the present study was to evaluate the influence of the core height and restoration materials on corono-radicular restored upper first premolar. The first step of the study was to achieve 3D models in order to analyze teeth, dowel and core restorations and overlying full ceramic crowns. The FEM model was obtained by importing the solid model into ANSYS finite element analysis software. An occlusal load of 100 N was conducted, and stresses occurring in the restorations, and teeth structures were calculated. Numerical simulations provide a biomechanical explanation for stress distribution in prosthetic restored teeth. Within the limitations of the present study, it was found that the core height has no important influence on the stress generated in coronoradicular restored premolars. It can be drawn that the cervical regions of the teeth and restorations were subjected to the highest stress concentrations.

Keywords: 3D models, finite element analysis, dowel and core restoration, full ceramic crown, premolars, structural simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2883
6463 Peridynamic Modeling of an Isotropic Plate under Tensile and Flexural Loading

Authors: Eda Gök

Abstract:

Peridynamics is a new modeling concept of non-local interactions for solid structures. The formulations of Peridynamic (PD) theory are based on integral equations rather than differential equations. Through, undefined equations of associated problems are avoided. PD theory might be defined as continuum version of molecular dynamics. The medium is usually modeled with mass particles bonded together. Particles interact with each other directly across finite distances through central forces named as bonds. The main assumption of this theory is that the body is composed of material points which interact with other material points within a finite distance. Although, PD theory developed for discontinuities, it gives good results for structures which have no discontinuities. In this paper, displacement control of the isotropic plate under the effect of tensile and bending loading has been investigated by means of PD theory. A MATLAB code is generated to create PD bonds and corresponding surface correction factors. Using generated MATLAB code the geometry of the specimen is generated, and the code is implemented in Finite Element Software. The results obtained from non-local continuum theory are compared with the Finite Element Analysis results and analytical solution. The results show good agreement.

Keywords: Flexural loading, non-local continuum mechanics, Peridynamic theory, solid structures, tensile loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
6462 Application of Neural Network and Finite Element for Prediction the Limiting Drawing Ratio in Deep Drawing Process

Authors: H.Mohammadi Majd, M.Jalali Azizpour, A.V. Hoseini

Abstract:

In this paper back-propagation artificial neural network (BPANN) is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.

Keywords: Back-propagation artificial neural network(BPANN), deep drawing, prediction, limiting drawing ratio (LDR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727