Search results for: Turkey real estate sector
540 Improving the Elder-s Quality of Life with Smart Television Based Services
Authors: Van-Quang Trinh, Gi-Soo Chung, Hee-Cheol Kim
Abstract:
The increasing number of senior population gradually causes to demand the use of information and communication technology for their satisfactory lives. This paper presents the development of an integrated TV based system which offers an opportunity to provide value added services to a large number of elderly citizens, and thus helps improve their quality of life. The design philosophy underlying this paper is to fulfill both technological and human aspects. The balance between these two dimensions has been currently stressed as a crucial element for the design of usable systems in real use, particularly to the elderly who have physical and mental decline. As the first step to achieve it, we have identified human and social factors that affect the elder-s quality of life by a literature review, and based on them, build four fundamental services: information, healthcare, learning and social network services. Secondly, the system architecture, employed technologies and the elderly-friendly system design considerations are presented. This reflects technological and human perspectives in terms of the system design. Finally, we describe some scenarios that illustrate the potentiality of the proposed system to improve elderly people-s quality of life.Keywords: Elderly people, human computer interaction, quality of life, smart television, user-centered system design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054539 Corporate Credit Rating using Multiclass Classification Models with order Information
Authors: Hyunchul Ahn, Kyoung-Jae Kim
Abstract:
Corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has been one of the attractive research topics in the literature. In recent years, multiclass classification models such as artificial neural network (ANN) or multiclass support vector machine (MSVM) have become a very appealing machine learning approaches due to their good performance. However, most of them have only focused on classifying samples into nominal categories, thus the unique characteristic of the credit rating - ordinality - has been seldom considered in their approaches. This study proposes new types of ANN and MSVM classifiers, which are named OMANN and OMSVM respectively. OMANN and OMSVM are designed to extend binary ANN or SVM classifiers by applying ordinal pairwise partitioning (OPP) strategy. These models can handle ordinal multiple classes efficiently and effectively. To validate the usefulness of these two models, we applied them to the real-world bond rating case. We compared the results of our models to those of conventional approaches. The experimental results showed that our proposed models improve classification accuracy in comparison to typical multiclass classification techniques with the reduced computation resource.Keywords: Artificial neural network, Corporate credit rating, Support vector machines, Ordinal pairwise partitioning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3438538 The Enhancement of Training of Military Pilots Using Psychophysiological Methods
Authors: G. Kloudova, M. Stehlik
Abstract:
Optimal human performance is a key goal in the professional setting of military pilots, which is a highly challenging atmosphere. The aviation environment requires substantial cognitive effort and is rich in potential stressors. Therefore, it is important to analyze variables such as mental workload to ensure safe conditions. Pilot mental workload could be measured using several tools, but most of them are very subjective. This paper details research conducted with military pilots using psychophysiological methods such as electroencephalography (EEG) and heart rate (HR) monitoring. The data were measured in a simulator as well as under real flight conditions. All of the pilots were exposed to highly demanding flight tasks and showed big individual response differences. On that basis, the individual pattern for each pilot was created counting different EEG features and heart rate variations. Later on, it was possible to distinguish the most difficult flight tasks for each pilot that should be more extensively trained. For training purposes, an application was developed for the instructors to decide which of the specific tasks to focus on during follow-up training. This complex system can help instructors detect the mentally demanding parts of the flight and enhance the training of military pilots to achieve optimal performance.
Keywords: Cognitive effort, human performance, military pilots, psychophysiological methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179537 Designing a Framework for Network Security Protection
Authors: Eric P. Jiang
Abstract:
As the Internet continues to grow at a rapid pace as the primary medium for communications and commerce and as telecommunication networks and systems continue to expand their global reach, digital information has become the most popular and important information resource and our dependence upon the underlying cyber infrastructure has been increasing significantly. Unfortunately, as our dependency has grown, so has the threat to the cyber infrastructure from spammers, attackers and criminal enterprises. In this paper, we propose a new machine learning based network intrusion detection framework for cyber security. The detection process of the framework consists of two stages: model construction and intrusion detection. In the model construction stage, a semi-supervised machine learning algorithm is applied to a collected set of network audit data to generate a profile of normal network behavior and in the intrusion detection stage, input network events are analyzed and compared with the patterns gathered in the profile, and some of them are then flagged as anomalies should these events are sufficiently far from the expected normal behavior. The proposed framework is particularly applicable to the situations where there is only a small amount of labeled network training data available, which is very typical in real world network environments.Keywords: classification, data analysis and mining, network intrusion detection, semi-supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794536 Integration of Unified Power Flow Controller with Backup Energy Supply System for Enhancing Power System Stability
Authors: K. Saravanan
Abstract:
An electrical power system has some negative aspects such as flickering and deviations of voltage/power. This can be eliminated using energy storage devices that will provide a backup energy at the time of voltage/power deviations. Energy-storage devices get charging when system voltage/power is higher than reference value and discharging when system voltage/power is lower than reference value, it is acting as catalysts to provide energy boost. In this paper, a dynamic control of Unified Power Flow Controller (UPFC) integrated with superconducting magnetic energy storage (SMES) is developed to improve the power quality, power oscillation damping, and dynamic voltage stability through the transmission line. UPFC inter-connected to SMES through an interface with DC-DC chopper. This inter-connected system is capable of injecting (absorbing) the real and reactive power into (from) the system at the beginning of stability problems. In this paper, the simulation results of UPFC integrated with SMES and UPFC integrated with fuel cells (FCs) are compared using MATLAB/Simulink software package.Keywords: UPFC, SMES, power system stability, flexible ac transmission systems, fuel cells, chopper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395535 Hardware Implementation of Local Binary Pattern Based Two-Bit Transform Motion Estimation
Authors: Seda Yavuz, Anıl Çelebi, Aysun Taşyapı Çelebi, Oğuzhan Urhan
Abstract:
Nowadays, demand for using real-time video transmission capable devices is ever-increasing. So, high resolution videos have made efficient video compression techniques an essential component for capturing and transmitting video data. Motion estimation has a critical role in encoding raw video. Hence, various motion estimation methods are introduced to efficiently compress the video. Low bit‑depth representation based motion estimation methods facilitate computation of matching criteria and thus, provide small hardware footprint. In this paper, a hardware implementation of a two-bit transformation based low-complexity motion estimation method using local binary pattern approach is proposed. Image frames are represented in two-bit depth instead of full-depth by making use of the local binary pattern as a binarization approach and the binarization part of the hardware architecture is explained in detail. Experimental results demonstrate the difference between the proposed hardware architecture and the architectures of well-known low-complexity motion estimation methods in terms of important aspects such as resource utilization, energy and power consumption.
Keywords: Binarization, hardware architecture, local binary pattern, motion estimation, two-bit transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373534 Adaptive Fuzzy Control of Stewart Platform under Actuator Saturation
Authors: Dongsu Wu, Hongbin Gu, Peng Li
Abstract:
A novel adaptive fuzzy trajectory tracking algorithm of Stewart platform based motion platform is proposed to compensate path deviation and degradation of controller-s performance due to actuator torque limit. The algorithm can be divided into two parts: the real-time trajectory shaping part and the joint space adaptive fuzzy controller part. For a reference trajectory in task space whenever any of the actuators is saturated, the desired acceleration of the reference trajectory is modified on-line by using dynamic model of motion platform. Meanwhile an additional action with respect to the difference between the nominal and modified trajectories is utilized in the non-saturated region of actuators to reduce the path error. Using modified trajectory as input, the joint space controller incorporates compute torque controller, leg velocity observer and fuzzy disturbance observer with saturation compensation. It can ensure stability and tracking performance of controller in present of external disturbance and position only measurement. Simulation results verify the effectiveness of proposed control scheme.
Keywords: Actuator saturation, adaptive fuzzy control, Stewartplatform, trajectory shaping, flight simulator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030533 Students’ Perception of Vector Representation in the Context of Electric Force and the Role of Simulation in Developing an Understanding
Authors: S. Shubha, B. N. Meera
Abstract:
Physics Education Research (PER) results have shown that students do not achieve the expected level of competency in understanding the concepts of different domains of Physics learning when taught by the traditional teaching methods, the concepts of Electricity and Magnetism (E&M) being one among them. Simulation being one of the valuable instructional tools renders an opportunity to visualize varied experiences with such concepts. Considering the electric force concept which requires extensive use of vector representations, we report here the outcome of the research results pertaining to the student understanding of this concept and the role of simulation in using vector representation. The simulation platform provides a positive impact on the use of vector representation. The first stage of this study involves eliciting and analyzing student responses to questions that probe their understanding of the concept of electrostatic force and this is followed by four stages of student interviews as they use the interactive simulations of electric force in one dimension. Student responses to the questions are recorded in real time using electronic pad. A validation test interview is conducted to evaluate students' understanding of the electric force concept after using interactive simulation. Results indicate lack of procedural knowledge of the vector representation. The study emphasizes the need for the choice of appropriate simulation and mode of induction for learning.
Keywords: Electric Force, Interactive, Representation, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232532 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions
Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins
Abstract:
The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.Keywords: Dimensional affect prediction, Output-associative RVM, Multivariate regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667531 Matching-Based Cercospora Leaf Spot Detection in Sugar Beet
Authors: Rong Zhou, Shun’ich Kaneko, Fumio Tanaka, Miyuki Kayamori, Motoshige Shimizu
Abstract:
In this paper, we propose a robust disease detection method, called adaptive orientation code matching (Adaptive OCM), which is developed from a robust image registration algorithm: orientation code matching (OCM), to achieve continuous and site-specific detection of changes in plant disease. We use two-stage framework for realizing our research purpose; in the first stage, adaptive OCM was employed which could not only realize the continuous and site-specific observation of disease development, but also shows its excellent robustness for non-rigid plant object searching in scene illumination, translation, small rotation and occlusion changes and then in the second stage, a machine learning method of support vector machine (SVM) based on a feature of two dimensional (2D) xy-color histogram is further utilized for pixel-wise disease classification and quantification. The indoor experiment results demonstrate the feasibility and potential of our proposed algorithm, which could be implemented in real field situation for better observation of plant disease development.
Keywords: Cercospora Leaf Spot (CLS), Disease detection, Image processing, Orientation Code Matching (OCM), Support Vector Machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196530 Harnessing the Power of AI: Transforming DevSecOps for Enhanced Cloud Security
Authors: Ashly Joseph, Jithu Paulose
Abstract:
The increased usage of cloud computing has revolutionized the IT landscape, but it has also raised new security concerns. DevSecOps emerged as a way for tackling these difficulties by integrating security into the software development process. However, the rising complexity and sophistication of cyber threats need more advanced solutions. This paper looks into the usage of artificial intelligence (AI) techniques in the DevSecOps framework to increase cloud security. This study uses quantitative and qualitative techniques to assess the usefulness of AI approaches such as machine learning, natural language processing, and deep learning in reducing security issues. This paper thoroughly examines the symbiotic relationship between AI and DevSecOps, concentrating on how AI may be seamlessly integrated into the continuous integration and continuous delivery (CI/CD) pipeline, automated security testing, and real-time monitoring methods. The findings emphasize AI's huge potential to improve threat detection, risk assessment, and incident response skills. Furthermore, the paper examines the implications and challenges of using AI in DevSecOps workflows, considering factors like as scalability, interpretability, and adaptability. This paper adds to a better understanding of AI's revolutionary role in cloud security and provides valuable insights for practitioners and scholars in the field.
Keywords: Cloud Security, DevSecOps, Artificial Intelligence, AI, Machine Learning, Natural Language Processing, NLP, cybersecurity, AI-driven Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 129529 The Carbon Footprint Model as a Plea for Cities towards Energy Transition: The Case of Algiers Algeria
Authors: Hachaichi Mohamed Nour El-Islem, Baouni Tahar
Abstract:
Environmental sustainability rather than a trans-disciplinary and a scientific issue, is the main problem that characterizes all modern cities nowadays. In developing countries, this concern is expressed in a plethora of critical urban ills: traffic congestion, air pollution, noise, urban decay, increase in energy consumption and CO2 emissions which blemish cities’ landscape and might threaten citizens’ health and welfare. As in the same manner as developing world cities, the rapid growth of Algiers’ human population and increasing in city scale phenomena lead eventually to increase in daily trips, energy consumption and CO2 emissions. In addition, the lack of proper and sustainable planning of the city’s infrastructure is one of the most relevant issues from which Algiers suffers. The aim of this contribution is to estimate the carbon deficit of the City of Algiers, Algeria, using the Ecological Footprint Model (carbon footprint). In order to achieve this goal, the amount of CO2 from fuel combustion has been calculated and aggregated into five sectors (agriculture, industry, residential, tertiary and transportation); as well, Algiers’ biocapacity (CO2 uptake land) has been calculated to determine the ecological overshoot. This study shows that Algiers’ transport system is not sustainable and is generating more than 50% of Algiers total carbon footprint which cannot be sequestered by the local forest land. The aim of this research is to show that the Carbon Footprint Assessment might be a relevant indicator to design sustainable strategies/policies striving to reduce CO2 by setting in motion the energy consumption in the transportation sector and reducing the use of fossil fuels as the main energy input.
Keywords: Biocapacity, carbon footprint, ecological footprint assessment, energy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902528 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation
Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski
Abstract:
Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.Keywords: Bootstrap, Edgeworth approximation, independent and Identical distributed, quantile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 440527 A Real-time Computer Vision System for VehicleTracking and Collision Detection
Authors: Mustafa Kisa, Fatih Mehmet Botsali
Abstract:
Recent developments in automotive technology are focused on economy, comfort and safety. Vehicle tracking and collision detection systems are attracting attention of many investigators focused on safety of driving in the field of automotive mechatronics. In this paper, a vision-based vehicle detection system is presented. Developed system is intended to be used in collision detection and driver alert. The system uses RGB images captured by a camera in a car driven in the highway. Images captured by the moving camera are used to detect the moving vehicles in the image. A vehicle ahead of the camera is detected in daylight conditions. The proposed method detects moving vehicles by subtracting successive images. Plate height of the vehicle is determined by using a plate recognition algorithm. Distance of the moving object is calculated by using the plate height. After determination of the distance of the moving vehicle relative speed of the vehicle and Time-to-Collision are calculated by using distances measured in successive images. Results obtained in road tests are discussed in order to validate the use of the proposed method.
Keywords: Image possessing, vehicle tracking, license plate detection, computer vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3099526 Motion Detection Method for Clutter Rejection in the Bio-Radar Signal Processing
Authors: Carolina Gouveia, José Vieira, Pedro Pinho
Abstract:
The cardiopulmonary signal monitoring, without the usage of contact electrodes or any type of in-body sensors, has several applications such as sleeping monitoring and continuous monitoring of vital signals in bedridden patients. This system has also applications in the vehicular environment to monitor the driver, in order to avoid any possible accident in case of cardiac failure. Thus, the bio-radar system proposed in this paper, can measure vital signals accurately by using the Doppler effect principle that relates the received signal properties with the distance change between the radar antennas and the person’s chest-wall. Once the bio-radar aim is to monitor subjects in real-time and during long periods of time, it is impossible to guarantee the patient immobilization, hence their random motion will interfere in the acquired signals. In this paper, a mathematical model of the bio-radar is presented, as well as its simulation in MATLAB. The used algorithm for breath rate extraction is explained and a method for DC offsets removal based in a motion detection system is proposed. Furthermore, experimental tests were conducted with a view to prove that the unavoidable random motion can be used to estimate the DC offsets accurately and thus remove them successfully.Keywords: Bio-signals, DC Component, Doppler Effect, ellipse fitting, radar, SDR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791525 Interval Type-2 Fuzzy Vibration Control of an ERF Embedded Smart Structure
Authors: Chih-Jer Lin, Chun-Ying Lee, Ying Liu, Chiang-Ho Cheng
Abstract:
The main objective of this article is to present the semi-active vibration control using an electro-rheological fluid embedded sandwich structure for a cantilever beam. ER fluid is a smart material, which cause the suspended particles polarize and connect each other to form chain. The stiffness and damping coefficients of the ER fluid can be changed in 10 micro seconds; therefore, ERF is suitable to become the material embedded in the tunable vibration absorber to become a smart absorber. For the ERF smart material embedded structure, the fuzzy control law depends on the experimental expert database and the proposed self-tuning strategy. The electric field is controlled by a CRIO embedded system to implement the real application. This study investigates the different performances using the Type-1 fuzzy and interval Type-2 fuzzy controllers. The Interval type-2 fuzzy control is used to improve the modeling uncertainties for this ERF embedded shock absorber. The self-tuning vibration controllers using Type-1 and Interval Type-2 fuzzy law are implemented to the shock absorber system. Based on the resulting performance, Internal Type-2 fuzzy is better than the traditional Type-1 fuzzy control for this vibration control system.
Keywords: Electro-Rheological Fluid, Semi-active vibration control, shock absorber, type 2 fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122524 A Comparison Study of the Removal of Selected Pharmaceuticals in Waters by Chemical Oxidation Treatments
Authors: F. Javier Benitez, Juan Luis Acero, Francisco J. Real, Gloria Roldan, Francisco Casas
Abstract:
The degradation of selected pharmaceuticals in some water matrices was studied by using several chemical treatments. The pharmaceuticals selected were the beta-blocker metoprolol, the nonsteroidal anti-inflammatory naproxen, the antibiotic amoxicillin, and the analgesic phenacetin; and their degradations were conducted by using UV radiation alone, ozone, Fenton-s reagent, Fenton-like system, photo-Fenton system, and combinations of UV radiation and ozone with H2O2, TiO2, Fe(II), and Fe(III). The water matrices, in addition to ultra-pure water, were a reservoir water, a groundwater, and two secondary effluents from two municipal WWTP. The results reveal that the presence of any second oxidant enhanced the oxidation rates, with the systems UV/TiO2 and O3/TiO2 providing the highest degradation rates. It is also observed in most of the investigated oxidation systems that the degradation rate followed the sequence: amoxicillin > naproxen > metoprolol > phenacetin. Lower rates were obtained with the pharmaceuticals dissolved in natural waters and secondary effluents due to the organic matter present which consume some amounts of the oxidant agents.Keywords: Pharmaceuticals, UV radiation, ozone, advancedoxidation processes, water matrices, degradation rates
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233523 Optimal Controllers with Actuator Saturation for Nonlinear Structures
Authors: M. Mohebbi, K. Shakeri
Abstract:
Since the actuator capacity is limited, in the real application of active control systems under sever earthquakes it is conceivable that the actuators saturate, hence the actuator saturation should be considered as a constraint in design of optimal controllers. In this paper optimal design of active controllers for nonlinear structures by considering actuator saturation, has been studied. The proposed method for designing optimal controllers is based on defining an optimization problem which the objective has been to minimize the maximum displacement of structure when a limited capacity for actuator has been used. To this end a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of prestressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used. To achieve the best results, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been optimized by the Distributed Genetic Algorithm (DGA). Results show the effectiveness of the proposed method in considering actuator saturation. Also based on the numerical simulations it can be concluded that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers which consider the actuator saturation.Keywords: Active control, Actuator Saturation, Distributedgeneticalgorithms, Nonlinear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601522 Decision Analysis Module for Excel
Authors: Radomir Perzina, Jaroslav Ramik
Abstract:
The Analytic Hierarchy Process is frequently used approach for solving decision making problems. There exists wide range of software programs utilizing that approach. Their main disadvantage is that they are relatively expensive and missing intermediate calculations. This work introduces a Microsoft Excel add-in called DAME – Decision Analysis Module for Excel. Comparing to other computer programs DAME is free, can work with scenarios or multiple decision makers and displays intermediate calculations. Users can structure their decision models into three levels – scenarios/users, criteria and variants. Items on all levels can be evaluated either by weights or pair-wise comparisons. There are provided three different methods for the evaluation of the weights of criteria, the variants as well as the scenarios – Saaty’s Method, Geometric Mean Method and Fuller’s Triangle Method. Multiplicative and additive syntheses are supported. The proposed software package is demonstrated on couple of illustrating examples of real life decision problems.
Keywords: Analytic hierarchy process, multi-criteria decision making, pair-wise comparisons, Microsoft Excel, Scenarios.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3403521 Online Control of Knitted Fabric Quality: Loop Length Control
Authors: Dariush Semnani, Mohammad Sheikhzadeh
Abstract:
Circular knitting machine makes the fabric with more than two knitting tools. Variation of yarn tension between different knitting tools causes different loop length of stitches duration knitting process. In this research, a new intelligent method is applied to control loop length of stitches in various tools based on ideal shape of stitches and real angle of stitches direction while different loop length of stitches causes stitches deformation and deviation those of angle. To measure deviation of stitch direction against variation of tensions, image processing technique was applied to pictures of different fabrics with constant front light. After that, the rate of deformation is translated to needed compensation of loop length cam degree to cure stitches deformation. A fuzzy control algorithm was applied to loop length modification in knitting tools. The presented method was experienced for different knitted fabrics of various structures and yarns. The results show that presented method is useable for control of loop length variation between different knitting tools based on stitch deformation for various knitted fabrics with different fabric structures, densities and yarn types.Keywords: Circular knitting, Radon transformation, Knittedfabric, Regularity, Fuzzy control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3673520 Assessment of Wastewater Reuse Potential for an Enamel Coating Industry
Authors: Guclu Insel, Efe Gumuslu, Gulten Yuksek, Nilay Sayi Ucar, Emine Ubay Cokgor, Tugba Olmez Hanci, Didem Okutman Tas, Fatos Germirli Babuna, Derya Firat Ertem, Okmen Yildirim, Ozge Erturan, Betul Kirci
Abstract:
In order to eliminate water scarcity problems, effective precautions must be taken. Growing competition for water is increasingly forcing facilities to tackle their own water scarcity problems. At this point, application of wastewater reclamation and reuse results in considerable economic advantageous. In this study, an enamel coating facility, which is one of the high water consumed facilities, is evaluated in terms of its wastewater reuse potential. Wastewater reclamation and reuse can be defined as one of the best available techniques for this sector. Hence, process and pollution profiles together with detailed characterization of segregated wastewater sources are appraised in a way to find out the recoverable effluent streams arising from enamel coating operations. Daily, 170 m3 of process water is required and 160 m3 of wastewater is generated. The segregated streams generated by two enamel coating processes are characterized in terms of conventional parameters. Relatively clean segregated wastewater streams (reusable wastewaters) are separately collected and experimental treatability studies are conducted on it. The results reflected that the reusable wastewater fraction has an approximate amount of 110 m3/day that accounts for 68% of the total wastewaters. The need for treatment applicable on reusable wastewaters is determined by considering water quality requirements of various operations and characterization of reusable wastewater streams. Ultra-filtration (UF), Nano-filtration (NF) and Reverse Osmosis (RO) membranes are subsequently applied on reusable effluent fraction. Adequate organic matter removal is not obtained with the mentioned treatment sequence.Keywords: enamel coating, membrane, reuse, wastewater
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489519 A Hybrid Algorithm for Collaborative Transportation Planning among Carriers
Authors: Elham Jelodari Mamaghani, Christian Prins, Haoxun Chen
Abstract:
In this paper, there is concentration on collaborative transportation planning (CTP) among multiple carriers with pickup and delivery requests and time windows. This problem is a vehicle routing problem with constraints from standard vehicle routing problems and new constraints from a real-world application. In the problem, each carrier has a finite number of vehicles, and each request is a pickup and delivery request with time window. Moreover, each carrier has reserved requests, which must be served by itself, whereas its exchangeable requests can be outsourced to and served by other carriers. This collaboration among carriers can help them to reduce total transportation costs. A mixed integer programming model is proposed to the problem. To solve the model, a hybrid algorithm that combines Genetic Algorithm and Simulated Annealing (GASA) is proposed. This algorithm takes advantages of GASA at the same time. After tuning the parameters of the algorithm with the Taguchi method, the experiments are conducted and experimental results are provided for the hybrid algorithm. The results are compared with those obtained by a commercial solver. The comparison indicates that the GASA significantly outperforms the commercial solver.
Keywords: Centralized collaborative transportation, collaborative transportation with pickup and delivery, collaborative transportation with time windows, hybrid algorithm of GA and SA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831518 Mixtures of Monotone Networks for Prediction
Authors: Marina Velikova, Hennie Daniels, Ad Feelders
Abstract:
In many data mining applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. In this paper we consider partially monotone prediction problems, where the target variable depends monotonically on some of the input variables but not on all. We propose a novel method to construct prediction models, where monotone dependences with respect to some of the input variables are preserved by virtue of construction. Our method belongs to the class of mixture models. The basic idea is to convolute monotone neural networks with weight (kernel) functions to make predictions. By using simulation and real case studies, we demonstrate the application of our method. To obtain sound assessment for the performance of our approach, we use standard neural networks with weight decay and partially monotone linear models as benchmark methods for comparison. The results show that our approach outperforms partially monotone linear models in terms of accuracy. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.Keywords: mixture models, monotone neural networks, partially monotone models, partially monotone problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245517 AHP and Extent Fuzzy AHP Approach for Prioritization of Performance Measurement Attributes
Authors: Remica Aggarwal, Sanjeet Singh
Abstract:
The decision to recruit manpower in an organization requires clear identification of the criteria (attributes) that distinguish successful from unsuccessful performance. The choice of appropriate attributes or criteria in different levels of hierarchy in an organization is a multi-criteria decision problem and therefore multi-criteria decision making (MCDM) techniques can be used for prioritization of such attributes. Analytic Hierarchy Process (AHP) is one such technique that is widely used for deciding among the complex criteria structure in different levels. In real applications, conventional AHP still cannot reflect the human thinking style as precise data concerning human attributes are quite hard to be extracted. Fuzzy logic offers a systematic base in dealing with situations, which are ambiguous or not well defined. This study aims at defining a methodology to improve the quality of prioritization of an employee-s performance measurement attributes under fuzziness. To do so, a methodology based on the Extent Fuzzy Analytic Hierarchy Process is proposed. Within the model, four main attributes such as Subject knowledge and achievements, Research aptitude, Personal qualities and strengths and Management skills with their subattributes are defined. The two approaches conventional AHP approach and the Extent Fuzzy Analytic Hierarchy Process approach have been compared on the same hierarchy structure and criteria set.Keywords: AHP, Extent analysis method, Fuzzy AHP, Prioritization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4892516 Multicriteria Decision Analysis for Development Ranking of Balkan Countries
Authors: C. Ardil
Abstract:
In this research, the Balkan peninsula countries' developmental integration into European Union represents the strategic economic development objectives of the countries in the region. In order to objectively analyze the level of economic development competition of Balkan Peninsula countries, the mathematical compromise programming technique of multicriteria evaluation is used in this ranking problem. The primary aim of this research is to explain the role and significance of the multicriteria method evaluation using a real example of compromise solutions. Using the mathematical compromise programming technique, twelve countries of the Balkan Peninsula are economically evaluated and mutually compared. The economic development evaluation of the countries is performed according to five evaluation criteria forming the basis for economic development evaluation. The multiattribute model is solved using the mathematical compromise programming technique for producing different Pareto solutions. The results obtained by the multicriteria evaluation gives the possibility of identification and evaluation of the most eminent economic development indicators for each country separately. Finally, in this way, the proposed method has proved to be a successful model for the evaluation of the Balkan peninsula countries' economic development competition.
Keywords: Balkan peninsula countries, standard deviation, multicriteria decision making, mathematical compromise programming, multicriteria decision making, multicriteria analysis, multicriteria decision analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 793515 In Search of an SVD and QRcp Based Optimization Technique of ANN for Automatic Classification of Abnormal Heart Sounds
Authors: Samit Ari, Goutam Saha
Abstract:
Artificial Neural Network (ANN) has been extensively used for classification of heart sounds for its discriminative training ability and easy implementation. However, it suffers from overparameterization if the number of nodes is not chosen properly. In such cases, when the dataset has redundancy within it, ANN is trained along with this redundant information that results in poor validation. Also a larger network means more computational expense resulting more hardware and time related cost. Therefore, an optimum design of neural network is needed towards real-time detection of pathological patterns, if any from heart sound signal. The aims of this work are to (i) select a set of input features that are effective for identification of heart sound signals and (ii) make certain optimum selection of nodes in the hidden layer for a more effective ANN structure. Here, we present an optimization technique that involves Singular Value Decomposition (SVD) and QR factorization with column pivoting (QRcp) methodology to optimize empirically chosen over-parameterized ANN structure. Input nodes present in ANN structure is optimized by SVD followed by QRcp while only SVD is required to prune undesirable hidden nodes. The result is presented for classifying 12 common pathological cases and normal heart sound.Keywords: ANN, Classification of heart diseases, murmurs, optimization, Phonocardiogram, QRcp, SVD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069514 Multimedia Firearms Training System
Authors: Aleksander Nawrat, Karol Jędrasiak, Artur Ryt, Dawid Sobel
Abstract:
The goal of the article is to present a novel Multimedia Firearms Training System. The system was developed in order to compensate for major problems of existing shooting training systems. The designed and implemented solution can be characterized by five major advantages: algorithm for automatic geometric calibration, algorithm of photometric recalibration, firearms hit point detection using thermal imaging camera, IR laser spot tracking algorithm for after action review analysis, and implementation of ballistics equations. The combination of the abovementioned advantages in a single multimedia firearms training system creates a comprehensive solution for detecting and tracking of the target point usable for shooting training systems and improving intervention tactics of uniformed services. The introduced algorithms of geometric and photometric recalibration allow the use of economically viable commercially available projectors for systems that require long and intensive use without most of the negative impacts on color mapping of existing multi-projector multimedia shooting range systems. The article presents the results of the developed algorithms and their application in real training systems.
Keywords: Firearms shot detection, geometric recalibration, photometric recalibration, IR tracking algorithm, thermography, ballistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333513 Perceptions toward Adopting Virtual Reality as a Learning Aid in Information Technology
Authors: S. Alfalah, J. Falah, T. Alfalah, M. Elfalah, O. Falah
Abstract:
The field of education is an ever-evolving area constantly enriched by newly discovered techniques provided by active research in all areas of technologies. The recent years have witnessed the introduction of a number of promising technologies and applications to enhance the teaching and learning experience. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing education in many fields. VR creates an artificial environment, using computer hardware and software, which is similar to the real world. This simulation provides a solution to improve the delivery of materials, which facilitates the teaching process by providing a useful aid to instructors, and enhances the learning experience by providing a beneficial learning aid. In order to assure future utilization of such systems, students’ perceptions were examined toward utilizing VR as an educational tool in the Faculty of Information Technology (IT) in The University of Jordan. A questionnaire was administered to IT undergraduates investigating students’ opinions about the potential opportunities that VR technology could offer and its implications as learning and teaching aid. The results confirmed the end users’ willingness to adopt VR systems as a learning aid. The result of this research forms a solid base for investing in a VR system for IT education.
Keywords: Education, information, technology, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147512 A Smart Monitoring System for Preventing Gas Risks in Indoor
Authors: Gyoutae Park, Geunjun Lyu, Yeonjae Lee, Wooksuk Kim, Jaheon Gu, Sanguk Ahn, Hiesik Kim
Abstract:
In this paper, we propose a system for preventing gas risks through the use of wireless communication modules and intelligent gas safety appliances. Our system configuration consists of an automatic extinguishing system, detectors, a wall-pad, and a microcomputer controlled micom gas meter to monitor gas flow and pressure as well as the occurrence of earthquakes. The automatic fire extinguishing system checks for both combustible gaseous leaks and monitors the environmental temperature, while the detector array measures smoke and CO gas concentrations. Depending on detected conditions, the micom gas meter cuts off an inner valve and generates a warning, the automatic fire-extinguishing system cuts off an external valve and sprays extinguishing materials, or the sensors generate signals and take further action when smoke or CO are detected. Information on intelligent measures taken by the gas safety appliances and sensors are transmitted to the wall-pad, which in turn relays this as real time data to a server that can be monitored via an external network (BcN) connection to a web or mobile application for the management of gas safety. To validate this smart-home gas management system, we field-tested its suitability for use in Korean apartments under several scenarios.Keywords: Gas sensor, leak, gas safety, gas meter, gas risk, wireless communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2718511 A Portable Cognitive Tool for Engagement Level and Activity Identification
Authors: T. Teo, S. W. Lye, Y. F. Li, Z. Zakaria
Abstract:
Wearable devices such as Electroencephalography (EEG) hold immense potential in the monitoring and assessment of a person’s task engagement. This is especially so in remote or online sites. Research into its use in measuring an individual's cognitive state while performing task activities is therefore expected to increase. Despite the growing number of EEG research into brain functioning activities of a person, key challenges remain in adopting EEG for real-time operations. These include limited portability, long preparation time, high number of channel dimensionality, intrusiveness, as well as level of accuracy in acquiring neurological data. This paper proposes an approach using a 4-6 EEG channels to determine the cognitive states of a subject when undertaking a set of passive and active monitoring tasks of a subject. Air traffic controller (ATC) dynamic-tasks are used as a proxy. The work found that using a developed channel reduction and identifier algorithm, good trend adherence of 89.1% can be obtained between a commercially available brain computer interface (BCI) 14 channel Emotiv EPOC+ EEG headset and that of a carefully selected set of reduced 4-6 channels. The approach can also identify different levels of engagement activities ranging from general monitoring, ad hoc and repeated active monitoring activities involving information search, extraction, and memory activities.
Keywords: Neurophysiology, monitoring, EEG, outliers, electroencephalography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87