Search results for: Numerical simulations.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3067

Search results for: Numerical simulations.

697 Discovery of Time Series Event Patterns based on Time Constraints from Textual Data

Authors: Shigeaki Sakurai, Ken Ueno, Ryohei Orihara

Abstract:

This paper proposes a method that discovers time series event patterns from textual data with time information. The patterns are composed of sequences of events and each event is extracted from the textual data, where an event is characteristic content included in the textual data such as a company name, an action, and an impression of a customer. The method introduces 7 types of time constraints based on the analysis of the textual data. The method also evaluates these constraints when the frequency of a time series event pattern is calculated. We can flexibly define the time constraints for interesting combinations of events and can discover valid time series event patterns which satisfy these conditions. The paper applies the method to daily business reports collected by a sales force automation system and verifies its effectiveness through numerical experiments.

Keywords: Text mining, sequential mining, time constraints, daily business reports.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
696 Particle Swarm Optimization Based Genetic Algorithm for Two-Stage Transportation Supply Chain

Authors: Siva Prasad Darla, C. D. Naiju, K. Annamalai, S. S. Rajiv Sushanth

Abstract:

Supply chain consists of all stages involved, directly or indirectly, includes all functions involved in fulfilling a customer demand. In two stage transportation supply chain problem, transportation costs are of a significant proportion of final product costs. It is often crucial for successful decisions making approaches in two stage supply chain to explicit account for non-linear transportation costs. In this paper, deterministic demand and finite supply of products was considered. The optimized distribution level and the routing structure from the manufacturing plants to the distribution centres and to the end customers is determined using developed mathematical model and solved by proposed particle swarm optimization based genetic algorithm. Numerical analysis of the case study is carried out to validate the model.

Keywords: Genetic Algorithm, Particle Swarm Optimization, Production, Remanufacturing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
695 Natural Convection Boundary Layer Flow of a Viscoelastic Fluid on Solid Sphere with Newtonian Heating

Authors: A.R.M. Kasim, N.F. Mohammad, Aurangzaib, S. Sharidan

Abstract:

The present paper considers the steady free convection boundary layer flow of a viscoelastic fluid on solid sphere with Newtonian heating. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. Thus, the augmentation an extra boundary condition is needed to perform the numerical computational. The governing boundary layer equations are first transformed into non-dimensional form by using special dimensionless group and then solved by using an implicit finite difference scheme. The results are displayed graphically to illustrate the influence of viscoelastic K and Prandtl Number Pr parameters on skin friction, heat transfer, velocity profiles and temperature profiles. Present results are compared with the published papers and are found to concur very well.

Keywords: boundary layer flow, Newtonian heating, sphere, viscoelastic fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2396
694 Impact of Viscous and Heat Relaxation Loss on the Critical Temperature Gradients of Thermoacoustic Stacks

Authors: Zhibin Yu, Artur J. Jaworski, Abdulrahman S. Abduljalil

Abstract:

A stack with a small critical temperature gradient is desirable for a standing wave thermoacoustic engine to obtain a low onset temperature difference (the minimum temperature difference to start engine-s self-oscillation). The viscous and heat relaxation loss in the stack determines the critical temperature gradient. In this work, a dimensionless critical temperature gradient factor is obtained based on the linear thermoacoustic theory. It is indicated that the impedance determines the proportion between the viscous loss, heat relaxation losses and the power production from the heat energy. It reveals the effects of the channel dimensions, geometrical configuration and the local acoustic impedance on the critical temperature gradient in stacks. The numerical analysis shows that there exists a possible optimum combination of these parameters which leads to the lowest critical temperature gradient. Furthermore, several different geometries have been tested and compared numerically.

Keywords: Critical temperature gradient, heat relaxation, stack, viscous effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
693 Formulating the Stochastic Finite Elements for Free Vibration Analysis of Plates with Variable Elastic Modulus

Authors: Mojtaba Aghamiri Esfahani, Mohammad Karkon, Seyed Majid Hosseini Nezhad, Reza Hosseini-Ara

Abstract:

In this study, the effect of uncertainty in elastic modulus of a plate on free vibration response is investigated. For this purpose, the elastic modulus of the plate is modeled as stochastic variable with normal distribution. Moreover, the distance autocorrelation function is used for stochastic field. Then, by applying the finite element method and Monte Carlo simulation, stochastic finite element relations are extracted. Finally, with a numerical test, the effect of uncertainty in the elastic modulus on free vibration response of a plate is studied. The results show that the effect of uncertainty in elastic modulus of the plate cannot play an important role on the free vibration response.

Keywords: Stochastic finite elements, plate bending, free vibration, Monte Carlo, Neumann expansion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
692 New Technologies for Modeling of Gas Turbine Cooled Blades

Authors: A. Pashayev, D. Askerov, R.Sadiqov, A. Samedov, C. Ardil

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and cvazistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine 1st stage nozzle blade

Keywords: multiconnected systems, method of the boundary integrated equations, splines, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
691 Application of Homotopy Perturbation Method to Solve Steady Flow of Walter B Fluid A Vertical Channel In Porous Media

Authors: A.Memari

Abstract:

In this article, a simulation method called the Homotopy Perturbation Method (HPM) is employed in the steady flow of a Walter's B' fluid in a vertical channel with porous wall. We employed Homotopy Perturbation Method to derive solution of a nonlinear form of equation obtained from exerting similarity transforming to the ordinary differential equation gained from continuity and momentum equations of this kind of flow. The results obtained from the Homotopy Perturbation Method are then compared with those from the Runge–Kutta method in order to verify the accuracy of the proposed method. The results show that the Homotopy Perturbation Method can achieve good results in predicting the solution of such problems. Ultimately we use this solution to obtain the other terms of velocities and physical discussion about it.

Keywords: Steady flow; Walter's B' Fluid;, vertical channel;porous media, Homotopy Perturbation Method (HPM), Numerical Solution (NS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
690 Comparison of the Performance of GaInAsSb and GaSb Cells under Different Temperature Blackbody Radiations

Authors: Liangliang Tang, Chang Xu, Xingying Chen

Abstract:

GaInAsSb cells probably show better performance than GaSb cells in low-temperature thermophotovoltaic systems due to lower bandgap; however, few experiments proved this phenomenon so far. In this paper, numerical simulation is used to evaluate GaInAsSb and GaSb cells with similar structures under different radiation temperatures. We found that GaInAsSb cells with n-type emitters show slightly higher output power densities compared with that of GaSb cells with n-type emitters below 1,550 K-blackbody radiation, and the power density of the later cells will suppress the formers above this temperature point. During the temperature range of 1,000~2,000 K, the efficiencies of GaSb cells are about twice of GaInAsSb cells if perfect filters are used to prevent the emission of the non-absorbed long wavelength photons. Several parameters that affect the GaInAsSb cell were analyzed, such as doping profiles, thicknesses of GaInAsSb epitaxial layer and surface recombination velocity. The non-p junctions, i.e., n-type emitters are better for GaInAsSb cell fabrication, which is similar to that of GaSb cells.

Keywords: Thermophotovoltaic cell, GaSb, GaInAsSb, diffused emitters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168
689 Two Iterative Algorithms to Compute the Bisymmetric Solution of the Matrix Equation A1X1B1 + A2X2B2 + ... + AlXlBl = C

Authors: A.Tajaddini

Abstract:

In this paper, two matrix iterative methods are presented to solve the matrix equation A1X1B1 + A2X2B2 + ... + AlXlBl = C the minimum residual problem l i=1 AiXiBi−CF = minXi∈BRni×ni l i=1 AiXiBi−CF and the matrix nearness problem [X1, X2, ..., Xl] = min[X1,X2,...,Xl]∈SE [X1,X2, ...,Xl] − [X1, X2, ..., Xl]F , where BRni×ni is the set of bisymmetric matrices, and SE is the solution set of above matrix equation or minimum residual problem. These matrix iterative methods have faster convergence rate and higher accuracy than former methods. Paige’s algorithms are used as the frame method for deriving these matrix iterative methods. The numerical example is used to illustrate the efficiency of these new methods.

Keywords: Bisymmetric matrices, Paige’s algorithms, Least square.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
688 Cost Optimization of Concentric Braced Steel Building Structures

Authors: T. Balogh, L. G. Vigh

Abstract:

Seismic design may require non-conventional concept, due to the fact that the stiffness and layout of the structure have a great effect on the overall structural behaviour, on the seismic load intensity as well as on the internal force distribution. To find an economical and optimal structural configuration the key issue is the optimal design of the lateral load resisting system. This paper focuses on the optimal design of regular, concentric braced frame (CBF) multi-storey steel building structures. The optimal configurations are determined by a numerical method using genetic algorithm approach, developed by the authors. Aim is to find structural configurations with minimum structural cost. The design constraints of objective function are assigned in accordance with Eurocode 3 and Eurocode 8 guidelines. In this paper the results are presented for various building geometries, different seismic intensities, and levels of energy dissipation.

Keywords: Dissipative Structures, Genetic Algorithm, Seismic Effects, Structural Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3005
687 Reliability Analysis of Underground Pipelines Using Subset Simulation

Authors: Kong Fah Tee, Lutfor Rahman Khan, Hongshuang Li

Abstract:

An advanced Monte Carlo simulation method, called Subset Simulation (SS) for the time-dependent reliability prediction for underground pipelines has been presented in this paper. The SS can provide better resolution for low failure probability level with efficient investigating of rare failure events which are commonly encountered in pipeline engineering applications. In SS method, random samples leading to progressive failure are generated efficiently and used for computing probabilistic performance by statistical variables. SS gains its efficiency as small probability event as a product of a sequence of intermediate events with larger conditional probabilities. The efficiency of SS has been demonstrated by numerical studies and attention in this work is devoted to scrutinise the robustness of the SS application in pipe reliability assessment. It is hoped that the development work can promote the use of SS tools for uncertainty propagation in the decision-making process of underground pipelines network reliability prediction.

Keywords: Underground pipelines, Probability of failure, Reliability and Subset Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3546
686 Multi-Line Power Flow Control using Interline Power Flow Controller (IPFC) in Power Transmission Systems

Authors: A.V.Naresh Babu, S.Sivanagaraju, Ch.Padmanabharaju, T.Ramana

Abstract:

The interline power flow controller (IPFC) is one of the latest generation flexible AC transmission systems (FACTS) controller used to control power flows of multiple transmission lines. This paper presents a mathematical model of IPFC, termed as power injection model (PIM). This model is incorporated in Newton- Raphson (NR) power flow algorithm to study the power flow control in transmission lines in which IPFC is placed. A program in MATLAB has been written in order to extend conventional NR algorithm based on this model. Numerical results are carried out on a standard 2 machine 5 bus system. The results without and with IPFC are compared in terms of voltages, active and reactive power flows to demonstrate the performance of the IPFC model.

Keywords: flexible AC transmission systems (FACTS), interline power flow controller (IPFC), power injection model (PIM), power flow control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2986
685 Optimal Route Policy in Air Traffic Control with Competing Airlines

Authors: Siliang Wang, Minghui Wang

Abstract:

This work proposes a novel market-based air traffic flow control model considering competitive airlines in air traffic network. In the flow model, an agent based framework for resources (link/time pair) pricing is described. Resource agent and auctioneer for groups of resources are also introduced to simulate the flow management in Air Traffic Control (ATC). Secondly, the distributed group pricing algorithm is introduced, which efficiently reflect the competitive nature of the airline industry. Resources in the system are grouped according to the degree of interaction, and each auctioneer adjust s the price of one group of resources respectively until the excess demand of resources becomes zero when the demand and supply of resources of the system changes. Numerical simulation results show the feasibility of solving the air traffic flow control problem using market mechanism and pricing algorithms on the air traffic network.

Keywords: Air traffic control, Nonlinear programming, Marketmechanism, Route policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
684 Analysis of Boiling in Rectangular Micro Channel Heat Sink

Authors: Ahmed Jassim Shkarah, Mohd Yusoff Bin Sulaiman, Md Razali bin Hj Ayob

Abstract:

A 3D-conjugate numerical investigation was conducted to predict heat transfer characteristics in a rectangular cross-sectional micro-channel employing simultaneously developing Tow-phase flows. The sole purpose for analyzing two phase flow heat transfer in rectangular micro channel is to pin point what are the different factors affecting this phenomenon. Different methods and techniques have been undertaken to analyze the equations arising constituting the flow of heat from gas phase to liquid phase and vice versa.Different models of micro channels have been identified and analyzed. How the geometry of micro channels affects their activity i.e. of circular and non-circular geometry has also been reviewed. To the study the results average Nusselt no plotted against the Reynolds no has been taken into consideration to study average heat exchange in micro channels against applied heat flux. High heat fluxes up to 140 W/cm2 were applied to investigate micro-channel thermal characteristics.

Keywords: Tow Phase flow, Micro channel, VOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
683 Dynamics of a Vapour Bubble inside a Vertical Rigid Cylinder with a Deposit Rib

Authors: S. Mehran, S. Rouhi, F.Rouzbahani, E. Haghgoo

Abstract:

In this paper dynamics of a vapour bubble generated due to a local energy input inside a vertical rigid cylinder and in the absence of buoyancy forces is investigated. Different ratios of the diameter of the rigid cylinder to the maximum radius of the bubble are considered. The Boundary Integral Equation Method is employed for numerical simulation of the problem. Results show that during the collapse phase of the bubble inside a vertical rigid cylinder, two liquid micro jets are developed on the top and bottom sides of the vapour bubble and are directed inward. Results also show that existence of a deposit rib inside the vertical rigid cylinder slightly increases the life time of the bubble. It is found that by increasing the ratio of the cylinder diameter to the maximum radius of the bubble, the rate of the growth and collapse phases of the bubble increases and the life time of the bubble decreases.

Keywords: Vapour bubble, Vertical rigid cylinder, Boundaryelement method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
682 A Context-Aware Supplier Selection Model

Authors: Mohammadreza Razzazi, Maryam Bayat

Abstract:

Selection of the best possible set of suppliers has a significant impact on the overall profitability and success of any business. For this reason, it is usually necessary to optimize all business processes and to make use of cost-effective alternatives for additional savings. This paper proposes a new efficient context-aware supplier selection model that takes into account possible changes of the environment while significantly reducing selection costs. The proposed model is based on data clustering techniques while inspiring certain principles of online algorithms for an optimally selection of suppliers. Unlike common selection models which re-run the selection algorithm from the scratch-line for any decision-making sub-period on the whole environment, our model considers the changes only and superimposes it to the previously defined best set of suppliers to obtain a new best set of suppliers. Therefore, any recomputation of unchanged elements of the environment is avoided and selection costs are consequently reduced significantly. A numerical evaluation confirms applicability of this model and proves that it is a more optimal solution compared with common static selection models in this field.

Keywords: Supplier Selection, Context-Awareness, OnlineAlgorithms, Data Clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
681 An Optimized Method for 3D Magnetic Navigation of Nanoparticles inside Human Arteries

Authors: Evangelos G. Karvelas, Christos Liosis, Andreas Theodorakakos, Theodoros E. Karakasidis

Abstract:

In the present work, a numerical method for the estimation of the appropriate gradient magnetic fields for optimum driving of the particles into the desired area inside the human body is presented. The proposed method combines Computational Fluid Dynamics (CFD), Discrete Element Method (DEM) and Covariance Matrix Adaptation (CMA) evolution strategy for the magnetic navigation of nanoparticles. It is based on an iteration procedure that intents to eliminate the deviation of the nanoparticles from a desired path. Hence, the gradient magnetic field is constantly adjusted in a suitable way so that the particles’ follow as close as possible to a desired trajectory. Using the proposed method, it is obvious that the diameter of particles is crucial parameter for an efficient navigation. In addition, increase of particles' diameter decreases their deviation from the desired path. Moreover, the navigation method can navigate nanoparticles into the desired areas with efficiency approximately 99%.

Keywords: CFD, CMA evolution strategy, DEM, magnetic navigation, spherical particles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 521
680 Application of the Central-Difference with Half- Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-Differential Equations

Authors: E. Aruchunan, J. Sulaiman

Abstract:

The objective of this paper is to analyse the application of the Half-Sweep Gauss-Seidel (HSGS) method by using the Half-sweep approximation equation based on central difference (CD) and repeated trapezoidal (RT) formulas to solve linear fredholm integro-differential equations of first order. The formulation and implementation of the Full-Sweep Gauss-Seidel (FSGS) and Half- Sweep Gauss-Seidel (HSGS) methods are also presented. The HSGS method has been shown to rapid compared to the FSGS methods. Some numerical tests were illustrated to show that the HSGS method is superior to the FSGS method.

Keywords: Integro-differential equations, Linear fredholm equations, Finite difference, Quadrature formulas, Half-Sweep iteration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
679 The Rank-scaled Mutation Rate for Genetic Algorithms

Authors: Mike Sewell, Jagath Samarabandu, Ranga Rodrigo, Kenneth McIsaac

Abstract:

A novel method of individual level adaptive mutation rate control called the rank-scaled mutation rate for genetic algorithms is introduced. The rank-scaled mutation rate controlled genetic algorithm varies the mutation parameters based on the rank of each individual within the population. Thereby the distribution of the fitness of the papulation is taken into consideration in forming the new mutation rates. The best fit mutate at the lowest rate and the least fit mutate at the highest rate. The complexity of the algorithm is of the order of an individual adaptation scheme and is lower than that of a self-adaptation scheme. The proposed algorithm is tested on two common problems, namely, numerical optimization of a function and the traveling salesman problem. The results show that the proposed algorithm outperforms both the fixed and deterministic mutation rate schemes. It is best suited for problems with several local optimum solutions without a high demand for excessive mutation rates.

Keywords: Genetic algorithms, mutation rate control, adaptive mutation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2662
678 Numerical Study of Modulus of Subgrade Reaction in Eccentrically Loaded Circular Footing Resting

Authors: Seyed Abolhasan Naeini, Mohammad Hossein Zade

Abstract:

This article is an attempt to present a numerically study of the behaviour of an eccentrically loaded circular footing resting on sand to determine ‎its ultimate bearing capacity. A surface circular footing of diameter 12 cm (D) was used as ‎shallow foundation. For this purpose, three dimensional models consist of foundation, and medium sandy soil was modelled by ABAQUS software. Bearing capacity of footing was evaluated and the ‎effects of the load eccentricity on bearing capacity, its settlement, and modulus of subgrade reaction were studied. Three different values of load eccentricity with equal space from inside the core on the core boundary and outside the core boundary, which were respectively e=0.75, 1.5, and 2.25 cm, were considered. The results show that by increasing the load eccentricity, the ultimate load and the ‎modulus of subgrade reaction decreased.

Keywords: Circular foundation, eccentric loading, sand, modulus of subgrade reaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
677 Reliable One-Dimensional Model of Two-Dimensional Insulated Oval Duct Considering Heat Radiation

Authors: King-Leung Wong, Wen-Lih Chen, Yu-feng Chang

Abstract:

The reliable results of an insulated oval duct considering heat radiation are obtained basing on accurate oval perimeter obtained by integral method as well as one-dimensional Plane Wedge Thermal Resistance (PWTR) model. This is an extension study of former paper of insulated oval duct neglecting heat radiation. It is found that in the practical situations with long-short-axes ratio a/b <= 5/1, heat transfer rate errors are within 1.2 % by comparing with accurate two-dimensional numerical solutions for most practical dimensionless insulated thickness (t/R2 <= 0.5). On the contrary, neglecting the heat radiation effect is likely to produce very big heat transfer rate errors of non-insulated (E>43% at t/R2=0) and thin-insulated (E>4.5% while t/R2<= 0.1) oval ducts in situations of ambient air with lower external convection heat coefficients and larger surface emissivity.

Keywords: Heat convection, heat radiation, oval duct, PWTR model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
676 Optimal Production Planning in Aromatic Coconuts Supply Chain Based On Mixed-Integer Linear Programming

Authors: Chaimongkol Limpianchob

Abstract:

This work addresses the problem of production planning that arises in the production of aromatic coconuts from Samudsakhorn province in Thailand. The planning involves the forwarding of aromatic coconuts from the harvest areas to the factory, which is classified into two groups; self-owned areas and contracted areas, the decisions of aromatic coconuts flow in the plant, and addressing a question of which warehouse will be in use. The problem is formulated as a mixed-integer linear programming model within supply chain management framework. The objective function seeks to minimize the total cost including the harvesting, labor and inventory costs. Constraints on the system include the production activities in the company and demand requirements. Numerical results are presented to demonstrate the feasibility of coconuts supply chain model compared with base case.

Keywords: Aromatic coconut, supply chain management, production planning, mixed-integer linear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2749
675 Modeling Moisture and Density Behaviors of Wood in Biomass Torrefaction Environments

Authors: Gun Yung Go, Man Young Kim

Abstract:

Worldwide interests for the renewable energy are increasing due to environmental and climate changes from traditional petroleum related energy sources. To account for these social needs, ligneous biomass energy is considered as one of the environmentally friend energy solutions. The wood torrefaction process is a feasible method to improve the properties of the biomass fuel and makes the wood have low moisture, lower smoke emission and increased heating value. In this work, therefore, the moisture evaporation model which largely affects energy efficiency of ligneous biomass through moisture contents and heating value relative to its weight is studied with numerical modeling approach by analyzing the effects of torrefaction furnace temperature. The results show that the temperature and moisture fraction of wood decrease by increasing the furnace temperature. When the torrefaction temperature is lower than 423K, there were little changes of the moisture fraction in the wood. Also, it can be found that charcoal is produced more slowly when the torrefaction temperature is lower than 573K.

Keywords: Modeling, Torrefaction, Biomass, Moisture Fraction, Charcoal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
674 A Multi-Objective Optimization Model to the Integrating Flexible Process Planning And Scheduling Based on Modified Particle Swarm Optimization Algorithm (MPSO)

Authors: R. Sahraian, A. Karampour Haghighi, E. Ghasemi

Abstract:

Process planning and production scheduling play important roles in manufacturing systems. In this paper a multiobjective mixed integer linear programming model is presented for the integrated planning and scheduling of multi-product. The aim is to find a set of high-quality trade-off solutions. This is a combinatorial optimization problem with substantially large solution space, suggesting that it is highly difficult to find the best solutions with the exact search method. To account for it, a PSO-based algorithm is proposed by fully utilizing the capability of the exploration search and fast convergence. To fit the continuous PSO in the discrete modeled problem, a solution representation is used in the algorithm. The numerical experiments have been performed to demonstrate the effectiveness of the proposed algorithm.

Keywords: Integrated process planning and scheduling, multi objective, MILP, Particle swarm optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
673 Memory Effects in Randomly Perturbed Nematic Liquid Crystals

Authors: Amid Ranjkesh, Milan Ambrožič, Samo Kralj

Abstract:

We study the typical domain size and configuration character of a randomly perturbed system exhibiting continuous symmetry breaking. As a model system we use rod-like objects within a cubic lattice interacting via a Lebwohl–Lasher-type interaction. We describe their local direction with a headless unit director field. An example of such systems represents nematic LC or nanotubes. We further introduce impurities of concentration p, which impose the random anisotropy field-type disorder to directors. We study the domain-type pattern of molecules as a function of p, anchoring strength w between a neighboring director and impurity, temperature, history of samples. In simulations we quenched the directors either from the random or homogeneous initial configuration. Our results show that a history of system strongly influences: i) the average domain coherence length; and ii) the range of ordering in the system. In the random case the obtained order is always short ranged (SR). On the contrary, in the homogeneous case, SR is obtained only for strong enough anchoring and large enough concentration p. In other cases, the ordering is either of quasi long range (QLR) or of long range (LR). We further studied memory effects for the random initial configuration. With increasing external ordering field B either QLR or LR is realized.

Keywords: Lebwohl-Lasher model, liquid crystals, disorder, memory effect, orientational order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
672 Study of Photonic Crystal Band Gap and Hexagonal Microcavity Based on Elliptical Shaped Holes

Authors: A. Benmerkhi, A. Bounouioua, M. Bouchemat, T. Bouchemat

Abstract:

In this paper, we present a numerical optical properties of a triangular periodic lattice of elliptical air holes. We report the influence of the ratio (semi-major axis length of elliptical hole to the filling ratio) on the photonic band gap. Then by using the finite difference time domain (FDTD) algorithm, the resonant wavelength of the point defect microcavities in a two-dimensional photonic crystal (PC) shifts towards the low wavelengths with significantly increased filing ratio. It can be noted that the Q factor is gradually changed to higher when the filling ratio increases. It is due to an increase in reflectivity of the PC mirror. Also we theoretically investigate the H1 cavity, where the value of semi-major axis (Rx) of the six holes surrounding the cavity are fixed at 0.5a and the Rx of the two edge air holes are fixed at the optimum value of 0.52a. The highest Q factor of 4.1359 × 106 is achieved at the resonant mode located at λ = 1.4970 µm.

Keywords: Photonic crystal, microcavity, filling ratio, elliptical holes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587
671 Computational Analysis of Cavity Effect over Aircraft Wing

Authors: P. Booma Devi, Dilip A. Shah

Abstract:

This paper seeks the potentials of studying aerodynamic characteristics of inward cavities called dimples, as an alternative to the classical vortex generators. Increasing stalling angle is a greater challenge in wing design. But our examination is primarily focused on increasing lift. In this paper, enhancement of lift is mainly done by introduction of dimple or cavity in a wing. In general, aircraft performance can be enhanced by increasing aerodynamic efficiency that is lift to drag ratio of an aircraft wing. Efficiency improvement can be achieved by improving the maximum lift co-efficient or by reducing the drag co-efficient. At the time of landing aircraft, high angle of attack may lead to stalling of aircraft. To avoid this kind of situation, increase in the stalling angle is warranted. Hence, improved stalling characteristic is the best way to ease landing complexity. Computational analysis is done for the wing segment made of NACA 0012. Simulation is carried out for 30 m/s free stream velocity over plain airfoil and different types of cavities. The wing is modeled in CATIA V5R20 and analyses are carried out using ANSYS CFX. Triangle and square shapes are used as cavities for analysis. Simulations revealed that cavity placed on wing segment shows an increase of maximum lift co-efficient when compared to normal wing configuration. Flow separation is delayed at downstream of the wing by the presence of cavities up to a particular angle of attack.

Keywords: Lift, square and rectangle dimples, enhancement of stall angle, cavity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
670 A Study of Replacement Policies for Warranty Products with Different Failure Rate

Authors: Wen Liang Chang

Abstract:

This paper provides a replacement policy for warranty products with different failure rate from the consumer-s viewpoint. Assume that the product is replaced once within a finite planning horizon, and the failure rate of the second product is lower than the failure rate of the first product. Within warranty period (WP), the failed product is corrected by minimal repair without any cost to the consumers. After WP, the failed product is repaired with a fixed repair cost to the consumers. However, each failure incurs a fixed downtime cost to the consumers over a finite planning horizon. In this paper, we derive the model of the expected total disbursement cost within a finite planning horizon and some properties of the optimal replacement policy under some reasonable conditions are obtained. Finally, numerical examples are given to illustrate the features of the optimal replacement policy under various maintenance costs.

Keywords: Planning horizon, Free-repair warranty, Minimal repair, Replacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
669 Effect of Wavy Leading-Edges on Wings in Different Planetary Atmospheres

Authors: Vatasta Koul, Ayush Gupta, Vaibhav Sharma, Rajesh Yadav

Abstract:

Today we are unmarking the secrets of the universe by exploring different stars and planets and most of the space exploration is done by unmanned space robots. In addition to our planet Earth, there are pieces of evidence that show other astronomical objects in our solar system such as Venus, Mars, Saturn’s moon Titan and Uranus support the flight of fixed wing air vehicles. In this paper, we take forward the concept of presence of large rounded tubercles along the leading edge of a wing and use it as a passive flow control device that will help in improving its aerodynamic performance and maneuverability. Furthermore, in this research, aerodynamic measurements and performance analysis of wavy leading tubercles on the fixed wings at 5-degree angle of attack are carried out after determination of the flow conditions on the selected planetary bodies. Wavelength and amplitude for the sinusoidal modifications on the leading edge are analyzed and simulations are carried out for three-dimensional NACA 0012 airfoil maintaining unity AR (Aspect Ratio). Tubercles have consistently demonstrated the ability to delay and decrease the severity of stall as per the studies were done in the Earth’s atmosphere. Implementing the same design on the leading edges of Micro-Air Vehicles (MAVs) and UAVs could make these aircrafts more stable over a greater range of angles of attack in different planetary environments of our solar system.

Keywords: Amplitude, NACA0012, tubercles, unmanned space robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 647
668 Two-Dimensional Modeling of Seasonal Freeze and Thaw in an Idealized River Bank

Authors: Jiajia Pan, Hung Tao Shen

Abstract:

Freeze and thaw occurs seasonally in river banks in northern countries. Little is known on how the riverbank soil temperature responds to air temperature changes and how freeze and thaw develops in a river bank seasonally. This study presents a two-dimensional heat conduction model for numerical investigations of seasonal freeze and thaw processes in an idealized river bank. The model uses the finite difference method and it is convenient for applications. The model is validated with an analytical solution and a field case with soil temperature distributions. It is then applied to the idealized river bank in terms of partially and fully saturated conditions with or without ice cover influence. Simulated results illustrate the response processes of the river bank to seasonal air temperature variations. It promotes the understanding of freeze and thaw processes in river banks and prepares for further investigation of frost and thaw impacts on riverbank stability.

Keywords: Freeze and thaw, river banks, 2D model, heat conduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 405