Search results for: support
1614 Employing Operations Research at Universities to Build Management Systems
Authors: Abdallah A. Hlayel
Abstract:
Operations research science (OR) deals with good success in developing and applying scientific methods for problem solving and decision-making. However, by using OR techniques, we can enhance the use of computer decision support systems to achieve optimal management for institutions. OR applies comprehensive analysis including all factors that effect on it and builds mathematical modeling to solve business or organizational problems. In addition, it improves decision-making and uses available resources efficiently. The adoption of OR by universities would definitely contributes to the development and enhancement of the performance of OR techniques. This paper provides an understanding of the structures, approaches and models of OR in problem solving and decisionmaking.
Keywords: Best candidates' method, decision making, decision support system, operations research.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19121613 Support Vector Machines For Understanding Lane Color and Sidewalks
Authors: Hoon Lee, Soonyoung Park, Kyoungho Choi
Abstract:
Understanding road features such as lanes, the color of lanes, and sidewalks in a live video captured from a moving vehicle is essential to build video-based navigation systems. In this paper, we present a novel idea to understand the road features using support vector machines. Various feature vectors including color components of road markings and the difference between two regions, i.e., chosen AOIs, and so on are fed into SVM, deciding colors of lanes and sidewalks robustly. Experimental results are provided to show the robustness of the proposed idea.Keywords: video-based navigation system, lane detection, SVMs, autonomous vehicles
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18351612 Enabling Integration across Heterogeneous Care Networks
Authors: Federico Cabitza, Marco P. Locatelli, Marcello Sarini, Carla Simone
Abstract:
The paper shows how the CASMAS modeling language, and its associated pervasive computing architecture, can be used to facilitate continuity of care by providing members of patientcentered communities of care with a support to cooperation and knowledge sharing through the usage of electronic documents and digital devices. We consider a scenario of clearly fragmented care to show how proper mechanisms can be defined to facilitate a better integration of practices and information across heterogeneous care networks. The scenario is declined in terms of architectural components and cooperation-oriented mechanisms that make the support reactive to the evolution of the context where these communities operate.Keywords: Pervasive Computing, Communities of Care, HeterogeneousCare Networks, Multi-Agent System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13591611 Assessing and Managing Intellectual Capital to Support Open Innovation Paradigm
Authors: Michele Grimaldi, Livio Cricelli, Francesco Rogo, Alessia Iannarelli
Abstract:
The objective of this paper is to support the application of Open Innovation practices in firms and organizations by the assessment and management of Intellectual Capital. Intellectual Capital constituents are analyzed in order to verify their capability of acting as key drivers of Open Innovation processes and, therefore, of creating value. A methodology is defined to settle a procedure which helps to select the most relevant Intellectual Capital value drivers and to provide Communities of Innovation with strategic and managerial guidelines in sustaining Open Innovation paradigm. An application of the methodology is developed within a specifically addressed project and its results are hereafter examined.
Keywords: Assessment, Community of Innovation, Intellectual Capital, Management, Open Innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17881610 Effect of Support Distance on Damage of Drilled Thin CFRP Laminates
Authors: Jean François Chatelain, Imed Zaghbani, Gilbert Lebrun, Kaml Hasni
Abstract:
Severe damages may occur during the drilling of carbon fiber reinforced plastics (CFRP). In practice, this damage is limited by adding a backup support to the drilled parts. For some aeronautical parts with curvatures, backing up parts is a demanding process. In order to simplify the operation, this research studies the effect of using a configurable setup to support parts on the resulting quality of drilled holes. The test coupons referenced in this study are twenty four-plies unidirectional laminates made of carbon fibers and epoxy resin. Different signals were measured during the drilling process for these laminates, including the thrust force, the displacement and the acceleration. The processing of these signals demonstrated that the damage is due to the combination of two main factors: the spring-back of the thin part and the thrust force. The results found were confirmed for different feeds and speeds. When the distance between supports is increased, it is observed that the spring-back increases but the thrust force decreases. The study proves the feasibility of unsupported drilling of thin CFRP laminates without creating any observable damage.
Keywords: CFRP, Damage, Drilling, Flexible setup.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17971609 A Decision Support System for Predicting Hospitalization of Hemodialysis Patients
Authors: Jinn-Yi Yeh, Tai-Hsi Wu
Abstract:
Hemodialysis patients might suffer from unhealthy care behaviors or long-term dialysis treatments. Ultimately they need to be hospitalized. If the hospitalization rate of a hemodialysis center is high, its quality of service would be low. Therefore, how to decrease hospitalization rate is a crucial problem for health care. In this study we combined temporal abstraction with data mining techniques for analyzing the dialysis patients' biochemical data to develop a decision support system. The mined temporal patterns are helpful for clinicians to predict hospitalization of hemodialysis patients and to suggest them some treatments immediately to avoid hospitalization.Keywords: Hemodialysis, Temporal abstract, Data mining, Healthcare quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17301608 Sensor Network Based Emergency Response and Navigation Support Architecture
Authors: Dilusha Weeraddana, Ashanie Gunathillake, Samiru Gayan
Abstract:
In an emergency, combining Wireless Sensor Network's data with the knowledge gathered from various other information sources and navigation algorithms, could help safely guide people to a building exit while avoiding the risky areas. This paper presents an emergency response and navigation support architecture for data gathering, knowledge manipulation, and navigational support in an emergency situation. At normal state, the system monitors the environment. When an emergency event detects, the system sends messages to first responders and immediately identifies the risky areas from safe areas to establishing escape paths. The main functionalities of the system include, gathering data from a wireless sensor network which is deployed in a multi-story indoor environment, processing it with information available in a knowledge base, and sharing the decisions made, with first responders and people in the building. The proposed architecture will act to reduce risk of losing human lives by evacuating people much faster with least congestion in an emergency environment.
Keywords: Emergency response, Firefighters, Navigation, Wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20051607 Current Issues on Enterprise Architecture Implementation Evaluation
Authors: Fatemeh Nikpay, Rodina Binti Ahmad, Babak Darvish Rouhani
Abstract:
Enterprise Architecture (EA) is employed by enterprises for providing integrated Information Systems (ISs) in order to support alignment of their business and Information Technology (IT). Evaluation of EA implementation can support enterprise to reach intended goals. There are some problems in current evaluation methods of EA implementation that lead to ineffectiveness implementation of EA. This paper represents current issues on evaluation of EA implementation. In this regard, we set the framework in order to represent evaluation’s issues based on their functionality and structure. The results of this research not only increase the knowledge of evaluation, but also could be useful for both academics and practitioners in order to realize the current situation of evaluations.
Keywords: Current issues on EA, implementation evaluation, Evaluation, Enterprise Architecture, Evaluation of Enterprise Architecture Implementation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40111606 A Bayesian Kernel for the Prediction of Protein- Protein Interactions
Authors: Hany Alashwal, Safaai Deris, Razib M. Othman
Abstract:
Understanding proteins functions is a major goal in the post-genomic era. Proteins usually work in context of other proteins and rarely function alone. Therefore, it is highly relevant to study the interaction partners of a protein in order to understand its function. Machine learning techniques have been widely applied to predict protein-protein interactions. Kernel functions play an important role for a successful machine learning technique. Choosing the appropriate kernel function can lead to a better accuracy in a binary classifier such as the support vector machines. In this paper, we describe a Bayesian kernel for the support vector machine to predict protein-protein interactions. The use of Bayesian kernel can improve the classifier performance by incorporating the probability characteristic of the available experimental protein-protein interactions data that were compiled from different sources. In addition, the probabilistic output from the Bayesian kernel can assist biologists to conduct more research on the highly predicted interactions. The results show that the accuracy of the classifier has been improved using the Bayesian kernel compared to the standard SVM kernels. These results imply that protein-protein interaction can be predicted using Bayesian kernel with better accuracy compared to the standard SVM kernels.Keywords: Bioinformatics, Protein-protein interactions, Bayesian Kernel, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21641605 Ontology-based Query System for UNITEN Postgraduate Students
Authors: Zaihisma C. Cob, Alicia Y.C. Tang, Sharifah J. Syed Aziz
Abstract:
This paper proposes a new model to support user queries on postgraduate research information at Universiti Tenaga Nasional. The ontology to be developed will contribute towards shareable and reusable domain knowledge that makes knowledge assets intelligently accessible to both people and software. This work adapts a methodology for ontology development based on the framework proposed by Uschold and King. The concepts and relations in this domain are represented in a class diagram using the Protégé software. The ontology will be used to support a menudriven query system for assisting students in searching for information related to postgraduate research at the university.Keywords: Ontology, Protégé, postgraduate program, query system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16821604 The Hybrid Knowledge Model for Product Development Management
Authors: Heejung Lee, Hyo-Won Suh
Abstract:
Hybrid knowledge model is suggested as an underlying framework for product development management. It can support such hybrid features as ontologies and rules. Effective collaboration in product development environment depends on sharing and reasoning product information as well as engineering knowledge. Many studies have considered product information and engineering knowledge. However, most previous research has focused either on building the ontology of product information or rule-based systems of engineering knowledge. This paper shows that F-logic based knowledge model can support such desirable features in a hybrid way.Keywords: Ontology, rule, F-logic, product development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14751603 Validation and Selection between Machine Learning Technique and Traditional Methods to Reduce Bullwhip Effects: a Data Mining Approach
Authors: Hamid R. S. Mojaveri, Seyed S. Mousavi, Mojtaba Heydar, Ahmad Aminian
Abstract:
The aim of this paper is to present a methodology in three steps to forecast supply chain demand. In first step, various data mining techniques are applied in order to prepare data for entering into forecasting models. In second step, the modeling step, an artificial neural network and support vector machine is presented after defining Mean Absolute Percentage Error index for measuring error. The structure of artificial neural network is selected based on previous researchers' results and in this article the accuracy of network is increased by using sensitivity analysis. The best forecast for classical forecasting methods (Moving Average, Exponential Smoothing, and Exponential Smoothing with Trend) is resulted based on prepared data and this forecast is compared with result of support vector machine and proposed artificial neural network. The results show that artificial neural network can forecast more precisely in comparison with other methods. Finally, forecasting methods' stability is analyzed by using raw data and even the effectiveness of clustering analysis is measured.Keywords: Artificial Neural Networks (ANN), bullwhip effect, demand forecasting, Support Vector Machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20101602 Offline Signature Recognition using Radon Transform
Authors: M.Radmehr, S.M.Anisheh, I.Yousefian
Abstract:
In this work a new offline signature recognition system based on Radon Transform, Fractal Dimension (FD) and Support Vector Machine (SVM) is presented. In the first step, projections of original signatures along four specified directions have been performed using radon transform. Then, FDs of four obtained vectors are calculated to construct a feature vector for each signature. These vectors are then fed into SVM classifier for recognition of signatures. In order to evaluate the effectiveness of the system several experiments are carried out. Offline signature database from signature verification competition (SVC) 2004 is used during all of the tests. Experimental result indicates that the proposed method achieved high accuracy rate in signature recognition.Keywords: Fractal Dimension, Offline Signature Recognition, Radon Transform, Support Vector Machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26011601 An Approach for the Prediction of Cardiovascular Diseases
Authors: Nebi Gedik
Abstract:
Regardless of age or gender, cardiovascular illnesses are a serious health concern because of things like poor eating habits, stress, a sedentary lifestyle, hard work schedules, alcohol use, and weight. It tends to happen suddenly and has a high rate of recurrence. Machine learning models can be implemented to assist healthcare systems in the accurate detection and diagnosis of cardiovascular disease (CVD) in patients. Improved heart failure prediction is one of the primary goals of researchers using the heart disease dataset. The purpose of this study is to identify the feature or features that offer the best classification prediction for CVD detection. The support vector machine classifier is used to compare each feature's performance. It has been determined which feature produces the best results.
Keywords: Cardiovascular disease, feature extraction, supervised learning, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711600 Approximating Maximum Weighted Independent Set Using Vertex Support
Authors: S. Balaji, V. Swaminathan, K. Kannan
Abstract:
The Maximum Weighted Independent Set (MWIS) problem is a classic graph optimization NP-hard problem. Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the MWIS problem is to find a vertex set S V whose total weight is maximum subject to no two vertices in S are adjacent. This paper presents a novel approach to approximate the MWIS of a graph using minimum weighted vertex cover of the graph. Computational experiments are designed and conducted to study the performance of our proposed algorithm. Extensive simulation results show that the proposed algorithm can yield better solutions than other existing algorithms found in the literature for solving the MWIS.Keywords: weighted independent set, vertex cover, vertex support, heuristic, NP - hard problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20351599 Gas Permeation Behavior of Single and Mixed Gas Components Using an Asymmetric Ceramic Membrane
Authors: Ngozi Nwogu, Edward Gobina
Abstract:
A dip-coating process has been used to form an asymmetric silica membrane with improved membrane performance and reproducibility. First, we deposited repeatedly silica on top of a commercial alumina membrane support to improve its structural make up. The membrane is further processed under clean room conditions to avoid dust impurity and subsequent drying in an oven for high thermal, chemical and physical stability. The resulting asymmetric membrane exhibits a gradual change in the membrane layer thickness. Compared to the support, the dual-layer process improves the gas flow rates. For the scientific applications for natural gas purification, CO2, CH4 and H2 gas flow rates were. In addition, the membrane selectively separated hydrogen.Keywords: Gas permeation, Silica membrane, separation factor, membrane layer thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23871598 The Effects of the Inference Process in Reading Texts in Arabic
Authors: May George
Abstract:
Inference plays an important role in the learning process and it can lead to a rapid acquisition of a second language. When learning a non-native language i.e., a critical language like Arabic, the students depend on the teacher’s support most of the time to learn new concepts. The students focus on memorizing the new vocabulary and stress on learning all the grammatical rules. Hence, the students became mechanical and cannot produce the language easily. As a result, they are unable to predicate the meaning of words in the context by relying heavily on the teacher, in that they cannot link their prior knowledge or even identify the meaning of the words without the support of the teacher. This study explores how the teacher guides students learning during the inference process and what are the processes of learning that can direct student’s inference.Keywords: Inference, Reading, Arabic, and Language Acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20521597 A Promising Approach to Supporting Knowledge-Intensive Business Processes: Business Case Management
Authors: Zeljko Panian
Abstract:
Through the course of this paper we define Business Case Management and its characteristics, and highlight its link to knowledge workers. Business Case Management combines knowledge and process effectively, supporting the ad hoc and unpredictable nature of cases, and coordinate a range of other technologies to appropriately support knowledge-intensive processes. We emphasize the growing importance of knowledge workers and the current poor support for knowledge work automation. We also discuss the challenges in supporting this kind of knowledge work and propose a novel approach to overcome these challenges.
Keywords: Knowledge management, knowledge workers, business process management, business case management, automation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21751596 Analyzing the Technology Affecting on the Social Integration of Students at University
Authors: Sujit K. Basak, Simon Collin
Abstract:
The aim of this paper is to examine the technology access and use on the affecting social integration of local students at university. This aim is achieved by designing a structural equation modeling (SEM) in terms of integration with peers, integration with faculty, faculty support and on the other hand, examining the socio demographic impact on the technology access and use. The collected data were analyzed using the WarpPLS 5.0 software. This study was survey based and it was conducted at a public university in Canada. The results of the study indicated that technology has a strong impact on integration with faculty, faculty support, but technology does not have an impact on integration with peers. However, the social demographic has also an impact on the technology access and use.
Keywords: Faculty, integration, peer, technology access and use.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15571595 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features
Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli
Abstract:
Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.
Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23121594 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features
Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli
Abstract:
Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17011593 Numerical Modeling of Various Support Systems to Stabilize Deep Excavations
Authors: M. Abdallah
Abstract:
Urban development requires deep excavations near buildings and other structures. Deep excavation has become more a necessity for better utilization of space as the population of the world has dramatically increased. In Lebanon, some urban areas are very crowded and lack spaces for new buildings and underground projects, which makes the usage of underground space indispensable. In this paper, a numerical modeling is performed using the finite element method to study the deep excavation-diaphragm wall soil-structure interaction in the case of nonlinear soil behavior. The study is focused on a comparison of the results obtained using different support systems. Furthermore, a parametric study is performed according to the remoteness of the structure.Keywords: Deep excavation, ground anchors, interaction, struts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10881592 An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives
Authors: Andreas Theissler, Ian Dear
Abstract:
In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.
Keywords: Anomaly detection, fault detection, test drive analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24771591 Efficient Scheduling Algorithm for QoS Support in High Speed Downlink Packet Access Networks
Authors: MohammadReza HeidariNezhad, Zuriati Ahmad Zukarnain, Nur Izura Udzir, Mohamed Othman
Abstract:
In this paper, we propose APO, a new packet scheduling scheme with Quality of Service (QoS) support for hybrid of real and non-real time services in HSDPA networks. The APO scheduling algorithm is based on the effective channel anticipation model. In contrast to the traditional schemes, the proposed method is implemented based on a cyclic non-work-conserving discipline. Simulation results indicated that proposed scheme has good capability to maximize the channel usage efficiency in compared to another exist scheduling methods. Simulation results demonstrate the effectiveness of the proposed algorithm.Keywords: Scheduling Algorithm, Quality of Service, HSDPA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15901590 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge
Authors: T. Alghamdi, G. Alaghband
Abstract:
In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.
Keywords: Convolution neural network, edges, face recognition, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7301589 Online Teaching and Learning Processes: Declarative and Procedural Knowledge
Authors: Eulalia Torras, Andreu Bellot
Abstract:
To know whether students’ achievements are the result of online interaction and not just a consequence of individual differences themselves, it seems essential to link the teaching presence and social presence to the types of knowledge built. The research aim is to analyze the social presence in relation to two types of knowledge, declarative and procedural. Qualitative methodology has been used. The analysis of the contents was based on an observation protocol that included community of enquiry indicators and procedural and declarative knowledge indicators. The research has been conducted in three phases that focused on an observational protocol and indicators, results and conclusions. Results show that the teaching-learning processes have been characterized by the patterns of presence and types of knowledge. Results also show the importance of social presence support provided by the teacher and the students, not only in regard to the nature of the instructional support but also concerning how it is presented to the student and the importance that is attributed to it in the teaching-learning process, that is, what it is that assistance is offered on. In this study, we find that the presence based on procedural guidelines and declarative reflection, the management of shared meaning on the basis of the skills and the evidence of these skills entail patterns of learning. Nevertheless, the importance that the teacher attributes to each support aspect has a bearing on the extent to which the students reflect more on the given task.Keywords: Education, online, teaching and learning processes, knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20591588 Polymer Aerostatic Thrust Bearing under Circular Support for High Static Stiffness
Abstract:
A new design of aerostatic thrust bearing is proposed for high static stiffness. The bearing body, which is mead of polymer covered with metallic membrane, is held by a circular ring. Such a support helps form a concave air gap to grasp the air pressure. The polymer body, which can be made rapidly by either injection or molding is able to provide extra damping under dynamic loading. The smooth membrane not only serves as the bearing surface but also protects the polymer body. The restrictor is a capillary inside a silicone tube. It can passively compensate the variation of load by expanding the capillary diameter for more air flux. In the present example, the stiffness soars from 15.85 N/μm of typical bearing to 349.85 N/μm at bearing elevation 9.5 μm; meanwhile the load capacity also enhances from 346.86 N to 704.18 N.Keywords: Aerostatic, bearing, polymer, static stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20861587 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation
Authors: G. Settanni, A. Panarese, R. Vaira, A. Galiano
Abstract:
Nowadays, artificial intelligence is used successfully in the field of e-commerce for its ability to learn from a large amount of data. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them the most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Also, Long Short-Term Memory algorithms have been implemented and trained on historical data in order to predict customer scores of the different items. Items with the highest scores are recommended to customers.
Keywords: Deep Learning, Long Short-Term Memory, Machine Learning, Recommender Systems, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3281586 A Hybrid Machine Learning System for Stock Market Forecasting
Authors: Rohit Choudhry, Kumkum Garg
Abstract:
In this paper, we propose a hybrid machine learning system based on Genetic Algorithm (GA) and Support Vector Machines (SVM) for stock market prediction. A variety of indicators from the technical analysis field of study are used as input features. We also make use of the correlation between stock prices of different companies to forecast the price of a stock, making use of technical indicators of highly correlated stocks, not only the stock to be predicted. The genetic algorithm is used to select the set of most informative input features from among all the technical indicators. The results show that the hybrid GA-SVM system outperforms the stand alone SVM system.Keywords: Genetic Algorithms, Support Vector Machines, Stock Market Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93191585 Breast Motion and Discomfort of Chinese Women in Three Breast Support Conditions
Authors: X.N. Chen, J.P. Wang, D. Jiang, S.M. Shen, Y.K. Yang
Abstract:
Breast motion and discomfort has been studied in Australia, Britain and the United States, while little information was known about the breast motion conditions of Chinese women. The aim of this paper was to study the breast motion and discomfort of Chinese women in no bra condition, daily bra condition and sports bra condition. Breast motion and discomfort of 8 participants was assessed during walking at 5km h-1 and running at 10km h-1. Statistical methods were used to analyze the difference and relationship between breast displacement, perceived breast motion and breast discomfort. Three indexes were developed to evaluate the functions of bras on reducing objective breast motion, subjective breast motion and breast discomfort. The result showed that breast motion of Chinese women was smaller than previous research, which may be resulted from smaller breast size in Asian women.Keywords: Breast discomfort, breast motion, breast support conditions, Chinese women.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480