Search results for: Next Generation Networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2959

Search results for: Next Generation Networks

439 Motor Imagery Signal Classification for a Four State Brain Machine Interface

Authors: Hema C. R., Paulraj M. P., S. Yaacob, A. H. Adom, R. Nagarajan

Abstract:

Motor imagery classification provides an important basis for designing Brain Machine Interfaces [BMI]. A BMI captures and decodes brain EEG signals and transforms human thought into actions. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through the BMI. This paper presents a method to design a four state BMI using EEG signals recorded from the C3 and C4 locations. Principle features extracted through principle component analysis of the segmented EEG are analyzed using two novel classification algorithms using Elman recurrent neural network and functional link neural network. Performance of both classifiers is evaluated using a particle swarm optimization training algorithm; results are also compared with the conventional back propagation training algorithm. EEG motor imagery recorded from two subjects is used in the offline analysis. From overall classification performance it is observed that the BP algorithm has higher average classification of 93.5%, while the PSO algorithm has better training time and maximum classification. The proposed methods promises to provide a useful alternative general procedure for motor imagery classification

Keywords: Motor Imagery, Brain Machine Interfaces, Neural Networks, Particle Swarm Optimization, EEG signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
438 The Relations between Spatial Structure and Land Price

Authors: Jung-Hun Cho, Tae-Heon Moon, Jin-Hak Lee

Abstract:

Land price contains the comprehensive characteristics of urban space, representing the social and economic features of the city. Accordingly, land price can be utilized as an indicator, which can identify the changes of spatial structure and socioeconomic variations caused by urban development. This study attempted to explore the changes in land price by a new road construction. Methodologically, it adopted Space Syntax, which can interpret urban spatial structure comprehensively, to identify the relationship between the forms of road networks and land price. The result of the regression analysis showed the ‘integration index’ of Space Syntax is statistically significant and has a strong correlation with land price. If the integration value is high, land price increases proportionally. Subsequently, using regression equation, it tried to predict the land price changes of each of the lots surrounding the roads that are newly opened. The research methods or study results have the advantage of predicting the changes in land price in an easy way. In addition, it will contribute to planners and project managers to establish relevant polices and smoothing urban regeneration projects through enhancing residents’ understanding by providing possible results and advantages in their land price before the execution of urban regeneration and development projects.

Keywords: Space syntax, urban regeneration, spatial structure, official land price.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
437 Comparative Spatial Analysis of a Re-arranged Hospital Building

Authors: Burak Köken, Hatice D. Arslan, Bilgehan Y. Çakmak

Abstract:

Analyzing the relation networks between the hospital buildings which have complex structure and distinctive spatial relationships is quite difficult. The hospital buildings which require specialty in spatial relationship solutions during design and selfinnovation through the developing technology should survive and keep giving service even after the disasters such as earthquakes. In this study, a hospital building where the load-bearing system was strengthened because of the insufficient earthquake performance and the construction of an additional building was required to meet the increasing need for space was discussed and a comparative spatial evaluation of the hospital building was made with regard to its status before the change and after the change. For this reason, spatial organizations of the building before change and after the change were analyzed by means of Space Syntax method and the effects of the change on space organization parameters were searched by applying an analytical procedure. Using Depthmap UCL software, Connectivity, Visual Mean Depth, Beta and Visual Integration analyses were conducted. Based on the data obtained after the analyses, it was seen that the relationships between spaces of the building increased after the change and the building has become more explicit and understandable for the occupants. Furthermore, it was determined according to findings of the analysis that the increase in depth causes difficulty in perceiving the spaces and the changes considering this problem generally ease spatial use.

Keywords: Architecture, hospital building, space syntax, strengthening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
436 A Nondominated Sorting Genetic Algorithm for Shortest Path Routing Problem

Authors: C. Chitra, P. Subbaraj

Abstract:

The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.

Keywords: Multiobjective optimization, Non-dominated Sorting Genetic Algorithm, Routing, Weighted sum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
435 Community Based Tourism and Development in Third World Countries: The Case of the Bamileke Region of Cameroon

Authors: Ngono Mindzeng Terencia

Abstract:

Community based tourism, as a sustainable tourism approach, has been adopted as a tool for development among local communities in third world countries with income generation as the main driver. However, an analysis of community based tourism and development brings to light another driving force which is paramount to development strategies in the difficult conditions of third world countries: this driving force is “place revitalization”. This paper seeks to assess the relevance of “place revitalization” to the enhancement of development within the challenging context of developing countries. The research provides a community based tourism model to development in third world countries through a three step process based on awareness, mentoring and empowerment at the local level. It also tries to examine how effectively this model can address the development problems faced by the local communities of third world countries. The case study for this research is the Bamiléké region of Cameroon, the breeding ground of community based tourism initiatives and a region facing the difficulties of third world countries that are great impediments to community based tourism.

Keywords: Awareness, empowerment, local communities, mentoring, place revitalization, third world countries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1089
434 Growing Zeolite Y on FeCrAlloy Metal

Authors: Rana Th. A. Al-Rubaye, Burcin Atilgan, Richard J. Holmes, Arthur A. Garforth

Abstract:

Structured catalysts formed from the growth of zeolites on substrates is an area of increasing interest due to the increased efficiency of the catalytic process, and the ability to provide superior heat transfer and thermal conductivity for both exothermic and endothermic processes. However, the generation of structured catalysts represents a significant challenge when balancing the relationship variables between materials properties and catalytic performance, with the Na2O, H2O and Al2O3 gel composition paying a significant role in this dynamic, thereby affecting the both the type and range of application. The structured catalyst films generated as part of this investigation have been characterised using a range of techniques, including X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X-ray analysis (EDX) and Thermogravimetric Analysis (TGA), with the transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces being demonstrated using both SEM and XRD. The robustness of the coatings has been ascertained by subjecting these to thermal cycling (ambient to 550oC), with the results indicating that the synthesis time and gel compositions have a crucial effect on the quality of zeolite growth on the FeCrAlloy wires. Finally, the activity of the structured catalyst was verified by a series of comparison experiments with standard zeolite Y catalysts in powdered pelleted forms.

Keywords: FeCrAlloy, Structured catalyst, and Zeolite Y.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2453
433 Absent Theaters: A Virtual Reconstruction from Memories

Authors: P. Castillo Muñoz, A. Lara Ramírez

Abstract:

Absent Theaters is a project that virtually reconstructs three theaters that existed in the twentieth century, demolished in the city of Medellin, Colombia: Circo España, Bolívar, and Junín. Virtual reconstruction is used as an excuse to talk with those who lived in their childhood and youth cultural spaces that formed a whole generation. Around 100 people who witnessed these theaters were interviewed. The means used to perform the oral history work was the virtual reconstruction of the interior of the theaters that were presented to the interviewees through the Virtual Reality glasses. The voices of people between 60 and 103 years old were used to generate a transmission of knowledge to the new generations about the importance of theaters as essential places for the city, as spaces generating social relations and knowledge of other cultures. Oral stories about events, the historical and social context of the city, were mixed with archive images and animations of the architectural transformations of these places. Oral stories about events, the historical and social context of the city, were mixed with archive images and animations of the architectural transformations of these places, with the purpose of compiling a collective discourse around cultural activities, heritage, and memory of Medellin.

Keywords: Culture, heritage, oral history, theaters, virtual reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1121
432 Adaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model

Authors: A. Kablan

Abstract:

The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which is an expert system that is capable of using fuzzy reasoning combined with the pattern recognition capability of neural networks to be used in financial forecasting and trading in high frequency. However, in order to eliminate unnecessary input in the training phase a new event based volatility model was proposed. Taking volatility and the scaling laws of financial time series into consideration has brought about the development of the Intraday Seasonality Observation Model. This new model allows the observation of specific events and seasonalities in data and subsequently removes any unnecessary data. This new event based volatility model provides the ANFIS system with more accurate input and has increased the overall performance of the system.

Keywords: Adaptive Neuro-fuzzy Inference system, High Frequency Trading, Intraday Seasonality Observation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3395
431 Parameters Identification of Mathematical Model of the Fission Yeast Cell Cycle Control Using Evolutionary Strategy

Authors: A. Ghaffari, A. S. Mostafavi

Abstract:

Complex assemblies of interacting proteins carry out most of the interesting jobs in a cell, such as metabolism, DNA synthesis, mitosis and cell division. These physiological properties play out as a subtle molecular dance, choreographed by underlying regulatory networks that control the activities of cyclin-dependent kinases (CDK). The network can be modeled by a set of nonlinear differential equations and its behavior predicted by numerical simulation. In this paper, an innovative approach has been proposed that uses genetic algorithms to mine a set of behavior data output by a biological system in order to determine the kinetic parameters of the system. In our approach, the machine learning method is integrated with the framework of existent biological information in a wiring diagram so that its findings are expressed in a form of system dynamic behavior. By numerical simulations it has been illustrated that the model is consistent with experiments and successfully shown that such application of genetic algorithms will highly improve the performance of mathematical model of the cell division cycle to simulate such a complicated bio-system.

Keywords: Cell cycle, Cyclin-dependent kinase, Fission yeast, Genetic algorithms, Mathematical modeling, Wiring diagram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
430 Optimisation of Structural Design by Integrating Genetic Algorithms in the Building Information Modelling Environment

Authors: Tofigh Hamidavi, Sepehr Abrishami, Pasquale Ponterosso, David Begg

Abstract:

Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK.

Keywords: Building Information Modelling, BIM, Genetic Algorithm, GA, architecture-engineering-construction, AEC, Optimisation, structure, design, population, generation, selection, mutation, crossover, offspring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821
429 Effect of Addition the Dune Sand Powder on Development of Compressive Strength and Hydration of Cement Pastes

Authors: S. Guettala, B. Mezghiche

Abstract:

In this paper, the effect of addition the dune sand powder (DSP) on development of compressive strength and hydration of cement pastes was investigated as a function of water/binder ratio, was varied, on the one hand, the percentage of DSP and on the other, the fineness of DSP. In order to understand better the pozzolanic effect of dune sand powder in cement pastes, we followed the mixtures hydration (50% Pure Lime + 50% DSP) by X-ray diffraction. These mixtures the pastes present a hydraulic setting which is due to the formation of a C-S-H phase (calcium silicate hydrate). The latter is semi-crystallized. This study is a simplified approach to that of the mixtures (80% ordinary Portland cement + 20% DSP), in which the main reaction is the fixing of the lime coming from the cement hydration in the presence of DSP, to form calcium silicate hydrate semi-crystallized of second generation. The results proved that up to (20% DSP) as Portland cement replacement could be used with a fineness of 4000 cm²/g without affecting adversely the compressive strength. After 28 days, the compressive strength at 5, 10 and 15% DSP is superior to Portland cement, with an optimum effect for a percentage of the order of 5% to 10% irrespective of the w/b ratio and fineness of DSP.

Keywords: Ordinary Portland Cement, Pure Lime, Dune Sand Powder, Compressive Strength, Hydration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
428 An Improved Learning Algorithm based on the Conjugate Gradient Method for Back Propagation Neural Networks

Authors: N. M. Nawi, M. R. Ransing, R. S. Ransing

Abstract:

The conjugate gradient optimization algorithm usually used for nonlinear least squares is presented and is combined with the modified back propagation algorithm yielding a new fast training multilayer perceptron (MLP) algorithm (CGFR/AG). The approaches presented in the paper consist of three steps: (1) Modification on standard back propagation algorithm by introducing gain variation term of the activation function, (2) Calculating the gradient descent on error with respect to the weights and gains values and (3) the determination of the new search direction by exploiting the information calculated by gradient descent in step (2) as well as the previous search direction. The proposed method improved the training efficiency of back propagation algorithm by adaptively modifying the initial search direction. Performance of the proposed method is demonstrated by comparing to the conjugate gradient algorithm from neural network toolbox for the chosen benchmark. The results show that the number of iterations required by the proposed method to converge is less than 20% of what is required by the standard conjugate gradient and neural network toolbox algorithm.

Keywords: Back-propagation, activation function, conjugategradient, search direction, gain variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2838
427 Time Organization for Urban Mobility Decongestion: A Methodology for People’s Profile Identification

Authors: Yassamina Berkane, Leïla Kloul, Yoann Demoli

Abstract:

Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a methodology for predicting peoples’ intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples’ intentions to reschedule their activities (work, study, commerce, etc.).

Keywords: Urban mobility, decongestion, machine learning, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 481
426 Generating State-Based Testing Models for Object-Oriented Framework Interface Classes

Authors: Jehad Al Dallal, Paul Sorenson

Abstract:

An application framework provides a reusable design and implementation for a family of software systems. Application developers extend the framework to build their particular applications using hooks. Hooks are the places identified to show how to use and customize the framework. Hooks define the Framework Interface Classes (FICs) and the specifications of their methods. As part of the development life cycle, it is required to test the implementations of the FICs. Building a testing model to express the behavior of a class is an essential step for the generation of the class-based test cases. The testing model has to be consistent with the specifications provided for the hooks. State-based models consisting of states and transitions are testing models well suited to objectoriented software. Typically, hand-construction of a state-based model of a class behavior is expensive, error-prone, and may result in constructing an inconsistent model with the specifications of the class methods, which misleads verification results. In this paper, a technique is introduced to automatically synthesize a state-based testing model for FICs using the specifications provided for the hooks. A tool that supports the proposed technique is introduced.

Keywords: Framework interface classes, hooks, state-basedtesting, testing model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227
425 Stress Analysis of Water Wall Tubes of a Coal-fired Boiler during Soot Blowing Operation

Authors: Pratch Kittipongpattana, Thongchai Fongsamootr

Abstract:

This research aimed to study the influences of a soot blowing operation and geometrical variables to the stress characteristic of water wall tubes located in soot blowing areas which caused the boilers of Mae Moh power plant to lose their generation hour. The research method is divided into 2 parts (a) measuring the strain on water wall tubes by using 3-element rosette strain gages orientation during a full capacity plant operation and in periods of soot blowing operations (b) creating a finite element model in order to calculate stresses on tubes and validating the model by using experimental data in a steady state plant operation. Then, the geometrical variables in the model were changed to study stresses on the tubes. The results revealed that the stress was not affected by the soot blowing process and the finite element model gave the results 1.24% errors from the experiment. The geometrical variables influenced the stress, with the most optimum tubes design in this research reduced the average stress from the present design 31.28%.

Keywords: Boiler water wall tube, Finite element, Stress analysis, Strain gage rosette.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
424 Channel Estimation for Orthogonal Frequency Division Multiplexing Systems over Doubly Selective Channels Based on the DCS-DCSOMP Algorithm

Authors: Linyu Wang, Furui Huo, Jianhong Xiang

Abstract:

The Doppler shift generated by high-speed movement and multipath effects in the channel are the main reasons for the generation of a time-frequency doubly-selective (DS) channel. There is severe inter-carrier interference (ICI) in the DS channel. Channel estimation for an orthogonal frequency division multiplexing (OFDM) system over a DS channel is very difficult. The simultaneous orthogonal matching pursuit (SOMP) algorithm under distributed compressive sensing theory (DCS-SOMP) has been used in channel estimation for OFDM systems over DS channels. However, the reconstruction accuracy of the DCS-SOMP algorithm is not high enough in the low Signal-to-Noise Ratio (SNR) stage. To solve this problem, in this paper, we propose an improved DCS-SOMP algorithm based on the inner product difference comparison operation (DCS-DCSOMP). The reconstruction accuracy is improved by increasing the number of candidate indexes and designing the comparison conditions of inner product difference. We combine the DCS-DCSOMP algorithm with the basis expansion model (BEM) to reduce the complexity of channel estimation. Simulation results show the effectiveness of the proposed algorithm and its advantages over other algorithms.

Keywords: OFDM, doubly selective, channel estimation, compressed sensing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 371
423 Study on Optimization Design of Pressure Hull for Underwater Vehicle

Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran

Abstract:

In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.

Keywords: Parameterization, response surface, structure optimization, pressure hull.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
422 Economic Analysis of Domestic Combined Heat and Power System in the UK

Authors: Thamo Sutharssan, Diogo Montalvao, Yong Chen, Wen-Chung Wang, Claudia Pisac

Abstract:

A combined heat and power (CHP) system is an efficient and clean way to generate power (electricity). Heat produced by the CHP system can be used for water and space heating. The CHP system which uses hydrogen as fuel produces zero carbon emission. Its’ efficiency can reach more than 80% whereas that of a traditional power station can only reach up to 50% because much of the thermal energy is wasted. The other advantages of CHP systems include that they can decentralize energy generation, improve energy security and sustainability, and significantly reduce the energy cost to the users. This paper presents the economic benefits of using a CHP system in the domestic environment. For this analysis, natural gas is considered as potential fuel as the hydrogen fuel cell based CHP systems are rarely used. UK government incentives for CHP systems are also considered as the added benefit. Results show that CHP requires a significant initial investment in returns it can reduce the annual energy bill significantly. Results show that an investment may be paid back in 7 years. After the back period, CHP can run for about 3 years as most of the CHP manufacturers provide 10 year warranty.

Keywords: Combined Heat and Power, Clean Energy, Hydrogen Fuel Cell, Economic Analysis of CHP, Zero Emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
421 Optimal Location of Multi Type Facts Devices for Multiple Contingencies Using Particle Swarm Optimization

Authors: S. Sutha, N. Kamaraj

Abstract:

In deregulated operating regime power system security is an issue that needs due thoughtfulness from researchers in the horizon of unbundling of generation and transmission. Electric power systems are exposed to various contingencies. Network contingencies often contribute to overloading of branches, violation of voltages and also leading to problems of security/stability. To maintain the security of the systems, it is desirable to estimate the effect of contingencies and pertinent control measurement can be taken on to improve the system security. This paper presents the application of particle swarm optimization algorithm to find the optimal location of multi type FACTS devices in a power system in order to eliminate or alleviate the line over loads. The optimizations are performed on the parameters, namely the location of the devices, their types, their settings and installation cost of FACTS devices for single and multiple contingencies. TCSC, SVC and UPFC are considered and modeled for steady state analysis. The selection of UPFC and TCSC suitable location uses the criteria on the basis of improved system security. The effectiveness of the proposed method is tested for IEEE 6 bus and IEEE 30 bus test systems.

Keywords: Contingency Severity Index, Particle Swarm Optimization, Performance Index, Static Security Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766
420 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network

Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You

Abstract:

With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.

Keywords: Artificial neural network, ANN, chromatic dispersion, delay-tap sampling, optical signal-to-noise ratio, OSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 712
419 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System

Authors: Shane D. Inder, Mehrdad Khamooshi

Abstract:

Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.

Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117
418 In vitro Effects of Berberine on the Vitality and Oxidative Profile of Bovine Spermatozoa

Authors: Eva Tvrdá, Hana Greifová, Peter Ivanič, Norbert Lukáč

Abstract:

The aim of this study was to evaluate the dose- and time-dependent in vitro effects of berberine (BER), a natural alkaloid with numerous biological properties on bovine spermatozoa during three time periods (0 h, 2 h, 24 h). Bovine semen samples were diluted and cultivated in physiological saline solution containing 0.5% DMSO together with 200, 100, 50, 10, 5, and 1 μmol/L BER. Spermatozoa motility was assessed using the computer assisted semen analyzer. The viability of spermatozoa was assessed by the metabolic (MTT) assay, production of superoxide radicals was quantified using the nitroblue tetrazolium (NBT) test, and chemiluminescence was used to evaluate the generation of reactive oxygen species (ROS). Cell lysates were prepared and the extent of lipid peroxidation (LPO) was evaluated using the TBARS assay. The results of the movement activity showed a significant increase in the motility during long term cultivation in case of concentrations ranging between 1 and 10 μmol/L BER (P < 0.01; P < 0.001; 24 h). At the same time, supplementation of 1, 5 and 10 μmol/L BER led to a significant preservation of the cell viability (P < 0.001; 24 h). BER addition at a range of 1-50 μmol/L also provided a significantly higher protection against superoxide (P < 0.05) and ROS (P < 0.001; P < 0.01) overgeneration as well as LPO (P < 0.01; P<0.05) after a 24 h cultivation. We may suggest that supplementation of BER to bovine spermatozoa, particularly at concentrations ranging between 1 and 50 μmol/L, may offer protection to the motility, viability and oxidative status of the spermatozoa, particularly notable at 24 h.

Keywords: Berberine, bulls, motility, oxidative profile, spermatozoa, viability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
417 Development of Workplace Environmental Monitoring Systems Using Ubiquitous Sensor Network

Authors: Jung-Min Yun, Jong-Hyun Baek, Byoung Ky Kang, Peom Park

Abstract:

In this study, workplace environmental monitoring systems were established using USN(Ubiquitous Sensor Networks) and LabVIEW. Although existing direct sampling methods enable finding accurate values as of the time points of measurement, those methods are disadvantageous in that continuous management and supervision are difficult and costs for are high when those methods are used. Therefore, the efficiency and reliability of workplace management by supervisors are relatively low when those methods are used. In this study, systems were established so that information on workplace environmental factors such as temperatures, humidity and noises is measured and transmitted to the PC in real time to enable supervisors to monitor workplaces through LabVIEW on the PC. When any accidents have occurred in workplaces, supervisors can immediately respond through the monitoring system and this system enables integrated workplace management and the prevention of safety accidents. By introducing these monitoring systems, safety accidents due to harmful environmental factors in workplaces can be prevented and these monitoring systems will be also helpful in finding out the correlation between safety accidents and occupational diseases by comparing and linking databases established by this monitoring system with existing statistical data.

Keywords: Ubiquitous Sensor Nework, LabVIEW, Environment Monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545
416 A Watermarking Scheme for MP3 Audio Files

Authors: Dimitrios Koukopoulos, Yiannis Stamatiou

Abstract:

In this work, we present for the first time in our perception an efficient digital watermarking scheme for mpeg audio layer 3 files that operates directly in the compressed data domain, while manipulating the time and subband/channel domain. In addition, it does not need the original signal to detect the watermark. Our scheme was implemented taking special care for the efficient usage of the two limited resources of computer systems: time and space. It offers to the industrial user the capability of watermark embedding and detection in time immediately comparable to the real music time of the original audio file that depends on the mpeg compression, while the end user/audience does not face any artifacts or delays hearing the watermarked audio file. Furthermore, it overcomes the disadvantage of algorithms operating in the PCMData domain to be vulnerable to compression/recompression attacks, as it places the watermark in the scale factors domain and not in the digitized sound audio data. The strength of our scheme, that allows it to be used with success in both authentication and copyright protection, relies on the fact that it gives to the users the enhanced capability their ownership of the audio file not to be accomplished simply by detecting the bit pattern that comprises the watermark itself, but by showing that the legal owner knows a hard to compute property of the watermark.

Keywords: Audio watermarking, mpeg audio layer 3, hardinstance generation, NP-completeness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
415 A Model of Technological Platform for the Knowledge Management Organization

Authors: Nieto B. W, Luna A. C, Ramos R. J.

Abstract:

This paper describes an experience of research, development and innovation applied in Industrial Naval at (Science and Technology Corporation for the Development of Shipbuilding Industry, Naval in Colombia (COTECMAR) particularly through processes of research, innovation and technological development, based on theoretical models related to organizational knowledge management, technology management and management of human talent and integration of technology platforms. It seeks ways to facilitate the initial establishment of environments rich in information, knowledge and content-supported collaborative strategies on dynamic processes missionary, seeking further development in the context of research, development and innovation of the Naval Engineering in Colombia, making it a distinct basis for the generation of knowledge assets from COTECMAR. The integration of information and communication technologies, supported on emerging technologies (mobile technologies, wireless, digital content via PDA, and content delivery services on the Web 2.0 and Web 3.0) as a view of the strategic thrusts in any organization facilitates the redefinition of processes for managing information and knowledge, enabling the redesign of workflows, the adaptation of new forms of organization - preferably in networking and support the creation of symbolic-inside-knowledge promotes the development of new skills, knowledge and attitudes of the knowledge worker

Keywords: Management Knowledge, Information andCommunication Technologies, Knowledge Worker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3071
414 Business Intelligence for N=1 Analytics using Hybrid Intelligent System Approach

Authors: Rajendra M Sonar

Abstract:

The future of business intelligence (BI) is to integrate intelligence into operational systems that works in real-time analyzing small chunks of data based on requirements on continuous basis. This is moving away from traditional approach of doing analysis on ad-hoc basis or sporadically in passive and off-line mode analyzing huge amount data. Various AI techniques such as expert systems, case-based reasoning, neural-networks play important role in building business intelligent systems. Since BI involves various tasks and models various types of problems, hybrid intelligent techniques can be better choice. Intelligent systems accessible through web services make it easier to integrate them into existing operational systems to add intelligence in every business processes. These can be built to be invoked in modular and distributed way to work in real time. Functionality of such systems can be extended to get external inputs compatible with formats like RSS. In this paper, we describe a framework that use effective combinations of these techniques, accessible through web services and work in real-time. We have successfully developed various prototype systems and done few commercial deployments in the area of personalization and recommendation on mobile and websites.

Keywords: Business Intelligence, Customer Relationship Management, Hybrid Intelligent Systems, Personalization and Recommendation (P&R), Recommender Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
413 Inverse Heat Conduction Analysis of Cooling on Run Out Tables

Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi

Abstract:

In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.

Keywords: Inverse Analysis, Function Specification, Neural Net Works, Particle Swarm, Run Out Table.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
412 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine

Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen

Abstract:

Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.

Keywords: Cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
411 Multivariate School Travel Demand Regression Based on Trip Attraction

Authors: Ben-Edigbe J, RahmanR

Abstract:

Since primary school trips usually start from home, attention by many scholars have been focused on the home end for data gathering. Thereafter category analysis has often been relied upon when predicting school travel demands. In this paper, school end was relied on for data gathering and multivariate regression for future travel demand prediction. 9859 pupils were surveyed by way of questionnaires at 21 primary schools. The town was divided into 5 zones. The study was carried out in Skudai Town, Malaysia. Based on the hypothesis that the number of primary school trip ends are expected to be the same because school trips are fixed, the choice of trip end would have inconsequential effect on the outcome. The study compared empirical data for home and school trip end productions and attractions. Variance from both data results was insignificant, although some claims from home based family survey were found to be grossly exaggerated. Data from the school trip ends was relied on for travel demand prediction because of its completeness. Accessibility, trip attraction and trip production were then related to school trip rates under daylight and dry weather conditions. The paper concluded that, accessibility is an important parameter when predicting demand for future school trip rates.

Keywords: Trip generation, regression analysis, multiple linearregressions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
410 Studies on the Mechanical Behavior of Bottom Ash for a Sustainable Environment

Authors: B. A. Mir, Asim Malik

Abstract:

Bottom ash is a by-product of the combustion process of coal in furnaces in the production of electricity in thermal power plants. In India, about 75% of total power is produced by using pulverized coal. The coal of India has a high ash content which leads to the generation of a huge quantity of bottom ash per year posing the dual problem of environmental pollution and difficulty in disposal. This calls for establishing strategies to use this industry by-product effectively and efficiently. However, its large-scale utilization is possible only in geotechnical applications, either alone or with soil. In the present investigation, bottom ash was collected from National Capital Power Station Dadri, Uttar Pradesh, India. Test samples of bottom ash admixed with 20% clayey soil were prepared and treated with different cement content by weight and subjected to various laboratory tests for assessing its suitability as an engineered construction material. This study has shown that use of 10% cement content is a viable chemical additive to enhance the mechanical properties of bottom ash, which can be used effectively as an engineered construction material in various geotechnical applications. More importantly, it offers an interesting potential for making use of an industrial waste to overcome challenges posed by bottom ash for a sustainable environment.

Keywords: Bottom ash, environmental pollution, solid waste, sustainable environment, waste utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720