Search results for: multimedia learning tools
777 Reconfigurable Autonomous Mini Robot Design using CPLD's
Authors: Aditya K, Dinesh P, Ramesh Bhakthavatchalu
Abstract:
This paper explains a project based learning method where autonomous mini-robots are developed for research, education and entertainment purposes. In case of remote systems wireless sensors are developed in critical areas, which would collect data at specific time intervals, send the data to the central wireless node based on certain preferred information would make decisions to turn on or off a switch or control unit. Such information transfers hardly sums up to a few bytes and hence low data rates would suffice for such implementations. As a robot is a multidisciplinary platform, the interfacing issues involved are discussed in this paper. The paper is mainly focused on power supply, grounding and decoupling issues.
Keywords: CPLD, power supply, decoupling, grounding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910776 Emotional, Behavioural and Social Development: Modality of Hierarchy of Needs in Supporting Parents with Special Needs
Authors: Fadzilah Abdul Rahman
Abstract:
Emotional development is developed between the parents and their child. Behavioural development is also developed between the parents and their child. Social Development is how parents can help their special needs child to adapt to society and to face challenges. In promoting a lifelong learning mindset, enhancing skill sets and readiness to face challenges, parents would be able to counter balance these challenges during their care giving process and better manage their expectations through understanding the hierarchy of needs modality towards a positive attitude, and in turn, improve their quality of life and participation in society. This paper aims to demonstrate how the hierarchy of needs can be applied in various situations of caregiving for parents with a special needs child.
Keywords: Hierarchy of needs, parents, special needs, care-giving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289775 Methodology: A Review in Modelling and Predictability of Embankment in Soft Ground
Authors: Bhim Kumar Dahal
Abstract:
Transportation network development in the developing country is in rapid pace. The majority of the network belongs to railway and expressway which passes through diverse topography, landform and geological conditions despite the avoidance principle during route selection. Construction of such networks demand many low to high embankment which required improvement in the foundation soil. This paper is mainly focused on the various advanced ground improvement techniques used to improve the soft soil, modelling approach and its predictability for embankments construction. The ground improvement techniques can be broadly classified in to three groups i.e. densification group, drainage and consolidation group and reinforcement group which are discussed with some case studies. Various methods were used in modelling of the embankments from simple 1-dimensional to complex 3-dimensional model using variety of constitutive models. However, the reliability of the predictions is not found systematically improved with the level of sophistication. And sometimes the predictions are deviated more than 60% to the monitored value besides using same level of erudition. This deviation is found mainly due to the selection of constitutive model, assumptions made during different stages, deviation in the selection of model parameters and simplification during physical modelling of the ground condition. This deviation can be reduced by using optimization process, optimization tools and sensitivity analysis of the model parameters which will guide to select the appropriate model parameters.
Keywords: Embankment, ground improvement, modelling, model prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 950774 Gesture Recognition by Data Fusion of Time-of-Flight and Color Cameras
Authors: Piercarlo Dondi, Luca Lombardi, Marco Porta
Abstract:
In the last years numerous applications of Human- Computer Interaction have exploited the capabilities of Time-of- Flight cameras for achieving more and more comfortable and precise interactions. In particular, gesture recognition is one of the most active fields. This work presents a new method for interacting with a virtual object in a 3D space. Our approach is based on the fusion of depth data, supplied by a ToF camera, with color information, supplied by a HD webcam. The hand detection procedure does not require any learning phase and is able to concurrently manage gestures of two hands. The system is robust to the presence in the scene of other objects or people, thanks to the use of the Kalman filter for maintaining the tracking of the hands.Keywords: Gesture recognition, human-computer interaction, Time-of-Flight camera.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939773 Prone Positioning and Clinical Outcomes of Mechanically Ventilated Patients with Severe Acute Respiratory Distress Syndrome
Authors: Maha Salah Abdullah Ismail, Mahmoud M. Alsagheir, Mohammed Salah Abd Allah
Abstract:
Acute respiratory distress syndrome (ARDS) is characterized by permeability pulmonary edema and refractory hypoxemia. Lung-protective ventilation is still the key of better outcome in ARDS. Prone position reduces the trans-pulmonary pressure gradient, recruiting collapsed regions of the lung without increasing airway pressure or hyperinflation. Prone ventilation showed improved oxygenation and improved outcomes in severe hypoxemic patients with ARDS. This study evaluates the effect of prone positioning on mechanically ventilated patients with ARDS. A quasi-experimental design was carried out at Critical Care Units, on 60 patients. Two tools were utilized to collect data; Socio demographic, medical and clinical outcomes data sheet. Results of the present study indicated that prone position improves oxygenation in patients with severe respiratory distress syndrome. The study recommended that use prone position in patients with severe ARDS, as early as possible and for long sessions. Also, replication of this study on larger probability sample at the different geographical location is highly recommended.
Keywords: Acute respiratory distress syndrome, Critical care, Mechanical ventilation and Prone position.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180772 System Module for Student Idol
Authors: M. S. Roslina, A. Noraziah
Abstract:
Malaysia government had been trying hard in order to find the most efficient methods in learning. However, it is hard to actually access and evaluate students whom will then be called an excellent student. It is because in our realties student who excellent is only excel in academic. This evaluation becomes a problem because it not balances in our real life interm of to get an excellent student in whole area in their involvement of curiculum and cocuriculum. To overcome this scenario, we designed a module for Student Idol to evaluate student through three categories which are academic, co-curiculum and leadership. All the categories have their own merit point. Using this method, student will be evaluated more accurate compared to the previously. So, teacher can easily evaluate their student without having any emotion factor, relation factor and others. As conclusion this system module will helps the development of student evaluation more accurate and valid in Student Idol.Keywords: Evaluation, curiculum, co-curriculum, idol, systemmodule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444771 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time
Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma
Abstract:
Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.
Keywords: Multiclass classification, convolution neural network, OpenCV, Data Augmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 812770 Antibody-Conjugated Nontoxic Arginine-Doped Fe3O4 Nanoparticles for Magnetic Circulating Tumor Cells Separation
Authors: F. Kashanian, M. M. Masoudi, A. Akbari, A. Shamloo, M. R. Zand, S. S. Salehi
Abstract:
Nano-sized materials present new opportunities in biology and medicine and they are used as biomedical tools for investigation, separation of molecules and cells. To achieve more effective cancer therapy, it is essential to select cancer cells exactly. This research suggests that using the antibody-functionalized nontoxic Arginine-doped magnetic nanoparticles (A-MNPs), has been prosperous in detection, capture, and magnetic separation of circulating tumor cells (CTCs) in tumor tissue. In this study, A-MNPs were synthesized via a simple precipitation reaction and directly immobilized Ep-CAM EBA-1 antibodies over superparamagnetic A-MNPs for Mucin BCA-225 in breast cancer cell. The samples were characterized by vibrating sample magnetometer (VSM), FT-IR spectroscopy, Tunneling Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These antibody-functionalized nontoxic A-MNPs were used to capture breast cancer cell. Through employing a strong permanent magnet, the magnetic separation was achieved within a few seconds. Antibody-Conjugated nontoxic Arginine-doped Fe3O4 nanoparticles have the potential for the future study to capture CTCs which are released from tumor tissue and for drug delivery, and these results demonstrate that the antibody-conjugated A-MNPs can be used in magnetic hyperthermia techniques for cancer treatment.Keywords: Tumor tissue, antibody, magnetic nanoparticle, CTCs capturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1087769 Automated Java Testing: JUnit versus AspectJ
Authors: Manish Jain, Dinesh Gopalani
Abstract:
Growing dependency of mankind on software technology increases the need for thorough testing of the software applications and automated testing techniques that support testing activities. We have outlined our testing strategy for performing various types of automated testing of Java applications using AspectJ which has become the de-facto standard for Aspect Oriented Programming (AOP). Likewise JUnit, a unit testing framework is the most popular Java testing tool. In this paper, we have evaluated our proposed AOP approach for automated testing and JUnit on various parameters. First we have provided the similarity between the two approaches and then we have done a detailed comparison of the two testing techniques on factors like lines of testing code, learning curve, testing of private members etc. We established that our AOP testing approach using AspectJ has got several advantages and is thus particularly more effective than JUnit.Keywords: Aspect oriented programming, AspectJ, Aspects, JUnit, software testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905768 Effect on the Performance of the Nano-Particulate Graphite Lubricant in the Turning of AISI 1040 Steel under Variable Machining Conditions
Authors: S. Srikiran, Dharmala Venkata Padmaja, P. N. L. Pavani, R. Pola Rao, K. Ramji
Abstract:
Technological advancements in the development of cutting tools and coolant/lubricant chemistry have enhanced the machining capabilities of hard materials under higher machining conditions. Generation of high temperatures at the cutting zone during machining is one of the most important and pertinent problems which adversely affect the tool life and surface finish of the machined components. Generally, cutting fluids and solid lubricants are used to overcome the problem of heat generation, which is not effectively addressing the problems. With technological advancements in the field of tribology, nano-level particulate solid lubricants are being used nowadays in machining operations, especially in the areas of turning and grinding. The present investigation analyses the effect of using nano-particulate graphite powder as lubricant in the turning of AISI 1040 steel under variable machining conditions and to study its effect on cutting forces, tool temperature and surface roughness of the machined component. Experiments revealed that the increase in cutting forces and tool temperature resulting in the decrease of surface quality with the decrease in the size of nano-particulate graphite powder as lubricant.Keywords: Solid lubricant, graphite, minimum quantity lubrication, nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942767 Developing Research Involving Different Species: Opportunities and Empirical Foundations
Authors: A. V. Varfolomeeva, N. S. Tkachenko, A. G. Tishchenko
Abstract:
In this study, we addressed the problem of weak validity, implausible results, and inaccurate reporting in psychological research on different species. The theoretical basis of the study was the systems-evolutionary approach (SEA). We assumed that the root of the problem is the values and attitudes of the researchers (in particular anthropomorphism and anthropocentrism). The first aim of the study was the formulation of a research design that avoids this problem. Based on a literature review, we concluded that such design, amongst other things, should include methodics with playful components. The second aim was to conduct a series of studies on the differences in the formation of instrumental skill in rats raised and housed in different environments. As a result, we revealed that there are contradictions between some of the statements of SEA, so that it is not possible to choose one of the alternative hypotheses. We suggested that in order to get out of this problem, it is necessary to modify these provisions by aligning them with the attitude of multicentrism.
Keywords: epistemological attitudes, experimental design, validity, psychological structure, learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423766 Classification of Prostate Cell Nuclei using Artificial Neural Network Methods
Authors: M. Sinecen, M. Makinacı
Abstract:
The purpose of this paper is to assess the value of neural networks for classification of cancer and noncancer prostate cells. Gauss Markov Random Fields, Fourier entropy and wavelet average deviation features are calculated from 80 noncancer and 80 cancer prostate cell nuclei. For classification, artificial neural network techniques which are multilayer perceptron, radial basis function and learning vector quantization are used. Two methods are utilized for multilayer perceptron. First method has single hidden layer and between 3-15 nodes, second method has two hidden layer and each layer has between 3-15 nodes. Overall classification rate of 86.88% is achieved.
Keywords: Artificial neural networks, texture classification, cancer diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589765 The Labeled Classification and its Application
Authors: M. Nemissi, H. Seridi, H. Akdag
Abstract:
This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.Keywords: Artificial neural networks, Fusion of neural networkfuzzysystems, Learning theory, Pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409764 Rapid Data Acquisition System for Complex Algorithm Testing in Plastic Molding Industry
Authors: A. Tellaeche, R. Arana
Abstract:
Injection molding is a very complicated process to monitor and control. With its high complexity and many process parameters, the optimization of these systems is a very challenging problem. To meet the requirements and costs demanded by the market, there has been an intense development and research with the aim to maintain the process under control. This paper outlines the latest advances in necessary algorithms for plastic injection process and monitoring, and also a flexible data acquisition system that allows rapid implementation of complex algorithms to assess their correct performance and can be integrated in the quality control process. This is the main topic of this paper. Finally, to demonstrate the performance achieved by this combination, a real case of use is presented.
Keywords: Plastic injection, machine learning, rapid complex algorithm prototyping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122763 Production Planning for Animal Food Industry under Demand Uncertainty
Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut
Abstract:
This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.
Keywords: Animal food, Stochastic linear programming, Production planning, Demand Uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914762 An Evaluation of the Opportunities and Challenges of Wi-Fi Adoption in Malaysian Institutions
Authors: Subrahmanyam Kodukula, Nurbiya Maimaiti
Abstract:
There have been many variations of technologies that helped educators in teaching & learning. From the past research it is evident that Information Technology significantly increases student participation and interactivity in the classrooms. This research started with a aim to find whether adoption of Wi-Fi environment by Malaysian Higher Educational Institutions (HEI) can benefit students and staff equally. The study was carried out in HEI-s of Klang Valley, Malaysia and the data is gathered through paper based surveys. A sample size of 237 units were randomly selected from 5 higher educational institutions in the Klang Valley using the Stratified Random sampling method and from the analysis of the data, it was found that the implementation of wireless technologies in HEIs have created lot of opportunities and also challenges.
Keywords: Wired Technologies, Wireless Classroom, HEI, Dense User Environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303761 6D Posture Estimation of Road Vehicles from Color Images
Authors: Yoshimoto Kurihara, Tad Gonsalves
Abstract:
Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.
Keywords: AlexNet, Deep learning, image recognition, 6D posture estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588760 Initial Experiences of the First Version of Slovene Sustainable Building Indicators That Are Based on Level(s)
Authors: Sabina Jordan, Miha Tomšič, Friderik Knez, Marjana Šijanec Zavrl
Abstract:
To determine the possibilities for the implementation of sustainable building indicators in Slovenia, testing of the first version of the indicators, developed in the CARE4CLIMATE project and based on the EU Level(s) framework, was carried out in 2022. Invited and interested stakeholders of the construction process were provided with video content and instructions on the Slovenian e-platform of sustainable building indicators. In addition, workshops and lectures with individual subjects were also performed. The final phase of the training and testing procedure included a questionnaire, which was used to obtain information about the participants' opinions regarding the indicators. The analysis of the results of the testing, which was focused on level 2, confirmed the key preliminary finding of the development group, namely that currently, due to the lack of certain knowledge, data, and tools, all indicators for this level are not yet feasible in practice. The research also highlighted the greater need for training and specialization of experts in this field. At the same time, it showed that the testing of the first version itself was a big challenge: only 30 experts fully participated and filled out the online questionnaire. This number seems alarmingly low at first glance, but compared to level(s) testing in the EU member states, it is much more than 50 times higher. However, for the further execution of the indicators in Slovenia, it will therefore be necessary to invest a lot of effort and engagement. It is likely that state support will also be needed, for example, in the form of financial mechanisms or incentives and/or legislative background.
Keywords: Sustainability, building indicator, project CARE4CLIMATE, alpha version SLO kTG, Level(s), sustainable construction stakeholders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197759 Evolutionary Feature Selection for Text Documents using the SVM
Authors: Daniel I. Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, we present three feature selection methods: Information Gain, Support Vector Machine feature selection called (SVM_FS) and Genetic Algorithm with SVM (called GA_SVM). We show that the best results were obtained with GA_SVM method for a relatively small dimension of the feature vector.Keywords: Feature Selection, Learning with Kernels, Support Vector Machine, Genetic Algorithm, and Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705758 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation
Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez
Abstract:
Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.
Keywords: Network Intrusion Detection, Machine learning, Artificial Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077757 Feature Selection Methods for an Improved SVM Classifier
Authors: Daniel Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, three feature selection methods are evaluated: Random Selection, Information Gain (IG) and Support Vector Machine feature selection (called SVM_FS). We show that the best results were obtained with SVM_FS method for a relatively small dimension of the feature vector. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).Keywords: Feature Selection, Learning with Kernels, SupportVector Machine, and Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826756 Objects Extraction by Cooperating Optical Flow, Edge Detection and Region Growing Procedures
Abstract:
The image segmentation method described in this paper has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. This method solves the problem of whole objects extraction from background and it produces images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The segmentation algorithm is based on the cooperation among an optical flow evaluation method, edge detection and region growing procedures. The optical flow estimator belongs to the class of differential methods. It permits to detect motions ranging from a fraction of a pixel to a few pixels per frame, achieving good results in presence of noise without the need of a filtering pre-processing stage and includes a specialised model for moving object detection. The first task of the presented method exploits the cues from motion analysis for moving areas detection. Objects and background are then refined using respectively edge detection and seeded region growing procedures. All the tasks are iteratively performed until objects and background are completely resolved. The method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.Keywords: Image Segmentation, Motion Detection, Object Extraction, Optical Flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755755 Prediction of Location of High Energy Shower Cores using Artificial Neural Networks
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Artificial Neural Network (ANN)s can be modeled for High Energy Particle analysis with special emphasis on shower core location. The work describes the use of an ANN based system which has been configured to predict locations of cores of showers in the range 1010.5 to 1020.5 eV. The system receives density values as inputs and generates coordinates of shower events recorded for values captured by 20 core positions and 80 detectors in an area of 100 meters. Twenty ANNs are trained for the purpose and the positions of shower events optimized by using cooperative ANN learning. The results derived with variations of input upto 50% show success rates in the range of 90s.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305754 Vision Based People Tracking System
Authors: Boukerch Haroun, Luo Qing Sheng, Li Hua Shi, Boukraa Sebti
Abstract:
In this paper we present the design and the implementation of a target tracking system where the target is set to be a moving person in a video sequence. The system can be applied easily as a vision system for mobile robot. The system is composed of two major parts the first is the detection of the person in the video frame using the SVM learning machine based on the “HOG” descriptors. The second part is the tracking of a moving person it’s done by using a combination of the Kalman filter and a modified version of the Camshift tracking algorithm by adding the target motion feature to the color feature, the experimental results had shown that the new algorithm had overcame the traditional Camshift algorithm in robustness and in case of occlusion.
Keywords: Camshift Algorithm, Computer Vision, Kalman Filter, Object tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332753 Extraction of Data from Web Pages: A Vision Based Approach
Authors: P. S. Hiremath, Siddu P. Algur
Abstract:
With the explosive growth of information sources available on the World Wide Web, it has become increasingly difficult to identify the relevant pieces of information, since web pages are often cluttered with irrelevant content like advertisements, navigation-panels, copyright notices etc., surrounding the main content of the web page. Hence, tools for the mining of data regions, data records and data items need to be developed in order to provide value-added services. Currently available automatic techniques to mine data regions from web pages are still unsatisfactory because of their poor performance and tag-dependence. In this paper a novel method to extract data items from the web pages automatically is proposed. It comprises of two steps: (1) Identification and Extraction of the data regions based on visual clues information. (2) Identification of data records and extraction of data items from a data region. For step1, a novel and more effective method is proposed based on visual clues, which finds the data regions formed by all types of tags using visual clues. For step2 a more effective method namely, Extraction of Data Items from web Pages (EDIP), is adopted to mine data items. The EDIP technique is a list-based approach in which the list is a linear data structure. The proposed technique is able to mine the non-contiguous data records and can correctly identify data regions, irrespective of the type of tag in which it is bound. Our experimental results show that the proposed technique performs better than the existing techniques.
Keywords: Web data records, web data regions, web mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900752 A CFD Study of Sensitive Parameters Effect on the Combustion in a High Velocity Oxygen-Fuel Thermal Spray Gun
Authors: S. Hossainpour, A. R. Binesh
Abstract:
High-velocity oxygen fuel (HVOF) thermal spraying uses a combustion process to heat the gas flow and coating material. A computational fluid dynamics (CFD) model has been developed to predict gas dynamic behavior in a HVOF thermal spray gun in which premixed oxygen and propane are burnt in a combustion chamber linked to a parallel-sided nozzle. The CFD analysis is applied to investigate axisymmetric, steady-state, turbulent, compressible, chemically reacting, subsonic and supersonic flow inside and outside the gun. The gas velocity, temperature, pressure and Mach number distributions are presented for various locations inside and outside the gun. The calculated results show that the most sensitive parameters affecting the process are fuel-to-oxygen gas ratio and total gas flow rate. Gas dynamic behavior along the centerline of the gun depends on both total gas flow rate and fuel-to-oxygen gas ratio. The numerical simulations show that the axial gas velocity and Mach number distribution depend on both flow rate and ratio; the highest velocity is achieved at the higher flow rate and most fuel-rich ratio. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the HVOF system design, optimization and performance analysis.Keywords: HVOF, CFD, gas dynamics, thermal spray, combustion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158751 Digital Twin of Real Electrical Distribution System with Real Time Recursive Load Flow Calculation and State Estimation
Authors: Anosh Arshad Sundhu, Francesco Giordano, Giacomo Della Croce, Maurizio Arnone
Abstract:
Digital Twin (DT) is a technology that generates a virtual representation of a physical system or process, enabling real-time monitoring, analysis, and simulation. DT of an Electrical Distribution System (EDS) can perform online analysis by integrating the static and real-time data in order to show the current grid status and predictions about the future status to the Distribution System Operator (DSO), producers and consumers. DT technology for EDS also offers the opportunity to DSO to test hypothetical scenarios. This paper discusses the development of a DT of an EDS by Smart Grid Controller (SGC) application, which is developed using open-source libraries and languages. The developed application can be integrated with Supervisory Control and Data Acquisition System (SCADA) of any EDS for creating the DT. The paper shows the performance of developed tools inside the application, tested on real EDS for grid observability, Smart Recursive Load Flow (SRLF) calculation and state estimation of loads in MV feeders.
Keywords: Digital Twin, Distribution System Operator, Electrical Distribution System, Smart Grid Controller, Supervisory Control and Data Acquisition System, Smart Recursive Load Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 253750 Children’s Literature in Primary School: An Opportunity to Develop Soft Skills
Abstract:
Emotions are manifestations of everything that happens around us, influencing, consequently, our actions. People experience emotions continuously when socialize with friends, when facing complex situations, and when at school, among many other situations. Although the influence of emotions in the teaching and learning process is nothing new, its study in the academic field has been more popular in recent years, distinguishing between positive (e.g., enjoyment and curiosity) and negative emotions (e.g., boredom and frustration). There is no doubt that emotions play an important role in the students’ learning process since the development of knowledge involves thoughts, actions, and emotions. Nowadays, one of the most significant changes in acquiring knowledge, accessing information, and communicating is the way we do it through technological and digital resources. Faced with an increasingly frequent use of technological or digital means with different purposes, whether in the acquisition of knowledge or in communicating with others, the emotions involved in these processes change naturally. The speed with which the Internet provides information reduces the excitement for searching for the answer, the gratification of discovering something through our own effort, the patience, the capacity for effort, and resilience. Thus, technological and digital devices are bringing changes to the emotional domain. For this reason and others, it is essential to educate children from an early age to understand that it is not possible to have everything with just one click and to deal with negative emotions. Currently, many curriculum guidelines highlight the importance of the development of so-called soft skills, in which the emotional domain is present, in academic contexts. Within the scope of the Portuguese reality, the “Students’ profile by the end of compulsory schooling” and the “Health education reference” also emphasize the importance of emotions in education. There are several resources to stimulate good emotions in articulation with cognitive development. One of the most predictable and not very used resources in the most diverse areas of knowledge after pre-school education is the literature. Due to its characteristics, in the narrative or in the illustrations, literature provides the reader with a journey full of emotions. On the other hand, literature makes it possible to establish bridges between narrative and different areas of knowledge, reconciling the cognitive and emotional domains. This study results from the presentation session of a children's book, entitled “From the Outside to Inside and from the Inside to Outside”, to children attending the 2nd, 3rd, and 4th years of basic education in the Portuguese education system. In this book, rationale and emotion are in constant dialogue, so in this session, based on excerpts from the book dramatized by the authors, some questions were asked to the children in a large group, with an aim to explore their perception regarding certain emotions or events that trigger them. According to the aim of this study, qualitative, descriptive, and interpretative research was carried out based on participant observation and audio records.
Keywords: Emotions, children’s literature, basic education, soft skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 347749 Edit Distance Algorithm to Increase Storage Efficiency of Javanese Corpora
Authors: Aji P. Wibawa, Andrew Nafalski, Neil Murray, Wayan F. Mahmudy
Abstract:
Since the one-to-one word translator does not have the facility to translate pragmatic aspects of Javanese, the parallel text alignment model described uses a phrase pair combination. The algorithm aligns the parallel text automatically from the beginning to the end of each sentence. Even though the results of the phrase pair combination outperform the previous algorithm, it is still inefficient. Recording all possible combinations consume more space in the database and time consuming. The original algorithm is modified by applying the edit distance coefficient to improve the data-storage efficiency. As a result, the data-storage consumption is 90% reduced as well as its learning period (42s).Keywords: edit distance coefficient, Javanese, parallel text alignment, phrase pair combination
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727748 Hydrological Characterization of a Watershed for Streamflow Prediction
Authors: Oseni Taiwo Amoo, Bloodless Dzwairo
Abstract:
In this paper, we extend the versatility and usefulness of GIS as a methodology for any river basin hydrologic characteristics analysis (HCA). The Gurara River basin located in North-Central Nigeria is presented in this study. It is an on-going research using spatial Digital Elevation Model (DEM) and Arc-Hydro tools to take inventory of the basin characteristics in order to predict water abstraction quantification on streamflow regime. One of the main concerns of hydrological modelling is the quantification of runoff from rainstorm events. In practice, the soil conservation service curve (SCS) method and the Conventional procedure called rational technique are still generally used these traditional hydrological lumped models convert statistical properties of rainfall in river basin to observed runoff and hydrograph. However, the models give little or no information about spatially dispersed information on rainfall and basin physical characteristics. Therefore, this paper synthesizes morphometric parameters in generating runoff. The expected results of the basin characteristics such as size, area, shape, slope of the watershed and stream distribution network analysis could be useful in estimating streamflow discharge. Water resources managers and irrigation farmers could utilize the tool for determining net return from available scarce water resources, where past data records are sparse for the aspect of land and climate.
Keywords: Hydrological characteristic, land and climate, runoff discharge, streamflow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458