Search results for: active learning.
526 Social Media: The Major Trigger of Online and Offline Political Activism
Authors: Chan Eang Teng, Tang Mui Joo
Abstract:
With the viral factor on social media, the sense of persuasion is generated by repetition and popularity. When users’ interest is captured, political awareness increases to spark political enthusiasm, but, the level of user’s political participation and political attitude of those active users is still questionable. An online survey on 250 youth and in-depth interview on two politicians are conducted to answer the main question in this paper. The result shows that Facebook significantly increases political awareness among youths. Social media may not be the major trigger to political activism among youths as most respondents opined that they would still vote without Facebook. Other factors could be political campaigning, political climate, age, peer pressure or others. Finding also shows that majority of respondents did not participate in online political debates or political groups. Many also wondered if the social media was the main power switch that triggers the political influx among young voters. The research finding is significant to understand how the new media, Facebook, has reshaped the political landscape in Malaysia, creating the Social Media Election that changed the rules of the political game. However, research finding does not support the ideal notion that the social media is the major trigger to youth’s political activism. This research outcome has exposed the flaws of the Social Media Election. It has revealed the less optimistic side of youth political activism. Unfortunately, results fall short of the idealistic belief that the social media have given rise to political activism among youths in the 13th General Election in Malaysia. The research outcome also highlights an important lesson for the democratic discourse of Malaysia which is making informed and educated decisions takes more commitment, proactive and objective attitude.Keywords: Social media, political participation, political activism, democracy, political communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2629525 Struggles for Integration of the Technologies into Learning Environment in Turkey
Authors: Hasan Karal, Yasemin Aydin, Ömer Faruk Ursavas
Abstract:
Primary studies are being carried out in Turkey for expanding information and communication technologies (ICT) aided instruction activities. Subject of the present study is to identify whether those studies achieved their goals in the application. Information technologies (IT) formative teachers in the primary schools, and academicians in the faculties of education were interviewed to investigate the process and results of implementing computer-aided instruction methods whose basis is strengthened in theory. Analysis of the results gained from two separate surveys demonstrated that capability of the teachers in elementary education institutions for carrying into effect computer-aided instruction and technical infrastructure has not been established for computer-aided instruction practices yet. Prospective teachers must be well-equipped in ICT to duly fulfill requirements of modern education and also must be self-confident. Finally, scope and intensity of the courses given in connection with teaching of the ICT in faculties of education needs to be revised.Keywords: Information and Communication Technologies, Teacher, Education
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639524 Development of Cross Curricular Competences in University Classrooms - Public Speaking
Authors: M. T. Becerra, F. Martín, P. Gutiérrez, S. Cubo, E. Iglesias, A. A. Sáenz del Castillo, P. Cañamero
Abstract:
The consolidation of the European Higher Education Area (EHEA) in universities has led to significant changes in student training. This paper, part of a Teaching Innovation Project, starts from new training requirements that are fit within Undergraduate Thesis Project, a subject that culminate student learning. Undergraduate Thesis Project is current assessment system that weigh the student acquired training in university education. Students should develop a range of cross curricular competences such as public presentation of ideas, problems and solutions both orally and writing in Undergraduate Thesis Project. Specifically, we intend with our innovation proposal to provide resources that enable university students from Teacher Degree in Education Faculty of University of Extremadura (Spain) to develop the cross curricular competence of public speaking.
Keywords: Interaction, Public Speaking, Student, University.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900523 A New Approach for Effect Evaluation of Sediment Management
Authors: Jazaul Ikhsan, Masaharu Fujita
Abstract:
Safety, river environment, and sediment utilization are the elements of the target of sediment management. As a change in an element by sediment management, may affect the other two elements, and the priority among three elements depends on stakeholders. It is necessary to develop a method to evaluate the effect of sediment management on each element and an integrated evaluation method for socio-economic effect. In this study, taking Mount Merapi basin as an investigation field, the method for an active volcanic basin was developed. An integrated evaluation method for sediment management was discussed from a socio-economic point on safety, environment, and sediment utilization and a case study of sediment management was evaluated by means of this method. To evaluate the effect of sediment management, some parameters on safety, utilization, and environment have been introduced. From a utilization point of view, job opportunity, additional income of local people, and tax income to local government were used to evaluate the effectiveness of sediment management. The risk degree of river infrastructure was used to describe the effect of sediment management on a safety aspect. To evaluate the effects of sediment management on environment, the mean diameter of grain size distribution of riverbed surface was used. On the coordinate system designating these elements, the direction of change in basin condition by sediment management can be predicted, so that the most preferable sediment management can be decided. The results indicate that the cases of sediment management tend to give the negative impacts on sediment utilization. However, these sediment managements will give positive impacts on safety and environment condition. Evaluation result from a social-economic point of view shows that the case study of sediment management reduces job opportunity and additional income for inhabitants as well as tax income for government. Therefore, it is necessary to make another policy for creating job opportunity for inhabitants to support these sediment managements.
Keywords: Merapi, sediment, management, evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445522 A New Technique for Solar Activity Forecasting Using Recurrent Elman Networks
Authors: Salvatore Marra, Francesco C. Morabito
Abstract:
In this paper we present an efficient approach for the prediction of two sunspot-related time series, namely the Yearly Sunspot Number and the IR5 Index, that are commonly used for monitoring solar activity. The method is based on exploiting partially recurrent Elman networks and it can be divided into three main steps: the first one consists in a “de-rectification" of the time series under study in order to obtain a new time series whose appearance, similar to a sum of sinusoids, can be modelled by our neural networks much better than the original dataset. After that, we normalize the derectified data so that they have zero mean and unity standard deviation and, finally, train an Elman network with only one input, a recurrent hidden layer and one output using a back-propagation algorithm with variable learning rate and momentum. The achieved results have shown the efficiency of this approach that, although very simple, can perform better than most of the existing solar activity forecasting methods.
Keywords: Elman neural networks, sunspot, solar activity, time series prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854521 Numerical Study of Flapping-Wing Flight of Hummingbird Hawkmoth during Hovering: Longitudinal Dynamics
Authors: Yao Jie, Yeo Khoon Seng
Abstract:
In recent decades, flapping wing aerodynamics has attracted great interest. Understanding the physics of biological flyers such as birds and insects can help improve the performance of micro air vehicles. The present research focuses on the aerodynamics of insect-like flapping wing flight with the approach of numerical computation. Insect model of hawkmoth is adopted in the numerical study with rigid wing assumption currently. The numerical model integrates the computational fluid dynamics of the flow and active control of wing kinematics to achieve stable flight. The computation grid is a hybrid consisting of background Cartesian nodes and clouds of mesh-free grids around immersed boundaries. The generalized finite difference method is used in conjunction with single value decomposition (SVD-GFD) in computational fluid dynamics solver to study the dynamics of a free hovering hummingbird hawkmoth. The longitudinal dynamics of the hovering flight is governed by three control parameters, i.e., wing plane angle, mean positional angle and wing beating frequency. In present work, a PID controller works out the appropriate control parameters with the insect motion as input. The controller is adjusted to acquire desired maneuvering of the insect flight. The numerical scheme in present study is proven to be accurate and stable to simulate the flight of the hummingbird hawkmoth, which has relatively high Reynolds number. The PID controller is responsive to provide feedback to the wing kinematics during the hovering flight. The simulated hovering flight agrees well with the real insect flight. The present numerical study offers a promising route to investigate the free flight aerodynamics of insects, which could overcome some of the limitations of experiments.
Keywords: Aerodynamics, flight control, computational fluid dynamics, flapping-wing flight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451520 Portfolio Management: A Fuzzy Set Based Approach to Monitoring Size to Maximize Return and Minimize Risk
Authors: Margaret F. Shipley
Abstract:
Fuzzy logic can be used when knowledge is incomplete or when ambiguity of data exists. The purpose of this paper is to propose a proactive fuzzy set- based model for reacting to the risk inherent in investment activities relative to a complete view of portfolio management. Fuzzy rules are given where, depending on the antecedents, the portfolio size may be slightly or significantly decreased or increased. The decision maker considers acceptable bounds on the proportion of acceptable risk and return. The Fuzzy Controller model allows learning to be achieved as 1) the firing strength of each rule is measured, 2) fuzzy output allows rules to be updated, and 3) new actions are recommended as the system continues to loop. An extension is given to the fuzzy controller that evaluates potential financial loss before adjusting the portfolio. An application is presented that illustrates the algorithm and extension developed in the paper.Keywords: Portfolio Management, Financial Market Monitoring, Fuzzy Controller, Fuzzy Logic,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853519 Influence of Noise on the Inference of Dynamic Bayesian Networks from Short Time Series
Authors: Frank Emmert Streib, Matthias Dehmer, Gökhan H. Bakır, Max Mühlhauser
Abstract:
In this paper we investigate the influence of external noise on the inference of network structures. The purpose of our simulations is to gain insights in the experimental design of microarray experiments to infer, e.g., transcription regulatory networks from microarray experiments. Here external noise means, that the dynamics of the system under investigation, e.g., temporal changes of mRNA concentration, is affected by measurement errors. Additionally to external noise another problem occurs in the context of microarray experiments. Practically, it is not possible to monitor the mRNA concentration over an arbitrary long time period as demanded by the statistical methods used to learn the underlying network structure. For this reason, we use only short time series to make our simulations more biologically plausible.Keywords: Dynamic Bayesian networks, structure learning, gene networks, Markov chain Monte Carlo, microarray data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611518 EFL Learners- Perceptions of Computer-Mediated Communication (CMC) to Facilitate Communication in a Foreign Language
Authors: Lin, Huifen, Fang, Yueh-chiu
Abstract:
This study explores perceptions of English as a Foreign Language (EFL) learners on using computer mediated communication technology in their learner of English. The data consists of observations of both synchronous and asynchronous communication participants engaged in for over a period of 4 months, which included online, and offline communication protocols, open-ended interviews and reflection papers composed by participants. Content analysis of interview data and the written documents listed above, as well as, member check and triangulation techniques are the major data analysis strategies. The findings suggest that participants generally do not benefit from computer-mediated communication in terms of its effect in learning a foreign language. Participants regarded the nature of CMC as artificial, or pseudo communication that did not aid their authentic communicational skills in English. The results of this study sheds lights on insufficient and inconclusive findings, which most quantitative CMC studies previously generated.Keywords: computer-mediated communication, EFL, writing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2581517 ANN Models for Microstrip Line Synthesis and Analysis
Authors: Dr.K.Sri Rama Krishna, J.Lakshmi Narayana, Dr.L.Pratap Reddy
Abstract:
Microstrip lines, widely used for good reason, are broadband in frequency and provide circuits that are compact and light in weight. They are generally economical to produce since they are readily adaptable to hybrid and monolithic integrated circuit (IC) fabrication technologies at RF and microwave frequencies. Although, the existing EM simulation models used for the synthesis and analysis of microstrip lines are reasonably accurate, they are computationally intensive and time consuming. Neural networks recently gained attention as fast and flexible vehicles to microwave modeling, simulation and optimization. After learning and abstracting from microwave data, through a process called training, neural network models are used during microwave design to provide instant answers to the task learned.This paper presents simple and accurate ANN models for the synthesis and analysis of Microstrip lines to more accurately compute the characteristic parameters and the physical dimensions respectively for the required design specifications.Keywords: Neural Models, Algorithms, Microstrip Lines, Analysis, Synthesis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151516 Software Maintenance Severity Prediction with Soft Computing Approach
Authors: E. Ardil, Erdem Uçar, Parvinder S. Sandhu
Abstract:
As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done on time especially for the critical applications. In this paper, we have explored the different predictor models to NASA-s public domain defect dataset coded in Perl programming language. Different machine learning algorithms belonging to the different learner categories of the WEKA project including Mamdani Based Fuzzy Inference System and Neuro-fuzzy based system have been evaluated for the modeling of maintenance severity or impact of fault severity. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provides relatively better prediction accuracy as compared to other models and hence, can be used for the maintenance severity prediction of the software.Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, SoftwareFaults, Accuracy, MAE, RMSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581515 Analysis of Initial Entry-Level Technology Course Impacts on STEM Major Selection
Authors: Ethan Shafer, Timothy Graziano, Jay Fisher
Abstract:
This research seeks to answer whether first-year courses at institutions of higher learning can impact STEM major selection. Unlike many universities, an entry-level technology course (often referred to as CS0) is required for all United States Military Academy (USMA) students–regardless of major–in their first year of attendance. Students at the Academy choose their major at the end of their first year of studies. Through student responses to a multi-semester survey, this paper identifies a number of factors that potentially influence STEM major selection. Student demographic data, pre-existing exposure and access to technology, perceptions of STEM subjects, and initial desire for a STEM major are captured before and after taking a CS0 course. An analysis of factors that contribute to student perception of STEM and major selection are presented. This work provides recommendations and suggestions for institutions currently providing or looking to provide CS0-like courses to their students.
Keywords: STEM major, STEM, pedagogy, digital literacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210514 A Surrealist Play of Associations: Neoliberalism, Critical Pedagogy and Surrealism in Secondary English Language Arts
Authors: Stephanie Ho
Abstract:
This project utilizes principles derived from the Surrealist movement to prioritize creative and critical thinking in secondary English Language Arts (ELA). The implementation of Surrealist-style pedagogies within an ELA classroom will be rooted in critical, radical pedagogy, which addresses the injustices caused by economic-oriented educational systems. The use of critical pedagogy will enable the subversive artistic and political aims of Surrealism to be transmitted to a classroom context. Through aesthetic reading strategies, appreciative questioning and dialogue, students will actively critique the power dynamics which structure (and often restrict) their lives. Within the ELA domain, cost-effective approaches often replace the actual “arts” of ELA. This research will therefore explore how Surrealist-oriented pedagogies could restore imaginative freedom and deconstruct conceptual barriers (normative standards, curricular constraints, and status quo power relations) in secondary ELA. This research will also examine how Surrealism can be used as a political and pedagogical model to treat societal problems mirrored in ELA classrooms. The stakeholders are teachers, as they experience constant pressure within their practices. Similarly, students encounter rigorous, results-based pressures. These dynamics contribute to feelings of powerlessness, thus reinforcing a formulaic model of ELA. The ELA curriculum has potential to create laboratories for critical discussion and active movement towards social change. This proposed research strategy of Surrealist-oriented pedagogies could enable students to experiment with social issues and develop senses of agency and voice that reflect awareness of contemporary society while simultaneously building their ELA skills.
Keywords: Arts-informed pedagogies, language arts, literature, Surrealism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731513 Face Detection using Variance based Haar-Like feature and SVM
Authors: Cuong Nguyen Khac, Ju H. Park, Ho-Youl Jung
Abstract:
This paper proposes a new approach to perform the problem of real-time face detection. The proposed method combines primitive Haar-Like feature and variance value to construct a new feature, so-called Variance based Haar-Like feature. Face in image can be represented with a small quantity of features using this new feature. We used SVM instead of AdaBoost for training and classification. We made a database containing 5,000 face samples and 10,000 non-face samples extracted from real images for learning purposed. The 5,000 face samples contain many images which have many differences of light conditions. And experiments showed that face detection system using Variance based Haar-Like feature and SVM can be much more efficient than face detection system using primitive Haar-Like feature and AdaBoost. We tested our method on two Face databases and one Non-Face database. We have obtained 96.17% of correct detection rate on YaleB face database, which is higher 4.21% than that of using primitive Haar-Like feature and AdaBoost.Keywords: AdaBoost, Haar-Like feature, SVM, variance, Variance based Haar-Like feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3735512 Comparison of the Effectiveness of Communication between the Traditional Lecture and IELS
Authors: A. Althobaiti, M. Munro
Abstract:
Communication and effective information exchange within technology has become a crucial part of delivering knowledge to students during the learning process. It enables better understanding, builds trust and respect, and increases the sharing of knowledge between students. This paper examines the communication between undergraduate students and their lecturers during the traditional lecture and when using the Interactive Electronic Lecture System (IELS). The IELS is an application that offers a set of components which support the effective communication between students and their peers and between students and their lecturers. Moreover, this paper highlights communication skills such as sender, receiver, channel and feedback. It will show how the IELS creates a rich communication environment between its users and how they communicate effectively. To examine and assess the effectiveness of communication, an experiment was conducted on groups of users; students and lecturers. The first group communicated in the traditional lecture while the second group communicated by means of the IELS application. The results show that there was more effective communication between the second group than the first.
Keywords: Communication, effective information exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609511 The Code-Mixing of Japanese, English and Thai in Line Chat
Authors: Premvadee Na Nakornpanom
Abstract:
Code- mixing in spontaneous speech has been widely discussed, but not in virtual situations; especially in context of the third language learning students. Thus, this study is an attempt to explore the linguistic characteristics of the mixing of Japanese, English and Thai in a mobile Line chat room by students with their background of English as L2, Japanese as L3 and Thai as mother tongue. The result found that insertion of Thai content words is a very common linguistic phenomenon embedded with the other two languages in the sentences. As chatting is to be ‘relational’ or ‘interactional’, it affected the style of lexical choices to be speech-like, more personal and emotionally-related. A personal pronoun in Japanese is often mixed into the sentences. The Japanese sentence-final question particle か “ka” was added to the end of the sentence based on Thai grammar rules. Some unique characteristics were created while chatting.
Keywords: Code-mixing, Japanese, English, Thai, Line chat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3448510 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060509 Neuro-Fuzzy Network Based On Extended Kalman Filtering for Financial Time Series
Authors: Chokri Slim
Abstract:
The neural network's performance can be measured by efficiency and accuracy. The major disadvantages of neural network approach are that the generalization capability of neural networks is often significantly low, and it may take a very long time to tune the weights in the net to generate an accurate model for a highly complex and nonlinear systems. This paper presents a novel Neuro-fuzzy architecture based on Extended Kalman filter. To test the performance and applicability of the proposed neuro-fuzzy model, simulation study of nonlinear complex dynamic system is carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction of financial time series. A benchmark case studie is used to demonstrate that the proposed model is a superior neuro-fuzzy modeling technique.
Keywords: Neuro-fuzzy, Extended Kalman filter, nonlinear systems, financial time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012508 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.
Keywords: Bayesian, Forecast, Stock, BART.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734507 Probabilistic Bayesian Framework for Infrared Face Recognition
Authors: Moulay A. Akhloufi, Abdelhakim Bendada
Abstract:
Face recognition in the infrared spectrum has attracted a lot of interest in recent years. Many of the techniques used in infrared are based on their visible counterpart, especially linear techniques like PCA and LDA. In this work, we introduce a probabilistic Bayesian framework for face recognition in the infrared spectrum. In the infrared spectrum, variations can occur between face images of the same individual due to pose, metabolic, time changes, etc. Bayesian approaches permit to reduce intrapersonal variation, thus making them very interesting for infrared face recognition. This framework is compared with classical linear techniques. Non linear techniques we developed recently for infrared face recognition are also presented and compared to the Bayesian face recognition framework. A new approach for infrared face extraction based on SVM is introduced. Experimental results show that the Bayesian technique is promising and lead to interesting results in the infrared spectrum when a sufficient number of face images is used in an intrapersonal learning process.
Keywords: Face recognition, biometrics, probabilistic imageprocessing, infrared imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877506 Employment Promotion and Its Role in Counteracting Unemployment during the Financial Crisis in the USA
Authors: Beata Wentura-Dudek
Abstract:
In the United States in 2007-2010 before the crisis, the US labour market policy focused mainly on providing residents with unemployment insurance, after the recession this policy changed. The aim of the article was to present quantitative research presenting the most effective labor market instruments contributing to reducing unemployment during the crisis in the USA. The article presents research based on the analysis of available documents and statistical data. The results of the conducted research show that the most effective forms of counteracting unemployment at that time were: direct job creation, job search assistance, subsidized employment, training and employment promotion using new technologies, including social media.
Keywords: United States, financial crisis, unemployment, employment promotion, social media, job creation, training, labour market, employment agencies, lifelong learning, job search assistance, subsidized employment, companies, tax.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753505 Power Distance and Knowledge Management from a Post-Taylorist Perspective
Authors: John Walton, Vishal Parikh
Abstract:
Contact centres have been exemplars of scientific management in the discipline of operations management for more than a decade now. With the movement of industries from a resource based economy to knowledge based economy businesses have started to realize the customer eccentricity being the key to sustainability amidst high velocity of the market. However, as technologies have converged and advanced, so have the contact centres. Contact Centres have redirected the supply chains and the concept of retailing is highly diminished due to over exaggeration of cost reduction strategies. In conditions of high environmental velocity together with services featuring considerable information intensity contact centres will require up to date and enlightened agents to satisfy the demands placed upon them by those requesting their services. In this paper we examine salient factors such as Power Distance, Knowledge structures and the dynamics of job specialisation and enlargement to suggest critical success factors in the domain of contact centres.
Keywords: Post Taylorism, Knowledge Management, Power Distance, Organisational Learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867504 Analysis of a Population of Diabetic Patients Databases with Classifiers
Authors: Murat Koklu, Yavuz Unal
Abstract:
Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.
Keywords: Artificial Intelligence, Classifiers, Data Mining, Diabetic Patients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5431503 Generation of Artificial Earthquake Accelerogram Compatible with Spectrum using the Wavelet Packet Transform and Nero-Fuzzy Networks
Authors: Peyman Shadman Heidari, Mohammad Khorasani
Abstract:
The principal purpose of this article is to present a new method based on Adaptive Neural Network Fuzzy Inference System (ANFIS) to generate additional artificial earthquake accelerograms from presented data, which are compatible with specified response spectra. The proposed method uses the learning abilities of ANFIS to develop the knowledge of the inverse mapping from response spectrum to earthquake records. In addition, wavelet packet transform is used to decompose specified earthquake records and then ANFISs are trained to relate the response spectrum of records to their wavelet packet coefficients. Finally, an interpretive example is presented which uses an ensemble of recorded accelerograms to demonstrate the effectiveness of the proposed method.
Keywords: Adaptive Neural Network Fuzzy Inference System, Wavelet Packet Transform, Response Spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2832502 Comparative Efficacy of Pomegranate Juice, Peel and Seed Extract in the Stabilization of Corn Oil under Accelerated Conditions
Authors: Zoi Konsoula
Abstract:
Antioxidant-rich extracts were prepared from pomegranate peels, seeds and juice using methanol and ethanol and their antioxidant activity was evaluated by the 1,1-diphenyl-2-picrylhydrazine (DPPH) radical scavenging and Ferric Reducing Antioxidant Power (FRAP) method. Both analytical methods indicated a higher antioxidant activity in extracts prepared from peels, which was comparable to that of butylated hydroxytoluene (BHT). Furthermore, the antioxidant activity was correlated to the phenolic and flavonoid content of the various extracts. The antioxidant effectiveness of the extracts was also assessed using corn oil as the oxidation substrate. More specifically, preheated corn oil samples stabilized with extracts at a concentration of 250 ppm, 500 ppm or 1,000 ppm were subjected to accelerated aging (100 oC, 10 days) and the extent of oxidative alteration was followed by the measurement of the peroxide, conjugated dienes and trienes, as well as p-aniside value. BHT at its legal limit (200 ppm) served as standard besides the control sample. Results from the different parameters were in agreement with each other suggesting that pomegranate extracts can stabilize corn oil effectively under accelerated conditions, at all concentrations tested. However, the magnitude of oil stabilization depended strongly on the amount of extract added and this was positively correlated with their phenolic content. Pomegranate peel extracts, which exhibited the highest not only phenolic and flavonoid content but also antioxidant activity, were more potent in inhibiting oxidative deterioration. Both methanolic and ethanolic peel extracts at a concentration of 500 ppm exerted a stabilizing effect comparable to that of BHT, while at a concentration of 1000 ppm they exhibited higher stabilization efficiency in comparison to BHT. Finally, heating oil samples resulted in a time dependent decrease in their antioxidant capacity. Samples containing peel extracts appeared to retain their antioxidant capacity for a longer period, indicating that these extracts contained active compounds that offered superior antioxidant protection to corn oil.Keywords: Antioxidant activity, corn oil, oxidative deterioration, pomegranate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959501 Recognition of Noisy Words Using the Time Delay Neural Networks Approach
Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha
Abstract:
This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.
Keywords: Neural networks, Noise, Speech Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936500 A New Method for Image Classification Based on Multi-level Neural Networks
Authors: Samy Sadek, Ayoub Al-Hamadi, Bernd Michaelis, Usama Sayed
Abstract:
In this paper, we propose a supervised method for color image classification based on a multilevel sigmoidal neural network (MSNN) model. In this method, images are classified into five categories, i.e., “Car", “Building", “Mountain", “Farm" and “Coast". This classification is performed without any segmentation processes. To verify the learning capabilities of the proposed method, we compare our MSNN model with the traditional Sigmoidal Neural Network (SNN) model. Results of comparison have shown that the MSNN model performs better than the traditional SNN model in the context of training run time and classification rate. Both color moments and multi-level wavelets decomposition technique are used to extract features from images. The proposed method has been tested on a variety of real and synthetic images.Keywords: Image classification, multi-level neural networks, feature extraction, wavelets decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648499 Legal Education as Forming Factor of Legal Culture in Kazakhstan Modern Society
Authors: M. Karassartova, D. Shormanbayeva, A. Beissenova, S.Balshikeyev
Abstract:
Forming a legal culture among citizens is a complicated and lengthy process, influencing all spheres of social life. It includes promoting justice, learning rights and duties, the introduction of juridical norms and knowledge, and also a process of developing a system of legal acts and constitutional norms. Currently, the evaluative and emotional influence of attempts to establish a legal culture among the citizens of Kazakhstan is limited by real legal practice. As a result, the values essential to a sound civil society are absent from the consciousness of the Kazakh people who are thus, in turn, not able to develop respect for these values. One of the disadvantages of the modern Kazakh educational system is a tendency to underrate the actual forces shaping the worldview of Kazakh youths. The mass-media, which are going through a personnel crisis, cannot provide society with the legal and political information necessary to form the sort of legal culture required for a true civil society.Keywords: Kazakhstan society, Legal education, legal culture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941498 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation
Authors: O. S. Ebrahim, K. O. Shawky, M. O. Ebrahim, P. K. Jain
Abstract:
Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). Changing the connection of the stator windings from delta to star at no load can achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.
Keywords: Artificial Neural Network, ANN, Energy Saving Mode, ESM, Induction Motor, IM, star/delta switch, supervisory control, fluid transportation, reliability, power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 386497 One-Class Support Vector Machines for Protein-Protein Interactions Prediction
Authors: Hany Alashwal, Safaai Deris, Razib M. Othman
Abstract:
Predicting protein-protein interactions represent a key step in understanding proteins functions. This is due to the fact that proteins usually work in context of other proteins and rarely function alone. Machine learning techniques have been applied to predict protein-protein interactions. However, most of these techniques address this problem as a binary classification problem. Although it is easy to get a dataset of interacting proteins as positive examples, there are no experimentally confirmed non-interacting proteins to be considered as negative examples. Therefore, in this paper we solve this problem as a one-class classification problem using one-class support vector machines (SVM). Using only positive examples (interacting protein pairs) in training phase, the one-class SVM achieves accuracy of about 80%. These results imply that protein-protein interaction can be predicted using one-class classifier with comparable accuracy to the binary classifiers that use artificially constructed negative examples.Keywords: Bioinformatics, Protein-protein interactions, One-Class Support Vector Machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989