Search results for: maritime traffic network extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3853

Search results for: maritime traffic network extraction

1363 Evaluation of Urban Development Proposals An ANP Approach

Authors: T. Gómez-Navarro, M. García-Melón, D. Díaz-Martín, S. Acuna-Dutra,

Abstract:

In this paper a new approach to prioritize urban planning projects in an efficient and reliable way is presented. It is based on environmental pressure indices and multicriteria decision methods. The paper introduces a rigorous method with acceptable complexity of rank ordering urban development proposals according to their environmental pressure. The technique combines the use of Environmental Pressure Indicators, the aggregation of indicators in an Environmental Pressure Index by means of the Analytic Network Process method and interpreting the information obtained from the experts during the decision-making process. The ANP method allows the aggregation of the experts- judgments on each of the indicators into one Environmental Pressure Index. In addition, ANP is based on utility ratio functions which are the most appropriate for the analysis of uncertain data, like experts- estimations. Finally, unlike the other multicriteria techniques, ANP allows the decision problem to be modelled using the relationships among dependent criteria. The method has been applied to the proposal for urban development of La Carlota airport in Caracas (Venezuela). The Venezuelan Government would like to see a recreational project develop on the abandoned area and mean a significant improvement for the capital. There are currently three options on their table which are currently under evaluation. They include a Health Club, a Residential area and a Theme Park. The participating experts coincided in the appreciation that the method proposed in this paper is useful and an improvement from traditional techniques such as environmental impact studies, lifecycle analysis, etc. They find the results obtained coherent, the process seems sufficiently rigorous and precise, and the use of resources is significantly less than in other methods.

Keywords: Environmental pressure indicators, multicriteria decision analysis, analytic network process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
1362 Recognition of Grocery Products in Images Captured by Cellular Phones

Authors: Farshideh Einsele, Hassan Foroosh

Abstract:

In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using well-known geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.

Keywords: Camera-based OCR, Feature extraction, Document and image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
1361 A Review: Comparative Study of Diverse Collection of Data Mining Tools

Authors: S. Sarumathi, N. Shanthi, S. Vidhya, M. Sharmila

Abstract:

There have been a lot of efforts and researches undertaken in developing efficient tools for performing several tasks in data mining. Due to the massive amount of information embedded in huge data warehouses maintained in several domains, the extraction of meaningful pattern is no longer feasible. This issue turns to be more obligatory for developing several tools in data mining. Furthermore the major aspire of data mining software is to build a resourceful predictive or descriptive model for handling large amount of information more efficiently and user friendly. Data mining mainly contracts with excessive collection of data that inflicts huge rigorous computational constraints. These out coming challenges lead to the emergence of powerful data mining technologies. In this survey a diverse collection of data mining tools are exemplified and also contrasted with the salient features and performance behavior of each tool.

Keywords: Business Analytics, Data Mining, Data Analysis, Machine Learning, Text Mining, Predictive Analytics, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3367
1360 A Theory in Optimization of Ad-hoc Routing Algorithms

Authors: M. Kargar, F.Fartash, T. Saderi, M. Ebrahimi Dishabi

Abstract:

In this paper optimization of routing in ad-hoc networks is surveyed and a new method for reducing the complexity of routing algorithms is suggested. Using binary matrices for each node in the network and updating it once the routing is done, helps nodes to stop repeating the routing protocols in each data transfer. The algorithm suggested can reduce the complexity of routing to the least amount possible.

Keywords: Ad-hoc Networks, Algorithm, Protocol, RoutingTrain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
1359 Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather

Authors: Patience Muchini, Electdom Matandiroya, Emmanuel Mashonjowa

Abstract:

A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Zimbabwe has no study that notes if grid failures have been caused by GICs. Research and monitoring are needed to investigate this possible relationship purpose of this paper is to characterize GICs with a power grid network. This paper analyses data collected, which are geomagnetic data, which include the Kp index, Disturbance storm time (DST) index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs.

Keywords: Adverse space weather, DST index, geomagnetically induced currents, Kp index, reactive power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176
1358 Novel Adaptive Channel Equalization Algorithms by Statistical Sampling

Authors: János Levendovszky, András Oláh

Abstract:

In this paper, novel statistical sampling based equalization techniques and CNN based detection are proposed to increase the spectral efficiency of multiuser communication systems over fading channels. Multiuser communication combined with selective fading can result in interferences which severely deteriorate the quality of service in wireless data transmission (e.g. CDMA in mobile communication). The paper introduces new equalization methods to combat interferences by minimizing the Bit Error Rate (BER) as a function of the equalizer coefficients. This provides higher performance than the traditional Minimum Mean Square Error equalization. Since the calculation of BER as a function of the equalizer coefficients is of exponential complexity, statistical sampling methods are proposed to approximate the gradient which yields fast equalization and superior performance to the traditional algorithms. Efficient estimation of the gradient is achieved by using stratified sampling and the Li-Silvester bounds. A simple mechanism is derived to identify the dominant samples in real-time, for the sake of efficient estimation. The equalizer weights are adapted recursively by minimizing the estimated BER. The near-optimal performance of the new algorithms is also demonstrated by extensive simulations. The paper has also developed a (Cellular Neural Network) CNN based approach to detection. In this case fast quadratic optimization has been carried out by t, whereas the task of equalizer is to ensure the required template structure (sparseness) for the CNN. The performance of the method has also been analyzed by simulations.

Keywords: Cellular Neural Network, channel equalization, communication over fading channels, multiuser communication, spectral efficiency, statistical sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
1357 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously

Authors: S. Mehrab Amiri, Nasser Talebbeydokhti

Abstract:

Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme.  In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.

Keywords: Artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
1356 Ship Detection Requirements Analysis for Different Sea States: Validation on Real SAR Data

Authors: Jaime Martín-de-Nicolás, David Mata-Moya, Nerea del-Rey-Maestre, Pedro Gómez-del-Hoyo, María-Pilar Jarabo-Amores

Abstract:

Ship detection is nowadays quite an important issue in tasks related to sea traffic control, fishery management and ship search and rescue. Although it has traditionally been carried out by patrol ships or aircrafts, coverage and weather conditions and sea state can become a problem. Synthetic aperture radars can surpass these coverage limitations and work under any climatological condition. A fast CFAR ship detector based on a robust statistical modeling of sea clutter with respect to sea states in SAR images is used. In this paper, the minimum SNR required to obtain a given detection probability with a given false alarm rate for any sea state is determined. A Gaussian target model using real SAR data is considered. Results show that SNR does not depend heavily on the class considered. Provided there is some variation in the backscattering of targets in SAR imagery, the detection probability is limited and a post-processing stage based on morphology would be suitable.

Keywords: SAR, generalized gamma distribution, detection curves, radar detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1178
1355 Automation of Fishhooks Objective Measures

Authors: S. Chabrier, G. Molle, E. Conte, C. Carlier

Abstract:

Fishing has always been an essential component of the Polynesians- life. Fishhooks, mostly in pearl shell, found during archaeological excavations are the artifacts related to this activity the most numerous. Thanks to them, we try to reconstruct the ancient techniques of resources exploitation, inside the lagoons and offshore. They can also be used as chronological and cultural indicators. The shapes and dimensions of these artifacts allow comparisons and classifications used in both functional approach and chrono-cultural perspective. Hence it is very important for the ethno-archaeologists to dispose of reliable methods and standardized measurement of these artifacts. Such a reliable objective and standardized method have been previously proposed. But this method cannot be envisaged manually because of the very important time required to measure each fishhook manually and the quantity of fishhooks to measure (many hundreds). We propose in this paper a detailed acquisition protocol of fishhooks and an automation of every step of this method. We also provide some experimental results obtained on the fishhooks coming from three archaeological excavations sites.

Keywords: Automated measures, extraction, fishhook, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
1354 A Refined Application of QFD in SCM, A New Approach

Authors: Nooshin La'l Mohamadi

Abstract:

Due to the fact that in the new century customers tend to express globally increasing demands, networks of interconnected businesses have been established in societies and the management of such networks seems to be a major key through gaining competitive advantages. Supply chain management encompasses such managerial activities. Within a supply chain, a critical role is played by quality. QFD is a widely-utilized tool which serves the purpose of not only bringing quality to the ultimate provision of products or service packages required by the end customer or the retailer, but it can also initiate us into a satisfactory relationship with our initial customer; that is the wholesaler. However, the wholesalers- cooperation is considerably based on the capabilities that are heavily dependent on their locations and existing circumstances. Therefore, it is undeniable that for all companies each wholesaler possesses a specific importance ratio which can heavily influence the figures calculated in the House of Quality in QFD. Moreover, due to the competitiveness of the marketplace today, it-s been widely recognized that consumers- expression of demands has been highly volatile in periods of production. Apparently, such instability and proneness to change has been very tangibly noticed and taking it into account during the analysis of HOQ is widely influential and doubtlessly required. For a more reliable outcome in such matters, this article demonstrates the application viability of Analytic Network Process for considering the wholesalers- reputation and simultaneously introduces a mortality coefficient for the reliability and stability of the consumers- expressed demands in course of time. Following to this, the paper provides further elaboration on the relevant contributory factors and approaches through the calculation of such coefficients. In the end, the article concludes that an empirical application is needed to achieve broader validity.

Keywords: Analytic Network Process, Quality Function Deployment, QFD flaws, Supply Chain Management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
1353 Incremental Learning of Independent Topic Analysis

Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda

Abstract:

In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.

Keywords: Text mining, topic extraction, independent, incremental, independent component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063
1352 The Design and Development of Driving Game as an Evaluation Instrument for Driving License Test

Authors: Abdul Hadi Abdul Razak, Mohd Hairy Manap

Abstract:

The focus of this paper is to highlight the design and development of an educational game prototype as an evaluation instrument for the Malaysia driving license static test. This educational game brings gaming technology into the conventional objective static test to make it more effective, real and interesting. From the feeling of realistic, the future driver can learn something, memorized and use it in the real life. The current online objective static test only make the user memorized the answer without knowing and understand the true purpose of the question. Therefore, in real life, they will not behave as expected due to behavior and moral lacking. This prototype has been developed inform of multiple-choice questions integrated with 3D gaming environment to make it simulate the real environment and scenarios. Based on the testing conducted, the respondent agrees with the use of this game prototype it can increase understanding and promote obligation towards traffic rules.

Keywords: Educational game, evaluation instrument, game, game prototype.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
1351 The Content of Acrylamide in Deep-fat Fried, Shallow Fried and Roasted Potatoes

Authors: Irisa Murniece, Daina Karklina, Ruta Galoburda

Abstract:

Potato is one of the main components of warm meals in Latvia. Consumption of fried potatoes in Latvia is the highest comparing to Nordic and other Baltic countries. Therefore acrylamide (AA) intake coming from fried potatoes in population might be high as well. The aim of the research was to determine AA content in traditionally cooked potatoes bred and cultivated in Latvia. Five common Latvian potato varieties were selected: Lenora, Brasla, Imanta, Zile and Madara. A two-year research was conducted during two periods: just after harvesting and after six months of storage. The following cooking methods were used: shallow frying (150 ± 5 °C); deep-fat frying (180 ± 5 °C) and roasting (210 ± 5 °C). Time and temperature was recorded during frying. AA was extracted from potatoes by solid phase extraction and AA content was determined by LC-MS/MS. AA content significantly differs (p<0.05) in potatoes per variety, per each frying method and per time.

Keywords: potato, frying, roasting, variety, acrylamide, Latvia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
1350 A Framework for Data Mining Based Multi-Agent: An Application to Spatial Data

Authors: H. Baazaoui Zghal, S. Faiz, H. Ben Ghezala

Abstract:

Data mining is an extraordinarily demanding field referring to extraction of implicit knowledge and relationships, which are not explicitly stored in databases. A wide variety of methods of data mining have been introduced (classification, characterization, generalization...). Each one of these methods includes more than algorithm. A system of data mining implies different user categories,, which mean that the user-s behavior must be a component of the system. The problem at this level is to know which algorithm of which method to employ for an exploratory end, which one for a decisional end, and how can they collaborate and communicate. Agent paradigm presents a new way of conception and realizing of data mining system. The purpose is to combine different algorithms of data mining to prepare elements for decision-makers, benefiting from the possibilities offered by the multi-agent systems. In this paper the agent framework for data mining is introduced, and its overall architecture and functionality are presented. The validation is made on spatial data. Principal results will be presented.

Keywords: Databases, data mining, multi-agent, spatial datamart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
1349 An Event Based Approach to Extract the Run Time Execution Path of BPEL Process for Monitoring QoS in the Cloud

Authors: Rima Grati, Khouloud Boukadi, Hanene Ben-Abdallah

Abstract:

Due to the dynamic nature of the Cloud, continuous monitoring of QoS requirements is necessary to manage the Cloud computing environment. The process of QoS monitoring and SLA violation detection consists of: collecting low and high level information pertinent to the service, analyzing the collected information, and taking corrective actions when SLA violations are detected. In this paper, we detail the architecture and the implementation of the first step of this process. More specifically, we propose an event-based approach to obtain run time information of services developed as BPEL processes. By catching particular events (i.e., the low level information), our approach recognizes the run-time execution path of a monitored service and uses the BPEL execution patterns to compute QoS of the composite service (i.e., the high level information).

Keywords: Monitoring of Web service composition, Cloud environment, Run-time extraction of execution path of BPEL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
1348 Learning User Keystroke Patterns for Authentication

Authors: Ying Zhao

Abstract:

Keystroke authentication is a new access control system to identify legitimate users via their typing behavior. In this paper, machine learning techniques are adapted for keystroke authentication. Seven learning methods are used to build models to differentiate user keystroke patterns. The selected classification methods are Decision Tree, Naive Bayesian, Instance Based Learning, Decision Table, One Rule, Random Tree and K-star. Among these methods, three of them are studied in more details. The results show that machine learning is a feasible alternative for keystroke authentication. Compared to the conventional Nearest Neighbour method in the recent research, learning methods especially Decision Tree can be more accurate. In addition, the experiment results reveal that 3-Grams is more accurate than 2-Grams and 4-Grams for feature extraction. Also, combination of attributes tend to result higher accuracy.

Keywords: Keystroke Authentication, Pattern recognition, MachineLearning, Instance-based Learning, Bayesian, Decision Tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2825
1347 Low Dimensional Representation of Dorsal Hand Vein Features Using Principle Component Analysis (PCA)

Authors: M.Heenaye-Mamode Khan, R.K. Subramanian, N. A. Mamode Khan

Abstract:

The quest of providing more secure identification system has led to a rise in developing biometric systems. Dorsal hand vein pattern is an emerging biometric which has attracted the attention of many researchers, of late. Different approaches have been used to extract the vein pattern and match them. In this work, Principle Component Analysis (PCA) which is a method that has been successfully applied on human faces and hand geometry is applied on the dorsal hand vein pattern. PCA has been used to obtain eigenveins which is a low dimensional representation of vein pattern features. Low cost CCD cameras were used to obtain the vein images. The extraction of the vein pattern was obtained by applying morphology. We have applied noise reduction filters to enhance the vein patterns. The system has been successfully tested on a database of 200 images using a threshold value of 0.9. The results obtained are encouraging.

Keywords: Biometric, Dorsal vein pattern, PCA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
1346 Energy Strategy and Economic Growth of Russia

Authors: Young Sik Kim, Tae Kwon Ha

Abstract:

This article considers the problems of economic growth and Russian energy strategy. Also in this paper, the issues related to the economic growth prospects of Russian were discussed. Russian energy strategy without standing Russia`s stature in global energy markets, at the current production and extraction rates, will not be able to sustain its own production as well as fulfil its energy strategy. Indeed, Russia’s energy sector suffers from a chronic lack of investments which are necessary to modernize its energy supply system. In recent years, especially since the international financial crisis, Russia-EU energy cooperation has made substantive progress. Recently the break-through progress has been made, resulting mainly from long-term contributing factors between the countries and recent international economic and political situation changes. Analytical material presented in the article is intended for a more detailed or substantive analysis related to foreign economic relations of the countries and Russia as well.

Keywords: Russia, Energy strategy, Economic growth, Cooperation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
1345 Generation of Photo-Mosaic Images through Block Matching and Color Adjustment

Authors: Hae-Yeoun Lee

Abstract:

Mosaic refers to a technique that makes image by gathering lots of small materials in various colors. This paper presents an automatic algorithm that makes the photo-mosaic image using photos. The algorithm is composed of 4 steps: partition and feature extraction, block matching, redundancy removal and color adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis.

Keywords: Photo-mosaic, Euclidean distance, Block matching, Intensity adjustment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3574
1344 Studies and Full Scale Tests for the Development of a Ravine Filling with a Depth of about 12.00m

Authors: Dana Madalina Pohrib, Elena Irina Ciobanu

Abstract:

In compaction works, the most often used codes and standards are those for road embankments and refer to a maximum filling height of 3.00m. When filling a height greater than 3.00m, such codes are no longer valid and thus their application may lead to technical difficulties in the process of compaction and to the achievement of a sufficient degree of compaction. For this reason, in the case of controlled fillings with heights greater than 3.00m it is necessary to formulate and apply a number of special techniques, which can be determined by performing a full scale test. This paper presents the results of the studies and full scale tests conducted for the stabilization of a ravine with vertical banks and a depth of about 12.00m. The fillings will support a heavy traffic road connecting the two parts of a village in Vaslui County, Romania. After analyzing two comparative intervention solutions, the variant of a controlled filling bordered by a monolith concrete retaining wall was chosen. The results obtained by the authors highlighted the need to insert a geogrid reinforcement at every 2.00m for creating a 12.00m thick compacted fill.

Keywords: Compaction, dynamic probing, stability, soil stratification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
1343 Post Occupancy Life Cycle Analysis of a Green Building Energy Consumption at the University of Western Ontario in London - Canada

Authors: M. Bittencourt, E. K. Yanful, D. Velasquez, A. E. Jungles

Abstract:

The CMLP building was developed to be a model for sustainability with strategies to reduce water, energy and pollution, and to provide a healthy environment for the building occupants. The aim of this paper is to investigate the environmental effects of energy used by this building. A LCA (life cycle analysis) was led to measure the real environmental effects produced by the use of energy. The impact categories most affected by the energy use were found to be the human health effects, as well as ecotoxicity. Natural gas extraction, uranium milling for nuclear energy production, and the blasting for mining and infrastructure construction are the processes contributing the most to emissions in the human health effect. Data comparing LCA results of CMLP building with a conventional building results showed that energy used by the CMLP building has less damage for the environment and human health than a conventional building.

Keywords: Environmental Impacts, Green buildings, Life CycleAnalysis, Sustainability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
1342 Multiple Targets Classification and Fuzzy Logic Decision Fusion in Wireless Sensor Networks

Authors: Ahmad Aljaafreh

Abstract:

This paper proposes a hierarchical hidden Markov model (HHMM) to model the detection of M vehicles in a wireless sensor network (WSN). The HHMM model contains an extra level of hidden Markov model to model the temporal transitions of each state of the first HMM. By modeling the temporal transitions, only those hypothesis with nonzero transition probabilities needs to be tested. Thus, this method efficiently reduces the computation load, which is preferable in WSN applications.This paper integrates several techniques to optimize the detection performance. The output of the states of the first HMM is modeled as Gaussian Mixture Model (GMM), where the number of states and the number of Gaussians are experimentally determined, while the other parameters are estimated using Expectation Maximization (EM). HHMM is used to model the sequence of the local decisions which are based on multiple hypothesis testing with maximum likelihood approach. The states in the HHMM represent various combinations of vehicles of different types. Due to the statistical advantages of multisensor data fusion, we propose a heuristic based on fuzzy weighted majority voting to enhance cooperative classification of moving vehicles within a region that is monitored by a wireless sensor network. A fuzzy inference system weighs each local decision based on the signal to noise ratio of the acoustic signal for target detection and the signal to noise ratio of the radio signal for sensor communication. The spatial correlation among the observations of neighboring sensor nodes is efficiently utilized as well as the temporal correlation. Simulation results demonstrate the efficiency of this scheme.

Keywords: Classification, decision fusion, fuzzy logic, hidden Markov model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6252
1341 Survey of Communication Technologies for IoT Deployments in Developing Regions

Authors: Namugenyi Ephrance Eunice, Julianne Sansa Otim, Marco Zennaro, Stephen D. Wolthusen

Abstract:

The Internet of Things (IoT) is a network of connected data processing devices, mechanical and digital machinery, items, animals, or people that may send data across a network without requiring human-to-human or human-to-computer interaction. Each component has sensors that can pick up on specific phenomena, as well as processing software and other technologies that can link to and communicate with other systems and/or devices over the Internet or other communication networks and exchange data with them. IoT is increasingly being used in fields other than consumer electronics, such as public safety, emergency response, industrial automation, autonomous vehicles, the Internet of Medical Things (IoMT), and general environmental monitoring. Consumer-based IoT applications, like smart home gadgets and wearables, are also becoming more prevalent. This paper presents the main IoT deployment areas for environmental monitoring in developing regions and the backhaul options suitable for them based on a couple of related works. The study includes an overview of existing IoT deployments, the underlying communication architectures, protocols, and technologies that support them. This overview shows that Low Power Wireless Area Networks (LPWANs) are very well suited for monitoring environment architectures designed for remote locations. LoRa technology, particularly the LoRaWAN protocol, has an advantage over other technologies due to its low power consumption, adaptability, and suitable communication range. The current challenges of various architectures are discussed in detail, with the major issue identified as obstruction of communication paths by buildings, trees, hills, etc.

Keywords: Communication technologies, environmental monitoring, Internet of Things, IoT, IoT deployment challenges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 409
1340 Numerical Analysis of Concrete Crash Barriers

Authors: J. Kala, P. Hradil, V. Salajka

Abstract:

Reinforced concrete crash barriers used in road traffic must meet a number of criteria. Crash barriers are laid lengthwise, one behind another, and joined using specially designed steel locks. While developing BSV reinforced concrete crash barriers (type ŽPSV), experiments and calculations aimed to optimize the shape of a newly designed lock and the reinforcement quantity and distribution in a crash barrier were carried out. The tension carrying capacity of two parallelly joined locks was solved experimentally. Based on the performed experiments, adjustments of nonlinear properties of steel were performed in the calculations. The obtained results served as a basis to optimize the lock design using a computational model that takes into account the plastic behaviour of steel and the influence of the surrounding concrete [6]. The response to the vehicle impact has been analyzed using a specially elaborated complex computational model, comprising both the nonlinear model of the damping wall or crash barrier and the detailed model of the vehicle [7].

Keywords: Crash Barrier, impact, static analysis, concrete nonlinear model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3251
1339 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: Short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, Gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2605
1338 Estimating Saturated Hydraulic Conductivity from Soil Physical Properties using Neural Networks Model

Authors: B. Ghanbarian-Alavijeh, A.M. Liaghat, S. Sohrabi

Abstract:

Saturated hydraulic conductivity is one of the soil hydraulic properties which is widely used in environmental studies especially subsurface ground water. Since, its direct measurement is time consuming and therefore costly, indirect methods such as pedotransfer functions have been developed based on multiple linear regression equations and neural networks model in order to estimate saturated hydraulic conductivity from readily available soil properties e.g. sand, silt, and clay contents, bulk density, and organic matter. The objective of this study was to develop neural networks (NNs) model to estimate saturated hydraulic conductivity from available parameters such as sand and clay contents, bulk density, van Genuchten retention model parameters (i.e. r θ , α , and n) as well as effective porosity. We used two methods to calculate effective porosity: : (1) eff s FC φ =θ -θ , and (2) inf φ =θ -θ eff s , in which s θ is saturated water content, FC θ is water content retained at -33 kPa matric potential, and inf θ is water content at the inflection point. Total of 311 soil samples from the UNSODA database was divided into three groups as 187 for the training, 62 for the validation (to avoid over training), and 62 for the test of NNs model. A commercial neural network toolbox of MATLAB software with a multi-layer perceptron model and back propagation algorithm were used for the training procedure. The statistical parameters such as correlation coefficient (R2), and mean square error (MSE) were also used to evaluate the developed NNs model. The best number of neurons in the middle layer of NNs model for methods (1) and (2) were calculated 44 and 6, respectively. The R2 and MSE values of the test phase were determined for method (1), 0.94 and 0.0016, and for method (2), 0.98 and 0.00065, respectively, which shows that method (2) estimates saturated hydraulic conductivity better than method (1).

Keywords: Neural network, Saturated hydraulic conductivity, Soil physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
1337 PoPCoRN: A Power-Aware Periodic Surveillance Scheme in Convex Region using Wireless Mobile Sensor Networks

Authors: A. K. Prajapati

Abstract:

In this paper, the periodic surveillance scheme has been proposed for any convex region using mobile wireless sensor nodes. A sensor network typically consists of fixed number of sensor nodes which report the measurements of sensed data such as temperature, pressure, humidity, etc., of its immediate proximity (the area within its sensing range). For the purpose of sensing an area of interest, there are adequate number of fixed sensor nodes required to cover the entire region of interest. It implies that the number of fixed sensor nodes required to cover a given area will depend on the sensing range of the sensor as well as deployment strategies employed. It is assumed that the sensors to be mobile within the region of surveillance, can be mounted on moving bodies like robots or vehicle. Therefore, in our scheme, the surveillance time period determines the number of sensor nodes required to be deployed in the region of interest. The proposed scheme comprises of three algorithms namely: Hexagonalization, Clustering, and Scheduling, The first algorithm partitions the coverage area into fixed sized hexagons that approximate the sensing range (cell) of individual sensor node. The clustering algorithm groups the cells into clusters, each of which will be covered by a single sensor node. The later determines a schedule for each sensor to serve its respective cluster. Each sensor node traverses all the cells belonging to the cluster assigned to it by oscillating between the first and the last cell for the duration of its life time. Simulation results show that our scheme provides full coverage within a given period of time using few sensors with minimum movement, less power consumption, and relatively less infrastructure cost.

Keywords: Sensor Network, Graph Theory, MSN, Communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
1336 An Analysis of Blackouts for Electric Power Transmission Systems

Authors: Karamitsos Ioannis, Orfanidis Konstantinos

Abstract:

In this paper an analysis of blackouts in electric power transmission systems is implemented using a model and studied in simple networks with a regular topology. The proposed model describes load demand and network improvements evolving on a slow timescale as well as the fast dynamics of cascading overloads and outages.

Keywords: Blackout, Generator, Load, Power Load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
1335 Non-Revenue Water Management in Palestine

Authors: Samah Jawad Jabari

Abstract:

Water is the most important and valuable resource not only for human life but also for all living things on the planet. The water supply utilities should fulfill the water requirement quantitatively and qualitatively. Drinking water systems are exposed to both natural (hurricanes and flood) and manmade hazards (risks) that are common in Palestine. Non-Revenue Water (NRW) is a manmade risk which remains a major concern in Palestine, as the NRW levels are estimated to be at a high level. In this research, Hebron city water distribution network was taken as a case study to estimate and audit the NRW levels. The research also investigated the state of the existing water distribution system in the study area by investigating the water losses and obtained more information on NRW prevention and management practices. Data and information have been collected from the Palestinian Water Authority (PWA) and Hebron Municipality (HM) archive. In addition to that, a questionnaire has been designed and administered by the researcher in order to collect the necessary data for water auditing. The questionnaire also assessed the views of stakeholder in PWA and HM (staff) on the current status of the NRW in the Hebron water distribution system. The important result obtained by this research shows that NRW in Hebron city was high and in excess of 30%. The main factors that contribute to NRW were the inaccuracies in billing volumes, unauthorized consumption, and the method of estimating consumptions through faulty meters. Policy for NRW reduction is available in Palestine; however, it is clear that the number of qualified staff available to carry out the activities related to leak detection is low, and that there is a lack of appropriate technologies to reduce water losses and undertake sufficient system maintenance, which needs to be improved to enhance the performance of the network and decrease the level of NRW losses.

Keywords: Non-revenue water, water auditing, leak detection, water meters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110
1334 Computer Aided Detection on Mammography

Authors: Giovanni Luca Masala

Abstract:

A typical definition of the Computer Aided Diagnosis (CAD), found in literature, can be: A diagnosis made by a radiologist using the output of a computerized scheme for automated image analysis as a diagnostic aid. Often it is possible to find the expression Computer Aided Detection (CAD or CADe): this definition emphasizes the intent of CAD to support rather than substitute the human observer in the analysis of radiographic images. In this article we will illustrate the application of CAD systems and the aim of these definitions. Commercially available CAD systems use computerized algorithms for identifying suspicious regions of interest. In this paper are described the general CAD systems as an expert system constituted of the following components: segmentation / detection, feature extraction, and classification / decision making. As example, in this work is shown the realization of a Computer- Aided Detection system that is able to assist the radiologist in identifying types of mammary tumor lesions. Furthermore this prototype of station uses a GRID configuration to work on a large distributed database of digitized mammographic images.

Keywords: Computer Aided Detection, Computer Aided Diagnosis, mammography, GRID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931