Search results for: feature representation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1461

Search results for: feature representation

1251 Domain Knowledge Representation through Multiple Sub Ontologies: An Application Interoperability

Authors: Sunitha Abburu, Golla Suresh Babu

Abstract:

The issues that limit application interoperability is lack of common vocabulary, common structure, application domain knowledge ontology based semantic technology provides solutions that resolves application interoperability issues. Ontology is broadly used in diverse applications such as artificial intelligence, bioinformatics, biomedical, information integration, etc. Ontology can be used to interpret the knowledge of various domains. To reuse, enrich the available ontologies and reduce the duplication of ontologies of the same domain, there is a strong need to integrate the ontologies of the particular domain. The integrated ontology gives complete knowledge about the domain by sharing this comprehensive domain ontology among the groups. As per the literature survey there is no well-defined methodology to represent knowledge of a whole domain. The current research addresses a systematic methodology for knowledge representation using multiple sub-ontologies at different levels that addresses application interoperability and enables semantic information retrieval. The current method represents complete knowledge of a domain by importing concepts from multiple sub ontologies of same and relative domains that reduces ontology duplication, rework, implementation cost through ontology reusability.

Keywords: Knowledge acquisition, knowledge representation, knowledge transfer, ontologies, semantics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 971
1250 A Hypercube Social Feature Extraction and Multipath Routing in Delay Tolerant Networks

Authors: S. Balaji, M. Rajaram, Y. Harold Robinson, E. Golden Julie

Abstract:

Delay Tolerant Networks (DTN) which have sufficient state information include trajectory and contact information, to protect routing efficiency. However, state information is dynamic and hard to obtain without a global and/or long-term collection process. To deal with these problems, the internal social features of each node are introduced in the network to perform the routing process. This type of application is motivated from several human contact networks where people contact each other more frequently if they have more social features in common. Two unique processes were developed for this process; social feature extraction and multipath routing. The routing method then becomes a hypercube–based feature matching process. Furthermore, the effectiveness of multipath routing is evaluated and compared to that of single-path routing.

Keywords: Delay tolerant networks, entropy, human contact networks, hyper cubes, multipath Routing, social features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
1249 Simultaneous Clustering and Feature Selection Method for Gene Expression Data

Authors: T. Chandrasekhar, K. Thangavel, E. N. Sathishkumar

Abstract:

Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this work K-Means algorithms has been applied for clustering of Gene Expression Data. Further, rough set based Quick reduct algorithm has been applied for each cluster in order to select the most similar genes having high correlation. Then the ACV measure is used to evaluate the refined clusters and classification is used to evaluate the proposed method. They could identify compact clusters with feature selection method used to genes are selected.

Keywords: Clustering, Feature selection, Gene expression data, Quick reduct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
1248 Knowledge Based Concept Analysis Method using Concept Maps and UML: Security Notion Case

Authors: Miquel Colobran, Josep M. Basart

Abstract:

One of the most ancient humankind concerns is knowledge formalization i.e. what a concept is. Concept Analysis, a branch of analytical philosophy, relies on the purpose of decompose the elements, relations and meanings of a concept. This paper aims at presenting a method to make a concept analysis obtaining a knowledge representation suitable to be processed by a computer system using either object-oriented or ontology technologies. Security notion is, usually, known as a set of different concepts related to “some kind of protection". Our method concludes that a more general framework for the concept, despite it is dynamic, is possible and any particular definition (instantiation) depends on the elements used by its construction instead of the concept itself.

Keywords: Concept analysis, Knowledge representation, Security, UML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390
1247 Syntax Sensitive and Language Independent Detection of Code Clones

Authors: Kazuaki Maeda

Abstract:

This paper proposes a new technique to detect code clones from the lexical and syntactic point of view, which is based on PALEX source code representation. The PALEX code contains the recorded parsing actions and also lexical formatting information including white spaces and comments. We can record a list of parsing actions (shift, reduce, and reading a token) during a compiling process after a compiler finishes analyzing the source code. The proposed technique has advantages for syntax sensitive approach and language independency.

Keywords: Code Clones, Source Code Representation, XML, Parser, Parser Generator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
1246 Gender and Advertisements: A Content Analysis of Pakistani Prime Time Advertisements

Authors: Aaminah Hassan

Abstract:

Advertisements carry a great potential to influence our lives because they are crafted to meet particular ends. Stereotypical representation in advertisements is capable of forming unconscious attitudes among people towards any gender and their abilities. This study focuses on gender representation in Pakistani prime time advertisements. For this purpose, 13 advertisements were selected from three different categories of foods and beverages, cosmetics, cell phones and cellular networks from the prime time slots of one of the leading Pakistani entertainment channel, ‘Urdu 1’. Both quantitative and qualitative analyses are carried out for range of variables like gender, age, roles, activities, setting, appearance and voice overs. The results revealed that gender representation in advertisements is stereotypical. Moreover, in few instances, the portrayal of women is not only culturally inappropriate but is demeaning to the image of women as well. Their bodily charm is used to promote products. Comparing different entertainment channels for their prime time advertisements and broadening the scope of this research will yield greater implications for the researchers who want to carry out the similar research. It is hoped that the current study would help in the promotion of media literacy among the viewers and media authorities in Pakistan.

Keywords: Advertisements, content analysis, gender, prime time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1106
1245 Integrated ACOR/IACOMV-R-SVM Algorithm

Authors: Hiba Basim Alwan, Ku Ruhana Ku-Mahamud

Abstract:

A direction for ACO is to optimize continuous and mixed (discrete and continuous) variables in solving problems with various types of data. Support Vector Machine (SVM), which originates from the statistical approach, is a present day classification technique. The main problems of SVM are selecting feature subset and tuning the parameters. Discretizing the continuous value of the parameters is the most common approach in tuning SVM parameters. This process will result in loss of information which affects the classification accuracy. This paper presents two algorithms that can simultaneously tune SVM parameters and select the feature subset. The first algorithm, ACOR-SVM, will tune SVM parameters, while the second IACOMV-R-SVM algorithm will simultaneously tune SVM parameters and select the feature subset. Three benchmark UCI datasets were used in the experiments to validate the performance of the proposed algorithms. The results show that the proposed algorithms have good performances as compared to other approaches.

Keywords: Continuous ant colony optimization, incremental continuous ant colony, simultaneous optimization, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
1244 Knowledge Representation and Retrieval in Design Project Memory

Authors: Smain M. Bekhti, Nada T. Matta

Abstract:

Knowledge sharing in general and the contextual access to knowledge in particular, still represent a key challenge in the knowledge management framework. Researchers on semantic web and human machine interface study techniques to enhance this access. For instance, in semantic web, the information retrieval is based on domain ontology. In human machine interface, keeping track of user's activity provides some elements of the context that can guide the access to information. We suggest an approach based on these two key guidelines, whilst avoiding some of their weaknesses. The approach permits a representation of both the context and the design rationale of a project for an efficient access to knowledge. In fact, the method consists of an information retrieval environment that, in the one hand, can infer knowledge, modeled as a semantic network, and on the other hand, is based on the context and the objectives of a specific activity (the design). The environment we defined can also be used to gather similar project elements in order to build classifications of tasks, problems, arguments, etc. produced in a company. These classifications can show the evolution of design strategies in the company.

Keywords: Project Memory, Knowledge re-use, Design rationale, Knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
1243 Continuous Feature Adaptation for Non-Native Speech Recognition

Authors: Y. Deng, X. Li, C. Kwan, B. Raj, R. Stern

Abstract:

The current speech interfaces in many military applications may be adequate for native speakers. However, the recognition rate drops quite a lot for non-native speakers (people with foreign accents). This is mainly because the nonnative speakers have large temporal and intra-phoneme variations when they pronounce the same words. This problem is also complicated by the presence of large environmental noise such as tank noise, helicopter noise, etc. In this paper, we proposed a novel continuous acoustic feature adaptation algorithm for on-line accent and environmental adaptation. Implemented by incremental singular value decomposition (SVD), the algorithm captures local acoustic variation and runs in real-time. This feature-based adaptation method is then integrated with conventional model-based maximum likelihood linear regression (MLLR) algorithm. Extensive experiments have been performed on the NATO non-native speech corpus with baseline acoustic model trained on native American English. The proposed feature-based adaptation algorithm improved the average recognition accuracy by 15%, while the MLLR model based adaptation achieved 11% improvement. The corresponding word error rate (WER) reduction was 25.8% and 2.73%, as compared to that without adaptation. The combined adaptation achieved overall recognition accuracy improvement of 29.5%, and WER reduction of 31.8%, as compared to that without adaptation.

Keywords: speaker adaptation; environment adaptation; robust speech recognition; SVD; non-native speech recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3217
1242 Binary Decision Diagrams: An Improved Variable Ordering using Graph Representation of Boolean Functions

Authors: P.W. C. Prasad, A. Assi, A. Harb, V.C. Prasad

Abstract:

This paper presents an improved variable ordering method to obtain the minimum number of nodes in Reduced Ordered Binary Decision Diagrams (ROBDD). The proposed method uses the graph topology to find the best variable ordering. Therefore the input Boolean function is converted to a unidirectional graph. Three levels of graph parameters are used to increase the probability of having a good variable ordering. The initial level uses the total number of nodes (NN) in all the paths, the total number of paths (NP) and the maximum number of nodes among all paths (MNNAP). The second and third levels use two extra parameters: The shortest path among two variables (SP) and the sum of shortest path from one variable to all the other variables (SSP). A permutation of the graph parameters is performed at each level for each variable order and the number of nodes is recorded. Experimental results are promising; the proposed method is found to be more effective in finding the variable ordering for the majority of benchmark circuits.

Keywords: Binary decision diagrams, graph representation, Boolean functions representation, variable ordering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
1241 An Efficient Algorithm for Computing all Program Forward Static Slices

Authors: Jehad Al Dallal

Abstract:

Program slicing is the task of finding all statements in a program that directly or indirectly influence the value of a variable occurrence. The set of statements that can affect the value of a variable at some point in a program is called a program backward slice. In several software engineering applications, such as program debugging and measuring program cohesion and parallelism, several slices are computed at different program points. The existing algorithms for computing program slices are introduced to compute a slice at a program point. In these algorithms, the program, or the model that represents the program, is traversed completely or partially once. To compute more than one slice, the same algorithm is applied for every point of interest in the program. Thus, the same program, or program representation, is traversed several times. In this paper, an algorithm is introduced to compute all forward static slices of a computer program by traversing the program representation graph once. Therefore, the introduced algorithm is useful for software engineering applications that require computing program slices at different points of a program. The program representation graph used in this paper is called Program Dependence Graph (PDG).

Keywords: Program slicing, static slicing, forward slicing, program dependence graph (PDG).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
1240 CAD Model of Cole Cole Representation for Analyzing Performance of Microstrip Moisture Sensing Applications

Authors: Settapong Malisuwan, Jesada Sivaraks, Wasan Jaiwong, Veerapat Sanpanich

Abstract:

In the past decade, the development of microstrip sensor application has evolved tremendously. Although cut and trial method was adopted to develop microstrip sensing applications in the past, Computer-Aided-Design (CAD) is a more effective as it ensures less time is consumed and cost saving is achieved in developing microstrip sensing applications. Therefore microstrip sensing applications has gained popularity as an effective tool adopted in continuous sensing of moisture content particularly in products that is administered mainly by liquid content. In this research, the Cole-Cole representation of reactive relaxation is applied to assess the performance of the microstrip sensor devices. The microstrip sensor application is an effective tool suitable for sensing the moisture content of dielectric material. Analogous to dielectric relaxation consideration of Cole-Cole diagrams as applied to dielectric materials, a “reactive relaxation concept” concept is introduced to represent the frequency-dependent and moisture content characteristics of microstrip sensor devices.

Keywords: Microstrip, Sensor, Cole-Cole Representation, Moisture content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
1239 Floating-Point Scaling for BSS Gain Control

Authors: Abdelmalek Fermas, Adel Belouchrani, Otmane Ait Mohamed

Abstract:

In Blind Source Separation (BSS) processing, taking advantage of scaling factor indetermination and based on the floatingpoint representation, we propose a scaling technique applied to the separation matrix, to avoid the saturation or the weakness in the recovered source signals. This technique performs an Automatic Gain Control (AGC) in an on-line BSS environment. We demonstrate the effectiveness of this technique by using the implementation of a division free BSS algorithm with two input, two output. This technique is computationally cheaper and efficient for a hardware implementation.

Keywords: Automatic Gain Control, Blind Source Separation, Floating-Point Representation, FPGA Implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
1238 An Ontology for Knowledge Representation and Applications

Authors: Nhon Do

Abstract:

Ontology is a terminology which is used in artificial intelligence with different meanings. Ontology researching has an important role in computer science and practical applications, especially distributed knowledge systems. In this paper we present an ontology which is called Computational Object Knowledge Base Ontology. It has been used in designing some knowledge base systems for solving problems such as the system that supports studying knowledge and solving analytic geometry problems, the program for studying and solving problems in Plane Geometry, the knowledge system in linear algebra.

Keywords: Artificial intelligence, knowledge representation, knowledge base system, ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
1237 The Utility of Wavelet Transform in Surface Electromyography Feature Extraction -A Comparative Study of Different Mother Wavelets

Authors: Farzaneh Akhavan Mahdavi, Siti Anom Ahmad, Mohd Hamiruce Marhaban, Mohammad-R. Akbarzadeh-T

Abstract:

Electromyography (EMG) signal processing has been investigated remarkably regarding various applications such as in rehabilitation systems. Specifically, wavelet transform has served as a powerful technique to scrutinize EMG signals since wavelet transform is consistent with the nature of EMG as a non-stationary signal. In this paper, the efficiency of wavelet transform in surface EMG feature extraction is investigated from four levels of wavelet decomposition and a comparative study between different mother wavelets had been done. To recognize the best function and level of wavelet analysis, two evaluation criteria, scatter plot and RES index are recruited. Hereupon, four wavelet families, namely, Daubechies, Coiflets, Symlets and Biorthogonal are studied in wavelet decomposition stage. Consequently, the results show that only features from first and second level of wavelet decomposition yields good performance and some functions of various wavelet families can lead to an improvement in separability class of different hand movements.

Keywords: Electromyography signal, feature extraction, wavelettransform, means absolute value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2841
1236 Practical Method for Digital Music Matching Robust to Various Sound Qualities

Authors: Bokyung Sung, Jungsoo Kim, Jinman Kwun, Junhyung Park, Jihye Ryeo, Ilju Ko

Abstract:

In this paper, we propose a practical digital music matching system that is robust to variation in sound qualities. The proposed system is subdivided into two parts: client and server. The client part consists of the input, preprocessing and feature extraction modules. The preprocessing module, including the music onset module, revises the value gap occurring on the time axis between identical songs of different formats. The proposed method uses delta-grouped Mel frequency cepstral coefficients (MFCCs) to extract music features that are robust to changes in sound quality. According to the number of sound quality formats (SQFs) used, a music server is constructed with a feature database (FD) that contains different sub feature databases (SFDs). When the proposed system receives a music file, the selection module selects an appropriate SFD from a feature database; the selected SFD is subsequently used by the matching module. In this study, we used 3,000 queries for matching experiments in three cases with different FDs. In each case, we used 1,000 queries constructed by mixing 8 SQFs and 125 songs. The success rate of music matching improved from 88.6% when using single a single SFD to 93.2% when using quadruple SFDs. By this experiment, we proved that the proposed method is robust to various sound qualities.

Keywords: Digital Music, Music Matching, Variation in Sound Qualities, Robust Matching method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
1235 A Robust Redundant Residue Representation in Residue Number System with Moduli Set(rn-2,rn-1,rn)

Authors: Hossein Khademolhosseini, Mehdi Hosseinzadeh

Abstract:

The residue number system (RNS), due to its properties, is used in applications in which high performance computation is needed. The carry free nature, which makes the arithmetic, carry bounded as well as the paralleling facility is the reason of its capability of high speed rendering. Since carry is not propagated between the moduli in this system, the performance is only restricted by the speed of the operations in each modulus. In this paper a novel method of number representation by use of redundancy is suggested in which {rn- 2,rn-1,rn} is the reference moduli set where r=2k+1 and k =1, 2,3,.. This method achieves fast computations and conversions and makes the circuits of them much simpler.

Keywords: Binary to RNS converter, Carry save adder, Computer arithmetic, Residue number system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
1234 Study on Performance of Wigner Ville Distribution for Linear FM and Transient Signal Analysis

Authors: Azeemsha Thacham Poyil, Nasimudeen KM

Abstract:

This research paper presents some methods to assess the performance of Wigner Ville Distribution for Time-Frequency representation of non-stationary signals, in comparison with the other representations like STFT, Spectrogram etc. The simultaneous timefrequency resolution of WVD is one of the important properties which makes it preferable for analysis and detection of linear FM and transient signals. There are two algorithms proposed here to assess the resolution and to compare the performance of signal detection. First method is based on the measurement of area under timefrequency plot; in case of a linear FM signal analysis. A second method is based on the instantaneous power calculation and is used in case of transient, non-stationary signals. The implementation is explained briefly for both methods with suitable diagrams. The accuracy of the measurements is validated to show the better performance of WVD representation in comparison with STFT and Spectrograms.

Keywords: WVD: Wigner Ville Distribution, STFT: Short Time Fourier Transform, FT: Fourier Transform, TFR: Time-Frequency Representation, FM: Frequency Modulation, LFM Signal: Linear FM Signal, JTFA: Joint time frequency analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424
1233 Performance Analysis of Genetic Algorithm with kNN and SVM for Feature Selection in Tumor Classification

Authors: C. Gunavathi, K. Premalatha

Abstract:

Tumor classification is a key area of research in the field of bioinformatics. Microarray technology is commonly used in the study of disease diagnosis using gene expression levels. The main drawback of gene expression data is that it contains thousands of genes and a very few samples. Feature selection methods are used to select the informative genes from the microarray. These methods considerably improve the classification accuracy. In the proposed method, Genetic Algorithm (GA) is used for effective feature selection. Informative genes are identified based on the T-Statistics, Signal-to-Noise Ratio (SNR) and F-Test values. The initial candidate solutions of GA are obtained from top-m informative genes. The classification accuracy of k-Nearest Neighbor (kNN) method is used as the fitness function for GA. In this work, kNN and Support Vector Machine (SVM) are used as the classifiers. The experimental results show that the proposed work is suitable for effective feature selection. With the help of the selected genes, GA-kNN method achieves 100% accuracy in 4 datasets and GA-SVM method achieves in 5 out of 10 datasets. The GA with kNN and SVM methods are demonstrated to be an accurate method for microarray based tumor classification.

Keywords: F-Test, Gene Expression, Genetic Algorithm, k- Nearest-Neighbor, Microarray, Signal-to-Noise Ratio, Support Vector Machine, T-statistics, Tumor Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4540
1232 Mathematical Models of Flow Shop and Job Shop Scheduling Problems

Authors: Miloš Šeda

Abstract:

In this paper, mathematical models for permutation flow shop scheduling and job shop scheduling problems are proposed. The first problem is based on a mixed integer programming model. As the problem is NP-complete, this model can only be used for smaller instances where an optimal solution can be computed. For large instances, another model is proposed which is suitable for solving the problem by stochastic heuristic methods. For the job shop scheduling problem, a mathematical model and its main representation schemes are presented.

Keywords: Flow shop, job shop, mixed integer model, representation scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4678
1231 Combined Feature Based Hyperspectral Image Classification Technique Using Support Vector Machines

Authors: Mrs.K.Kavitha, S.Arivazhagan

Abstract:

A spatial classification technique incorporating a State of Art Feature Extraction algorithm is proposed in this paper for classifying a heterogeneous classes present in hyper spectral images. The classification accuracy can be improved if and only if both the feature extraction and classifier selection are proper. As the classes in the hyper spectral images are assumed to have different textures, textural classification is entertained. Run Length feature extraction is entailed along with the Principal Components and Independent Components. A Hyperspectral Image of Indiana Site taken by AVIRIS is inducted for the experiment. Among the original 220 bands, a subset of 120 bands is selected. Gray Level Run Length Matrix (GLRLM) is calculated for the selected forty bands. From GLRLMs the Run Length features for individual pixels are calculated. The Principle Components are calculated for other forty bands. Independent Components are calculated for next forty bands. As Principal & Independent Components have the ability to represent the textural content of pixels, they are treated as features. The summation of Run Length features, Principal Components, and Independent Components forms the Combined Features which are used for classification. SVM with Binary Hierarchical Tree is used to classify the hyper spectral image. Results are validated with ground truth and accuracies are calculated.

Keywords: Multi-class, Run Length features, PCA, ICA, classification and Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
1230 Multi-Scale Gabor Feature Based Eye Localization

Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Dusik Oh, Jaemin Kim, Seongwon Cho

Abstract:

Eye localization is necessary for face recognition and related application areas. Most of eye localization algorithms reported so far still need to be improved about precision and computational time for successful applications. In this paper, we propose an eye location method based on multi-scale Gabor feature vectors, which is more robust with respect to initial points. The eye localization based on Gabor feature vectors first needs to constructs an Eye Model Bunch for each eye (left or right eye) which consists of n Gabor jets and average eye coordinates of each eyes obtained from n model face images, and then tries to localize eyes in an incoming face image by utilizing the fact that the true eye coordinates is most likely to be very close to the position where the Gabor jet will have the best Gabor jet similarity matching with a Gabor jet in the Eye Model Bunch. Similar ideas have been already proposed in such as EBGM (Elastic Bunch Graph Matching). However, the method used in EBGM is known to be not robust with respect to initial values and may need extensive search range for achieving the required performance, but extensive search ranges will cause much more computational burden. In this paper, we propose a multi-scale approach with a little increased computational burden where one first tries to localize eyes based on Gabor feature vectors in a coarse face image obtained from down sampling of the original face image, and then localize eyes based on Gabor feature vectors in the original resolution face image by using the eye coordinates localized in the coarse scaled image as initial points. Several experiments and comparisons with other eye localization methods reported in the other papers show the efficiency of our proposed method.

Keywords: Eye Localization, Gabor features, Multi-scale, Gabor wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
1229 Classification of Non Stationary Signals Using Ben Wavelet and Artificial Neural Networks

Authors: Mohammed Benbrahim, Khalid Benjelloun, Aomar Ibenbrahim, Adil Daoudi

Abstract:

The automatic classification of non stationary signals is an important practical goal in several domains. An essential classification task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, we present a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "Ben wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.

Keywords: Seismic signals, Ben Wavelet, Dimensionality reduction, Artificial neural networks, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
1228 Model for Knowledge Representation using Sample Problems and Designing a Program for Automatically Solving Algebraic Problems

Authors: Nhon Do, Hien Nguyen

Abstract:

Nowadays there are many methods for representing knowledge such as semantic network, neural network, and conceptual graphs. Nonetheless, these methods are not sufficiently efficient when applied to perform and deduce on knowledge domains about supporting in general education such as algebra, analysis or plane geometry. This leads to the introduction of computational network which is a useful tool for representation knowledge base, especially for computational knowledge, especially knowledge domain about general education. However, when dealing with a practical problem, we often do not immediately find a new solution, but we search related problems which have been solved before and then proposing an appropriate solution for the problem. Besides that, when finding related problems, we have to determine whether the result of them can be used to solve the practical problem or not. In this paper, the extension model of computational network has been presented. In this model, Sample Problems, which are related problems, will be used like the experience of human about practical problem, simulate the way of human thinking, and give the good solution for the practical problem faster and more effectively. This extension model is applied to construct an automatic system for solving algebraic problems in middle school.

Keywords: educational software, artificial intelligence, knowledge base system, knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
1227 Challenging Hegemonic Masculinity in Nigerian Hip Hop: An Evaluation of Gender Representation in Falz the Bahd Guy’s Moral Instruction Album

Authors: Adelaja O. Oriade

Abstract:

The Nigerian hip-hop music genre, like the African American scene where it was adopted from, is riddled with musical lyrics that amplify and normalize hypermasculinity, homophobia, sexism, and objectification of women. Several factors are responsible for this anomaly; however, the greatest factor is the urge of hip-hop musicians to achieve the commercial success that is dependent on selling records and appealing to the established societal accepted norm for hip-hop music. Consequently, this paper presents a counter-narrative of this gender representation within the Nigerian hip-hop industry. This study analyzed the musical lyrics of the ‘Hypocrisy’ track on the 2019 album of famous Nigerian rapper, Falz the Bahd Guy; and argued that Falz in this album challenged the predominant ideas of hegemonic masculinity by singing in favor of LGBT people and women. Also, based on the success of this album, this paper argues that a hip-hop album can achieve commercial success without aligning with predominant hip-hop parameters of gender representation. The study recommends that future studies should evaluate the reactions of Nigerians to these gender presentations by Falz the Bahd guy.

Keywords: Hegemonic Masculinity, hypermasculinity, LGBT, misogyny, sexism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
1226 Input Textural Feature Selection By Mutual Information For Multispectral Image Classification

Authors: Mounir Ait kerroum, Ahmed Hammouch, Driss Aboutajdine

Abstract:

Texture information plays increasingly an important role in remotely sensed imagery classification and many pattern recognition applications. However, the selection of relevant textural features to improve this classification accuracy is not a straightforward task. This work investigates the effectiveness of two Mutual Information Feature Selector (MIFS) algorithms to select salient textural features that contain highly discriminatory information for multispectral imagery classification. The input candidate features are extracted from a SPOT High Resolution Visible(HRV) image using Wavelet Transform (WT) at levels (l = 1,2). The experimental results show that the selected textural features according to MIFS algorithms make the largest contribution to improve the classification accuracy than classical approaches such as Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA).

Keywords: Feature Selection, Texture, Mutual Information, Wavelet Transform, SVM classification, SPOT Imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
1225 A Relational Case-Based Reasoning Framework for Project Delivery System Selection

Authors: Yang Cui, Yong Qiang Chen

Abstract:

An appropriate project delivery system (PDS) is crucial to the success of a construction projects. Case-based Reasoning (CBR) is a useful support for PDS selection. However, the traditional CBR approach represents cases as attribute-value vectors without taking relations among attributes into consideration, and could not calculate the similarity when the structures of cases are not strictly same. Therefore, this paper solves this problem by adopting the Relational Case-based Reasoning (RCBR) approach for PDS selection, considering both the structural similarity and feature similarity. To develop the feature terms of the construction projects, the criteria and factors governing PDS selection process are first identified. Then feature terms for the construction projects are developed. Finally, the mechanism of similarity calculation and a case study indicate how RCBR works for PDS selection. The adoption of RCBR in PDS selection expands the scope of application of traditional CBR method and improves the accuracy of the PDS selection system.

Keywords: Relational Cased-based Reasoning, Case-based Reasoning, Project delivery system, Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994
1224 A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance

Authors: F. Meskine, N. Taleb, M. Chikr El-Mezouar, K. Kpalma, A. Almhdie

Abstract:

Image registration is the process of establishing point by point correspondence between images obtained from a same scene. This process is very useful in remote sensing, medicine, cartography, computer vision, etc. Then, the task of registration is to place the data into a common reference frame by estimating the transformations between the data sets. In this work, we develop a rigid point registration method based on the application of genetic algorithms and Hausdorff distance. First, we extract the feature points from both images based on the algorithm of global and local curvature corner. After refining the feature points, we use Hausdorff distance as similarity measure between the two data sets and for optimizing the search space we use genetic algorithms to achieve high computation speed for its inertial parallel. The results show the efficiency of this method for registration of satellite images.

Keywords: Feature extraction, Genetic algorithms, Hausdorff distance, Image registration, Point registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
1223 Multisensor Agent Based Intrusion Detection

Authors: Richard A. Wasniowski

Abstract:

In this paper we propose a framework for multisensor intrusion detection called Fuzzy Agent-Based Intrusion Detection System. A unique feature of this model is that the agent uses data from multiple sensors and the fuzzy logic to process log files. Use of this feature reduces the overhead in a distributed intrusion detection system. We have developed an agent communication architecture that provides a prototype implementation. This paper discusses also the issues of combining intelligent agent technology with the intrusion detection domain.

Keywords: Intrusion detection, fuzzy logic, agents, networksecurity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
1222 Orthogonal Polynomial Density Estimates: Alternative Representation and Degree Selection

Authors: Serge B. Provost, Min Jiang

Abstract:

The density estimates considered in this paper comprise a base density and an adjustment component consisting of a linear combination of orthogonal polynomials. It is shown that, in the context of density approximation, the coefficients of the linear combination can be determined either from a moment-matching technique or a weighted least-squares approach. A kernel representation of the corresponding density estimates is obtained. Additionally, two refinements of the Kronmal-Tarter stopping criterion are proposed for determining the degree of the polynomial adjustment. By way of illustration, the density estimation methodology advocated herein is applied to two data sets.

Keywords: kernel density estimation, orthogonal polynomials, moment-based methodologies, density approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371