Search results for: Evolutionary Programming (EP)
587 A Goal Programming Approach for Plastic Recycling System in Thailand
Authors: Wuthichai Wongthatsanekorn
Abstract:
Plastic waste is a big issue in Thailand, but the amount of recycled plastic in Thailand is still low due to the high investment and operating cost. Hence, the rest of plastic waste are burnt to destroy or sent to the landfills. In order to be financial viable, an effective reverse logistics infrastructure is required to support the product recovery activities. However, there is a conflict between reducing the cost and raising environmental protection level. The purpose of this study is to build a goal programming (GP) so that it can be used to help analyze the proper planning of the Thailand-s plastic recycling system that involves multiple objectives. This study considers three objectives; reducing total cost, increasing the amount of plastic recovery, and raising the desired plastic materials in recycling process. The results from two priority structures show that it is necessary to raise the total cost budget in order to achieve targets on amount of recycled plastic and desired plastic materials.
Keywords: Goal Programming, Plastic Recycling, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2656586 Meteorological Risk Assessment for Ships with Fuzzy Logic Designer
Authors: Ismail Karaca, Ridvan Saracoglu, Omer Soner
Abstract:
Fuzzy Logic, an advanced method to support decision-making, is used by various scientists in many disciplines. Fuzzy programming is a product of fuzzy logic, fuzzy rules, and implication. In marine science, fuzzy programming for ships is dramatically increasing together with autonomous ship studies. In this paper, a program to support the decision-making process for ship navigation has been designed. The program is produced in fuzzy logic and rules, by taking the marine accidents and expert opinions into account. After the program was designed, the program was tested by 46 ship accidents reported by the Transportation Safety Investigation Center of Turkey. Wind speed, sea condition, visibility, day/night ratio have been used as input data. They have been converted into a risk factor within the Fuzzy Logic Designer application and fuzzy rules set by marine experts. Finally, the expert's meteorological risk factor for each accident is compared with the program's risk factor, and the error rate was calculated. The main objective of this study is to improve the navigational safety of ships, by using the advance decision support model. According to the study result, fuzzy programming is a robust model that supports safe navigation.
Keywords: Calculation of risk factor, fuzzy logic, fuzzy programming for ship, safe navigation of ships.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825585 A Dual Method for Solving General Convex Quadratic Programs
Authors: Belkacem Brahmi, Mohand Ouamer Bibi
Abstract:
In this paper, we present a new method for solving quadratic programming problems, not strictly convex. Constraints of the problem are linear equalities and inequalities, with bounded variables. The suggested method combines the active-set strategies and support methods. The algorithm of the method and numerical experiments are presented, while comparing our approach with the active set method on randomly generated problems.
Keywords: Convex quadratic programming, dual support methods, active set methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894584 Genetic Programming Approach for Multi-Category Pattern Classification Appliedto Network Intrusions Detection
Authors: K.M. Faraoun, A. Boukelif
Abstract:
This paper describes a new approach of classification using genetic programming. The proposed technique consists of genetically coevolving a population of non-linear transformations on the input data to be classified, and map them to a new space with a reduced dimension, in order to get a maximum inter-classes discrimination. The classification of new samples is then performed on the transformed data, and so become much easier. Contrary to the existing GP-classification techniques, the proposed one use a dynamic repartition of the transformed data in separated intervals, the efficacy of a given intervals repartition is handled by the fitness criterion, with a maximum classes discrimination. Experiments were first performed using the Fisher-s Iris dataset, and then, the KDD-99 Cup dataset was used to study the intrusion detection and classification problem. Obtained results demonstrate that the proposed genetic approach outperform the existing GP-classification methods [1],[2] and [3], and give a very accepted results compared to other existing techniques proposed in [4],[5],[6],[7] and [8].Keywords: Genetic programming, patterns classification, intrusion detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711583 Lego Mindstorms as a Simulation of Robotic Systems
Authors: Miroslav Popelka, Jakub Nožička
Abstract:
In this paper we deal with using Lego Mindstorms in simulation of robotic systems with respect to cost reduction. Lego Mindstorms kit contains broad variety of hardware components which are required to simulate, program and test the robotics systems in practice. Algorithm programming went in development environment supplied together with Lego kit as in programming language C# as well. Algorithm following the line, which we dealt with in this paper, uses theoretical findings from area of controlling circuits. PID controller has been chosen as controlling circuit whose individual components were experimentally adjusted for optimal motion of robot tracking the line. Data which are determined to process by algorithm are collected by sensors which scan the interface between black and white surfaces followed by robot. Based on discovered facts Lego Mindstorms can be considered for low-cost and capable kit to simulate real robotics systems.
Keywords: LEGO Mindstorms, PID controller, low-cost robotics systems, line follower, sensors, programming language C#, EV3 Home Edition Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3835582 Mathematical Rescheduling Models for Railway Services
Authors: Zuraida Alwadood, Adibah Shuib, Norlida Abd Hamid
Abstract:
This paper presents the review of past studies concerning mathematical models for rescheduling passenger railway services, as part of delay management in the occurrence of railway disruption. Many past mathematical models highlighted were aimed at minimizing the service delays experienced by passengers during service disruptions. Integer programming (IP) and mixed-integer programming (MIP) models are critically discussed, focusing on the model approach, decision variables, sets and parameters. Some of them have been tested on real-life data of railway companies worldwide, while a few have been validated on fictive data. Based on selected literatures on train rescheduling, this paper is able to assist researchers in the model formulation by providing comprehensive analyses towards the model building. These analyses would be able to help in the development of new approaches in rescheduling strategies or perhaps to enhance the existing rescheduling models and make them more powerful or more applicable with shorter computing time.
Keywords: Mathematical modelling, Mixed-integer programming, Railway rescheduling, Service delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3251581 A New Fuzzy Mathematical Model in Recycling Collection Networks: A Possibilistic Approach
Authors: B. Vahdani, R. Tavakkoli-Moghaddam, A. Baboli, S. M. Mousavi
Abstract:
Focusing on the environmental issues, including the reduction of scrap and consumer residuals, along with the benefiting from the economic value during the life cycle of goods/products leads the companies to have an important competitive approach. The aim of this paper is to present a new mixed nonlinear facility locationallocation model in recycling collection networks by considering multi-echelon, multi-suppliers, multi-collection centers and multifacilities in the recycling network. To make an appropriate decision in reality, demands, returns, capacities, costs and distances, are regarded uncertain in our model. For this purpose, a fuzzy mathematical programming-based possibilistic approach is introduced as a solution methodology from the recent literature to solve the proposed mixed-nonlinear programming model (MNLP). The computational experiments are provided to illustrate the applicability of the designed model in a supply chain environment and to help the decision makers to facilitate their analysis.
Keywords: Location-allocation model, recycling collection networks, fuzzy mathematical programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098580 Ride Control of Passenger Cars with Semi-active Suspension System Using a Linear Quadratic Regulator and Hybrid Optimization Algorithm
Authors: Ali Fellah Jahromi, Wen Fang Xie, Rama B. Bhat
Abstract:
A semi-active control strategy for suspension systems of passenger cars is presented employing Magnetorheological (MR) dampers. The vehicle is modeled with seven DOFs including the, roll pitch and bounce of car body, and the vertical motion of the four tires. In order to design an optimal controller based on the actuator constraints, a Linear-Quadratic Regulator (LQR) is designed. The design procedure of the LQR consists of selecting two weighting matrices to minimize the energy of the control system. This paper presents a hybrid optimization procedure which is a combination of gradient-based and evolutionary algorithms to choose the weighting matrices with regards to the actuator constraint. The optimization algorithm is defined based on maximum comfort and actuator constraints. It is noted that utilizing the present control algorithm may significantly reduce the vibration response of the passenger car, thus, providing a comfortable ride.Keywords: Full car model, Linear Quadratic Regulator, Sequential Quadratic Programming, Genetic Algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2940579 Parallezation Protein Sequence Similarity Algorithms using Remote Method Interface
Authors: Mubarak Saif Mohsen, Zurinahni Zainol, Rosalina Abdul Salam, Wahidah Husain
Abstract:
One of the major problems in genomic field is to perform sequence comparison on DNA and protein sequences. Executing sequence comparison on the DNA and protein data is a computationally intensive task. Sequence comparison is the basic step for all algorithms in protein sequences similarity. Parallel computing is an attractive solution to provide the computational power needed to speedup the lengthy process of the sequence comparison. Our main research is to enhance the protein sequence algorithm using dynamic programming method. In our approach, we parallelize the dynamic programming algorithm using multithreaded program to perform the sequence comparison and also developed a distributed protein database among many PCs using Remote Method Interface (RMI). As a result, we showed how different sizes of protein sequences data and computation of scoring matrix of these protein sequence on different number of processors affected the processing time and speed, as oppose to sequential processing.
Keywords: Protein sequence algorithm, dynamic programming algorithm, multithread
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903578 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.
Keywords: Structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417577 On the Application of Meta-Design Techniques in Hardware Design Domain
Authors: R. Damaševičius
Abstract:
System-level design based on high-level abstractions is becoming increasingly important in hardware and embedded system design. This paper analyzes meta-design techniques oriented at developing meta-programs and meta-models for well-understood domains. Meta-design techniques include meta-programming and meta-modeling. At the programming level of design process, metadesign means developing generic components that are usable in a wider context of application than original domain components. At the modeling level, meta-design means developing design patterns that describe general solutions to the common recurring design problems, and meta-models that describe the relationship between different types of design models and abstractions. The paper describes and evaluates the implementation of meta-design in hardware design domain using object-oriented and meta-programming techniques. The presented ideas are illustrated with a case study.Keywords: Design patterns, meta-design, meta-modeling, metaprogramming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313576 Welding Process Selection for Storage Tank by Integrated Data Envelopment Analysis and Fuzzy Credibility Constrained Programming Approach
Authors: Rahmad Wisnu Wardana, Eakachai Warinsiriruk, Sutep Joy-A-Ka
Abstract:
Selecting the most suitable welding process usually depends on experiences or common application in similar companies. However, this approach generally ignores many criteria that can be affecting the suitable welding process selection. Therefore, knowledge automation through knowledge-based systems will significantly improve the decision-making process. The aims of this research propose integrated data envelopment analysis (DEA) and fuzzy credibility constrained programming approach for identifying the best welding process for stainless steel storage tank in the food and beverage industry. The proposed approach uses fuzzy concept and credibility measure to deal with uncertain data from experts' judgment. Furthermore, 12 parameters are used to determine the most appropriate welding processes among six competitive welding processes.
Keywords: Welding process selection, data envelopment analysis, fuzzy credibility constrained programming, storage tank.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799575 Genetic Programming Based Data Projections for Classification Tasks
Authors: César Estébanez, Ricardo Aler, José M. Valls
Abstract:
In this paper we present a GP-based method for automatically evolve projections, so that data can be more easily classified in the projected spaces. At the same time, our approach can reduce dimensionality by constructing more relevant attributes. Fitness of each projection measures how easy is to classify the dataset after applying the projection. This is quickly computed by a Simple Linear Perceptron. We have tested our approach in three domains. The experiments show that it obtains good results, compared to other Machine Learning approaches, while reducing dimensionality in many cases.
Keywords: Classification, genetic programming, projections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398574 Improved Estimation of Evolutionary Spectrum based on Short Time Fourier Transforms and Modified Magnitude Group Delay by Signal Decomposition
Authors: H K Lakshminarayana, J S Bhat, H M Mahesh
Abstract:
A new estimator for evolutionary spectrum (ES) based on short time Fourier transform (STFT) and modified group delay function (MGDF) by signal decomposition (SD) is proposed. The STFT due to its built-in averaging, suppresses the cross terms and the MGDF preserves the frequency resolution of the rectangular window with the reduction in the Gibbs ripple. The present work overcomes the magnitude distortion observed in multi-component non-stationary signals with STFT and MGDF estimation of ES using SD. The SD is achieved either through discrete cosine transform based harmonic wavelet transform (DCTHWT) or perfect reconstruction filter banks (PRFB). The MGDF also improves the signal to noise ratio by removing associated noise. The performance of the present method is illustrated for cross chirp and frequency shift keying (FSK) signals, which indicates that its performance is better than STFT-MGDF (STFT-GD) alone. Further its noise immunity is better than STFT. The SD based methods, however cannot bring out the frequency transition path from band to band clearly, as there will be gap in the contour plot at the transition. The PRFB based STFT-SD shows good performance than DCTHWT decomposition method for STFT-GD.Keywords: Evolutionary Spectrum, Modified Group Delay, Discrete Cosine Transform, Harmonic Wavelet Transform, Perfect Reconstruction Filter Banks, Short Time Fourier Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611573 Application of Neuro-Fuzzy Dynamic Programming to Improve the Reactive Power and Voltage Profile of a Distribution Substation
Authors: M. Tarafdar Haque, S. Najafi
Abstract:
Improving the reactive power and voltage profile of a distribution substation is investigated in this paper. The purpose is to properly determination of the shunt capacitors on/off status and suitable tap changer (TC) position of a substation transformer. In addition, the limitation of secondary bus voltage, the maximum allowable number of switching operation in a day for on load tap changer and on/off status of capacitors are taken into account. To achieve these goals, an artificial neural network (ANN) is designed to provide preliminary scheduling. Input of ANN is active and reactive powers of transformer and its primary and secondary bus voltages. The output of ANN is capacitors on/off status and TC position. The preliminary schedule is further refined by fuzzy dynamic programming in order to reach the final schedule. The operation of proposed method in Q/V improving is compared with the results obtained by operator operation in a distribution substation.Keywords: Neuro-fuzzy, Dynamic programming, Reactive power, Voltage profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629572 Using the PGAS Programming Paradigm for Biological Sequence Alignment on a Chip Multi-Threading Architecture
Authors: M. Bakhouya, S. A. Bahra, T. El-Ghazawi
Abstract:
The Partitioned Global Address Space (PGAS) programming paradigm offers ease-of-use in expressing parallelism through a global shared address space while emphasizing performance by providing locality awareness through the partitioning of this address space. Therefore, the interest in PGAS programming languages is growing and many new languages have emerged and are becoming ubiquitously available on nearly all modern parallel architectures. Recently, new parallel machines with multiple cores are designed for targeting high performance applications. Most of the efforts have gone into benchmarking but there are a few examples of real high performance applications running on multicore machines. In this paper, we present and evaluate a parallelization technique for implementing a local DNA sequence alignment algorithm using a PGAS based language, UPC (Unified Parallel C) on a chip multithreading architecture, the UltraSPARC T1.Keywords: Partitioned Global Address Space, Unified Parallel C, Multicore machines, Multi-threading Architecture, Sequence alignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390571 Defining Programming Problems as Learning Objects
Authors: José Paulo Leal, Ricardo Queirós
Abstract:
Standards for learning objects focus primarily on content presentation. They were already extended to support automatic evaluation but it is limited to exercises with a predefined set of answers. The existing standards lack the metadata required by specialized evaluators to handle types of exercises with an indefinite set of solutions. To address this issue existing learning object standards were extended to the particular requirements of a specialized domain. A definition of programming problems as learning objects, compatible both with Learning Management Systems and with systems performing automatic evaluation of programs, is presented in this paper. The proposed definition includes metadata that cannot be conveniently represented using existing standards, such as: the type of automatic evaluation; the requirements of the evaluation engine; and the roles of different assets - tests cases, program solutions, etc. The EduJudge project and its main services are also presented as a case study on the use of the proposed definition of programming problems as learning objects.Keywords: Content Packaging, eLearning Services, Interoperability, Learning Objects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554570 A Robust Optimization Model for the Single-Depot Capacitated Location-Routing Problem
Authors: Abdolsalam Ghaderi
Abstract:
In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve the customers when the parameters may change under different circumstances. This problem has many applications, especially in the area of supply chain management and distribution systems. To get closer to real-world situations, travel time of vehicles, the fixed cost of vehicles usage and customers’ demand are considered as a source of uncertainty. A combined approach including robust optimization and stochastic programming was presented to deal with the uncertainty in the problem at hand. For this purpose, a mixed integer programming model is developed and a heuristic algorithm based on Variable Neighborhood Search(VNS) is presented to solve the model. Finally, the computational results are presented and future research directions are discussed.Keywords: Location-routing problem, robust optimization, Stochastic Programming, variable neighborhood search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755569 Lifetime Maximization in Wireless Ad Hoc Networks with Network Coding and Matrix Game
Authors: Jain-Shing Liu
Abstract:
In this paper, we present a matrix game-theoretic cross-layer optimization formulation to maximize the network lifetime in wireless ad hoc networks with network coding. To this end, we introduce a cross-layer formulation of general NUM (network utility maximization) that accommodates routing, scheduling, and stream control from different layers in the coded networks. Specifically, for the scheduling problem and then the objective function involved, we develop a matrix game with the strategy sets of the players corresponding to hyperlinks and transmission modes, and design the payoffs specific to the lifetime. In particular, with the inherit merit that matrix game can be solved with linear programming, our cross-layer programming formulation can benefit from both game-based and NUM-based approaches at the same time by cooperating the programming model for the matrix game with that for the other layers in a consistent framework. Finally, our numerical example demonstrates its performance results on a well-known wireless butterfly network to verify the cross-layer optimization scheme.Keywords: Cross-layer design, Lifetime maximization, Matrix game, Network coding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694568 Predicting the Minimum Free Energy RNA Secondary Structures using Harmony Search Algorithm
Authors: Abdulqader M. Mohsen, Ahamad Tajudin Khader, Dhanesh Ramachandram, Abdullatif Ghallab
Abstract:
The physical methods for RNA secondary structure prediction are time consuming and expensive, thus methods for computational prediction will be a proper alternative. Various algorithms have been used for RNA structure prediction including dynamic programming and metaheuristic algorithms. Musician's behaviorinspired harmony search is a recently developed metaheuristic algorithm which has been successful in a wide variety of complex optimization problems. This paper proposes a harmony search algorithm (HSRNAFold) to find RNA secondary structure with minimum free energy and similar to the native structure. HSRNAFold is compared with dynamic programming benchmark mfold and metaheuristic algorithms (RnaPredict, SetPSO and HelixPSO). The results showed that HSRNAFold is comparable to mfold and better than metaheuristics in finding the minimum free energies and the number of correct base pairs.
Keywords: Metaheuristic algorithms, dynamic programming algorithms, harmony search optimization, RNA folding, Minimum free energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338567 Type–2 Fuzzy Programming for Optimizing the Heat Rate of an Industrial Gas Turbine via Absorption Chiller Technology
Authors: T. Ganesan, M. S. Aris, I. Elamvazuthi, Momen Kamal Tageldeen
Abstract:
Terms set in power purchase agreements (PPA) challenge power utility companies in balancing between the returns (from maximizing power production) and securing long term supply contracts at capped production. The production limitation set in the PPA has driven efforts to maximize profits through efficient and economic power production. In this paper, a combined industrial-scale gas turbine (GT) - absorption chiller (AC) system is considered to cool the GT air intake for reducing the plant’s heat rate (HR). This GT-AC system is optimized while considering power output limitations imposed by the PPA. In addition, the proposed formulation accounts for uncertainties in the ambient temperature using Type-2 fuzzy programming. Using the enhanced chaotic differential evolution (CEDE), the Pareto frontier was constructed and the optimization results are analyzed in detail.Keywords: Absorption chillers, turbine inlet air cooling, power purchase agreement, multiobjective optimization, type-2 fuzzy programming, chaotic differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934566 Study on Optimal Control Strategy of PM2.5 in Wuhan, China
Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun
Abstract:
In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.
Keywords: Grey relational degree, multiple linear regression, membership function, nonlinear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407565 Optimal Control Problem, Quasi-Assignment Problem and Genetic Algorithm
Authors: Omid S. Fard, Akbar H. Borzabadi
Abstract:
In this paper we apply one of approaches in category of heuristic methods as Genetic Algorithms for obtaining approximate solution of optimal control problems. The firs we convert optimal control problem to a quasi Assignment Problem by defining some usual characters as defined in Genetic algorithm applications. Then we obtain approximate optimal control function as an piecewise constant function. Finally the numerical examples are given.Keywords: Optimal control, Integer programming, Genetic algorithm, Discrete approximation, Linear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293564 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint
Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang
Abstract:
This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.
Keywords: Topology optimization, BESO method, p-norm, fatigue constraint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1069563 Preemptive Possibilistic Linear Programming:Application to Aggregate Production Planning
Authors: Phruksaphanrat B.
Abstract:
This research proposes a Preemptive Possibilistic Linear Programming (PPLP) approach for solving multiobjective Aggregate Production Planning (APP) problem with interval demand and imprecise unit price and related operating costs. The proposed approach attempts to maximize profit and minimize changes of workforce. It transforms the total profit objective that has imprecise information to three crisp objective functions, which are maximizing the most possible value of profit, minimizing the risk of obtaining the lower profit and maximizing the opportunity of obtaining the higher profit. The change of workforce level objective is also converted. Then, the problem is solved according to objective priorities. It is easier than simultaneously solve the multiobjective problem as performed in existing approach. Possible range of interval demand is also used to increase flexibility of obtaining the better production plan. A practical application of an electronic company is illustrated to show the effectiveness of the proposed model.Keywords: Aggregate production planning, Fuzzy sets theory, Possibilistic linear programming, Preemptive priority
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860562 Evolutionary Origin of the αC Helix in Integrins
Authors: B. Chouhan, A. Denesyuk, J. Heino, M. S. Johnson, K. Denessiouk
Abstract:
Integrins are a large family of multidomain α/β cell signaling receptors. Some integrins contain an additional inserted I domain, whose earliest expression appears to be with the chordates, since they are observed in the urochordates Ciona intestinalis (vase tunicate) and Halocynthia roretzi (sea pineapple), but not in integrins of earlier diverging species. The domain-s presence is viewed as a hallmark of integrins of higher metazoans, however in vertebrates, there are clearly three structurally-different classes: integrins without I domains, and two groups of integrins with I domains but separable by the presence or absence of an additional αC helix. For example, the αI domains in collagen-binding integrins from Osteichthyes (bony fish) and all higher vertebrates contain the specific αC helix, whereas the αI domains in non-collagen binding integrins from vertebrates and the αI domains from earlier diverging urochordate integrins, i.e. tunicates, do not. Unfortunately, within the early chordates, there is an evolutionary gap due to extinctions between the tunicates and cartilaginous fish. This, coupled with a knowledge gap due to the lack of complete genomic data from surviving species, means that the origin of collagen-binding αC-containing αI domains remains unknown. Here, we analyzed two available genomes from Callorhinchus milii (ghost shark/elephant shark; Chondrichthyes – cartilaginous fish) and Petromyzon marinus (sea lamprey; Agnathostomata), and several available Expression Sequence Tags from two Chondrichthyes species: Raja erinacea (little skate) and Squalus acanthias (dogfish shark); and Eptatretus burgeri (inshore hagfish; Agnathostomata), which evolutionary reside between the urochordates and osteichthyes. In P. marinus, we observed several fragments coding for the αC-containing αI domain, allowing us to shed more light on the evolution of the collagen-binding integrins.Keywords: Integrin αI domain, integrin evolution, collagen binding, structure, αC helix
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3672561 A Memetic Algorithm for an Energy-Costs-Aware Flexible Job-Shop Scheduling Problem
Authors: Christian Böning, Henrik Prinzhorn, Eric C. Hund, Malte Stonis
Abstract:
In this article, the flexible job-shop scheduling problem is extended by consideration of energy costs which arise owing to the power peak, and further decision variables such as work in process and throughput time are incorporated into the objective function. This enables a production plan to be simultaneously optimized in respect of the real arising energy and logistics costs. The energy-costs-aware flexible job-shop scheduling problem (EFJSP) which arises is described mathematically, and a memetic algorithm (MA) is presented as a solution. In the MA, the evolutionary process is supplemented with a local search. Furthermore, repair procedures are used in order to rectify any infeasible solutions that have arisen in the evolutionary process. The potential for lowering the real arising costs of a production plan through consideration of energy consumption levels is highlighted.
Keywords: Energy costs, flexible job-shop scheduling, memetic algorithm, power peak.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117560 Finding a Solution, all Solutions, or the Most Probable Solution to a Temporal Interval Algebra Network
Authors: André Trudel, Haiyi Zhang
Abstract:
Over the years, many implementations have been proposed for solving IA networks. These implementations are concerned with finding a solution efficiently. The primary goal of our implementation is simplicity and ease of use. We present an IA network implementation based on finite domain non-binary CSPs, and constraint logic programming. The implementation has a GUI which permits the drawing of arbitrary IA networks. We then show how the implementation can be extended to find all the solutions to an IA network. One application of finding all the solutions, is solving probabilistic IA networks.Keywords: Constraint logic programming, CSP, logic, temporalreasoning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399559 Power System Voltage Control using LP and Artificial Neural Network
Authors: A. Sina, A. Aeenmehr, H. Mohamadian
Abstract:
Optimization and control of reactive power distribution in the power systems leads to the better operation of the reactive power resources. Reactive power control reduces considerably the power losses and effective loads and improves the power factor of the power systems. Another important reason of the reactive power control is improving the voltage profile of the power system. In this paper, voltage and reactive power control using Neural Network techniques have been applied to the 33 shines- Tehran Electric Company. In this suggested ANN, the voltages of PQ shines have been considered as the input of the ANN. Also, the generators voltages, tap transformers and shunt compensators have been considered as the output of ANN. Results of this techniques have been compared with the Linear Programming. Minimization of the transmission line power losses has been considered as the objective function of the linear programming technique. The comparison of the results of the ANN technique with the LP shows that the ANN technique improves the precision and reduces the computation time. ANN technique also has a simple structure and this causes to use the operator experience.Keywords: voltage control, linear programming, artificial neural network, power systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760558 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming
Authors: Hadi Gholizadeh, Ali Tajdin
Abstract:
To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.Keywords: Goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040